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Overview

kernel methods and set kernels

string kernels, tree kernels, and graph kernels

open issues
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Basis Function Networks
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Kernel Methods

find linear combination of basis functions

with positive definite

convex optimisation problem

geometric interpretation

covariance function
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Kernels for Sets
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Kernels for Sets
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Kernels for Sets

1

1

1

1

1

1

1

0

0

0

Thom
as G

ärtner
-

M
G

TS, 2003

Kernels for Multisets
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Abstraction Kernels

abstractions generalise sets, multisets, and measures
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Multiset Example
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Kernels for Objects
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Kernels for Objects
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Convolution Kernels

R-1 decomposes Instances into their parts
all background knowledge goes in defining R-1

d iterates over the components of the parts (D-tuples)
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Kernels for

Strings and Sequences
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n-gram Kernels ( n = 2 )
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n-gram Kernels ( n = 2 )
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Subsequences vs. n-gram
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Subsequences vs. n-gram

subsequences :  4
subsequences :  5
subsequences :  6
…
subsequences :12 
…
subsequences :11
…
subsequences :  4

subsequences
subsequences
subsequences
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subsequences
subsequences
subsequences
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Subsequence Kernel
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Subsequence Kernel
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String Kernels

n-gram kernels
subsequence kernels

gappy / mismatch / wildcard kernels
rational kernels

computation tricks
other kernels for sequences

application areas
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Kernels for

Trees
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Parse-Tree
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Parse-Tree Kernels 

;
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Parse-Tree Subtrees
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Parse-Tree Kernel
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Parse-Tree: Subtree

[ slight modification of original kernel ]
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Parse-Tree Kernel

(1) (1)(0) (0)



17

Thom
as G

ärtner
-

M
G

TS, 2003

Parse-Tree Kernel

(1) (1)(0) (0)

(2) (2)(1) (1)
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Parse-Tree Kernel

(1) (1)(0) (0)

(2) (2)(1) (1)

(6) (6)
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Kernels for

Graphs
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Labelled Directed Graphs

vertices edges labels
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Sub-Graph Kernels 
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Bad News …

computing the sub-graph kernel is NP-hard

proof by mapping to `Hamiltonian Path’
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Path Kernel Example

13 paths
c, a, r, t
at, ca, ar, tc
cat, car, atc, tca
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Complete Graph Kernels 
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Bad News … 

computing any complete graph kernel is
at least as hard as `Graph Isomorphism’

proof by computing distance induced by k
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Interlude

negative results on graph kernels

sub-graph kernels and complete graph kernels 
are computationally hard

positive results on graph kernels

kernels based on walks with common 
label sequences (with and without gaps) 

can be computed in polynomial time
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Walks in a Graph

13 paths
c, a, r, t

at, ca, ar, tc
car, cat, atc, tca

tcar

infinitely many walks
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Walk Kernel 

contiguous label sequence
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Direct Product Graphs
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Direct Product Graphs

1
2

3
4

c

t

a

r

a
1

2

4
3

c
a

t

1,1
2,2

4,3
2,4

a

c
a

t

c, a, a, t
ca, ca, at

cat

c, a, a, t
ca, ca, at, ta

cat
cata

c, a, r, t
ca, ar, at, tc
cat, tca, atc
. . . 

at



24

Thom
as G

ärtner
-

M
G

TS, 2003

Direct Product Graphs
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Direct Product Graphs
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Direct Product Graphs
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Computation

the inner product can be computed as 

contiguous label sequences
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Walk Kernel (with gaps)

the inner product can be computed as

label sequences with m wildcards
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Matrix Power Series

decompose adjacency matrix

compute component-wise
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Example Power Series

exponential series

geometric series

Thom
as G

ärtner
-

M
G

TS, 2003

GEOM Parameter

geom = 1/3 1/5 1/7

re
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EXP Parameter

exp = 3 5 7
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Extensions

graphs with a transition probability
associated with each edge

application of Gaussian processes
to relational reinforcement learning [ILP’03]

efficient computation for unlabelled graphs 
( tensor product of adjacency matrices )
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Blocks World Kernel 

;
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Blocks-World as Graph 

state action goal
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Molecule Kernel 

;
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Issues

what is a good kernel (given a concept class)
completeness, separation, and convergence

which concept classes are important

applications for graph kernels

incorporate background knowledge 
how to choose a kernel / how to choose features


