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Abstract. Decision tree Graph-Based Induction (DT-GBI) is proposed
that constructs a decision tree for graph structured data. Substructures
(patterns) are extracted at each node of a decision tree by stepwise pair
expansion (pairwise chunking) in GBI to be used as attributes for testing.
Since attributes (features) are constructed while a classifier is being con-
structed, DT-GBI can be conceived as a method for feature construction.
The predictive accuracy of a decision tree is affected by which attributes
(patterns) are used and how they are constructed. A beam search is em-
ployed to extract good enough discriminative patterns within the greedy
search framework. Pessimistic pruning is incorporated to avoid overfit-
ting to the training data. Experiments using a DNA dataset were con-
ducted to see the effect of the beam width, the number of chunking at
each node of a decision tree, and the pruning. The results indicate that
DT-GBI that does not use any prior domain knowledge can construct
a decision tree that is comparable to other classifiers constructed using
the domain knowledge.

1 Introduction

Since structure is represented by proper relations and a graph can easily rep-
resent relations, knowledge discovery from graph structured data poses a gen-
eral problem for mining from structured data. Examples amenable to graph
mining problems are finding typical web browsing patterns, identifying typical
substructures of chemical compounds, finding typical subsequences of DNA and
discovering diagnostic rules from patient history records.

Graph-Based Induction (GBI) [9, 3], on which DT-GBI is based, discovers
typical patterns in general graph structured data by recursively chunking two
adjoining nodes. It can handle a graph data having loops with colored/uncolored
nodes and links. GBI is very efficient because it employs greedy search. GBI
does not lose any information of graph structure after chunking, and it can use
various evaluation functions in so far as they are based on frequency. It is not,
however, suitable for graph structured data where many nodes share the same
label because of its greedy recursive chunking without backtracking, but it is
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still effective in extracting patterns from data where each node has a distinct
label (e.g., World Wide Web browsing data) or where some typical structures
exist even if some nodes share the same labels (e.g., chemical structure data
containing benzene rings etc). The decision tree construction method [5, 6] is a
widely used technique for data classification and prediction, but the data must
be represented by or transformed into attribute-value pairs. However, it is not
trivial to define proper attributes for graph-structured data beforehand.

We have proposed a method called Decision Tree Graph-Based Induction
(DT-GBI), which constructs a classifier (decision tree) for graph-structured data
while constructing the attributes during the course of tree building using GBI
recursively and did preliminary performance evaluation [8].

A pair extracted by GBI, consisting of nodes and links among them1 that is
treated as an attribute and the existence/non-existence of the pair in a graph
is treated as its value for the graph. Thus, attributes (pairs) that split the data
effectively are extracted by GBI while a decision tree is being constructed. To
classify unseen graph-structured data by the constructed decision tree, attributes
that appear in the nodes of the tree are produced from data before the classifi-
cation.

In this paper we first report an improvement made on DT-GBI after the
preliminary analysis [8] to increase its predictive accuracy. After that, we report
on the performance evaluation of the improved DT-GBI through experiments
using a DNA dataset from the UCI repository and show that the results are
comparable to the results that are obtained by using the domain knowledge [7].

Section 2 briefly describes the framework of DT-GBI and Section 3 describes
the improvement made on DT-GBI. Evaluation of the improved DT-GBI is re-
ported in Section 4. Section 5 concludes the paper with a summary of the results
and the planned future work.

2 Decision Tree Graph-Based Induction

2.1 Graph-Based Induction Revisited

GBI employs the idea of extracting typical patterns by stepwise pair expansion.
In the original GBI an assumption was made that typical patterns represent
some concepts/substructure and “typicality” is characterized by the pattern’s
frequency or the value of some evaluation function of its frequency. Repeated
chunking enables to extract typical patterns of various sizes. The search is greedy
and no backtracking is made. Because of this, all the ”typical patterns” that ex-
ist in the input graph are not necessarily extracted. The problem of subgraph
isomorphism is known to be NP-complete. GBI aims at extracting only mean-
ingful typical patterns of certain sizes. Its objective is not finding all the typical
patterns nor finding all the frequent patterns.

For finding a pattern that is of interest any of its subpatterns must be of in-
terest because of the nature of repeated chunking, i.e., a larger pattern can only
1 Repeated chunking of pairs results in subgraph structure
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be constructed by pairing two smaller subpatterns, which must have been con-
structed at earlier steps. Frequency measure satisfies this monotonicity. However,
if the criterion chosen does not satisfy this monotonicity, repeated chunking may
not find good patterns even though the best pair based on the criterion is selected
at each iteration. To resolve this issue GBI was improved to use two criteria, one
for frequency measure for chunking and the other for finding discriminative pat-
terns after chunking. The latter criterion does not necessarily hold monotonicity
property. Any function that is discriminative can be used, such as Information
Gain [5], Gain Ratio [6] and Gini Index [2], and some others.

GBI(G)
Enumerate all the pairs Pall in G
Select a subset P of pairs from Pall (all the pairs

in G) based on typicality criterion
Select a pair from Pall based on chunking criterion
Chunk the selected pair into one node c
Gc := contracted graph of G
while termination condition not reached

P := P ∪ GBI(Gc)
return P

Fig. 1. Algorithm of GBI

The improved step-
wise pair expansion
algorithm is sum-
marized in Fig. 1.
The output of the
improved GBI is a
set of ranked typical
patterns. These pat-
terns are typical in
the sense that they
are more discrimina-
tive than non-selected
patterns in terms of the criterion used.

2.2 Feature Construction by GBI

We regard a subgraph in a graph as an attribute so that graph-structured data
can be represented with attribute-value pairs according to the existence of par-
ticular subgraphs.

DT-GBI(D)
Create a node DT for D
if termination condition reached

return DT
else

P := GBI(D) (with the number of chunking
specified)

Select a pair p from P
Divide D into Dy (with p) and Dn (without p)
Chunk the pair p into one node c
Dyc := contracted data of Dy

for Di := Dyc, Dn

DTi := DT-GBI(Di)
Augment DT by attaching DTi as its child

along yes(no) branch
return DT

Fig. 2. Algorithm of DT-GBI

However, it is dif-
ficult to identify and
extract those sub-
graphs selectively which
are effective for clas-
sification task before-
hand. If pairs are ex-
tended in a step-wise
fashion by GBI and
discriminative ones are
selected and further
extended while con-
structing a decision
tree, discriminative
patterns (subgraphs)
can be constructed si-
multaneously during
the construction of a
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decision tree. The algorithm of DT-GBI is summarized in Fig. 2. Since the
value for an attribute is yes (contains pair) and no (does not contain pair), the
constructed decision tree is represented as a binary tree. Each time when an at-
tribute (pair) is selected to split the data, the pair is chunked into a larger node
in size. Thus, although initial pairs consist of two nodes and the link between
them, attributes useful for classification task are gradually grown up into larger
pair (subgraphs) by applying chunking recursively. In this sense the proposed
DT-GBI method can be conceived as a method for feature construction.

3 Enhancement of DT-GBI

3.1 Beam Search for Expanding Search Space

cs

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Fig. 3. An Example of state tran-
sition with beam search when the
beam width = 5

Since the search in GBI is greedy and
no backtracking is made, which patterns
are extracted by GBI depends on which
pair is selected for chunking in Fig. 2.
To increase the search space and extract
good enough patterns still keeping the
computational complexity within a toler-
ant level, a beam search is incorporated
to GBI within the framework of greedy
search [4]. A certain fixed number of pairs
ranked from the top are allowed to be
chunked individually in parallel. To pre-
vent each branch from growing exponen-
tially, the total number of pairs to chunk,
thus the beam width, is fixed at each level
of branch. Thus, at any iteration step,
there is always a fixed number of chunking
that is performed in parallel.

An example of state transition with beam search is shown in Fig.3 in the case
where the beam width is 5. The search starts with a single state cs. All pairs
in cs are enumerated and ranked according to both the frequency measure and
the typicality measure (e.g., discriminatory measure). The top 5 pairs according
to the frequency measure are selected, and each of them is used as a pattern to
chunk, branching into 5 children c11, c12, . . . , c15, each rewritten by the chunked
pair. All pairs within these 5 states are enumerated and ranked according to
the two measures, and again the top 5 ranked pairs according to the frequency
measure are selected. The state c11 is split into two states c21 and c22 because two
pairs are selected, but the state c12 is deleted because no pair is selected. This
is repeated until the stopping condition is satisfied. Increase in the search space
improves the pattern extraction capability of GBI and thus that of DT-GBI.
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3.2 Pruning Decision Tree

Recursive partitioning of data until each subset in the partition contains data
of a single class results in overfitting to the training data and thus degrades
the predictive accuracy of decision trees. Our previous approach [8] used a very
naive prepruning method by limiting the threshold number of graphs in leaves
to 10. To improve the predictive accuracy, a pessimistic pruning used in C4.5 [6]
is implemented by growing an overfitted tree first and then pruning it based on
the confidence interval for binomial distribution. The current algorithm has a
step for postpruning in Fig. 2.

4 Performance Evaluation of DT-GBI

The proposed method is tested against the promoter dataset in UCI Machine
Learning Repository[1]. This dataset consists of strings that represent nucleotides
(one of A, G, T, or C). The input features are 57 sequential DNA nucleotides
and the total number of instances is 106 including 53 positive instances (sample
promoter sequence) and 53 negative instances (non-promoter sequence). This
dataset was explained and analyzed in [7]. In their analysis, they first config-
ured a neural network using the domain knowledge and refined it to best fit the
results. The rules were then extracted from the converged network. Thus, their
method needs the domain knowledge to guide the search.

(C4.5, LVO)
Prediction error

16.0%

16.0%
21.7%
26.4%
44.3%

aacgtcgattagccgat
gtccatggtcaagtccg
tccaggtgcagtcagtc

aacgtcgattagccgat
gtccatggtcaagtccg
tccaggtgcagtcagtc

Original data

Shift randomly by
≤ 1 element
≤ 2 elements
≤ 3 elements
≤ 5 elements

Fig. 4. Change of error rate by shifting the sequence in the
promoter dataset

One important
thing is that the
data is so prepared
that each sequence
of nucleotides is
aligned at a refer-
ence point, which
makes it possi-
ble to assign the
n-th attribute to
the n-th nucleotide
in the attribute-
attribute value representation (thus applicable to a neural network). In a sense,
this dataset is encoded using the domain knowledge. This is confirmed by the
following experiment. Running C4.5 gives a predictive error of 16.0% by leaving
one out cross validation. Randomly shifting the sequence by 3 elements gives
21.7% and by 5 elements 44.3% (Fig. 4). If the data is not properly aligned,
standard classifiers such as C4.5 that use attribute-attribute value representa-
tion does not solve this problem. One of the advantages of graph representation
is that it does not require the data to be aligned around a reference point. In
this paper, each sequence is converted to a graph representation assuming that
an element interacts up to 10 elements on both sides (See Fig. 5). Each sequence
thus results in a graph with 57 nodes and 515 lines.
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Fig. 5. Conversion of DNA Sequence
Data to a graph

In the experiment, frequency
(chunking measure) was used to select
a pair to chunk in GBI and informa-
tion gain [5] (typicality measure) was
used in DT-GBI to select a pair from
the pairs that are returned by GBI.
A decision tree was constructed in ei-
ther of the following two ways: 1) ap-
ply chunking nr times only at the root
node and only once at other nodes of
a decision tree, and 2) apply chunking
ne times at every node of a decision
tree. Note that nr and ne are defined
along the depth in Fig. 3. Thus, there
is more chunking taking place during
the search when the beam width is
larger. The pair (subgraph) that is selected for each node of the decision tree is
the one which maximizes the informaion gain among all the pairs that are enu-
merated. Pruning of decision tree was conducted either by a) prepruning: set the
termination condition in DT-GBI in Fig. 2 to whether the number of graphs in
D is equal to or less than 10 or b) postpruning: conduct the pessimistic pruning
in Subsection 3.2 by setting the confidence level to 25%. The beam width was
changed from 1 to 15. The prediction error rate of a decision tree constructed
by DT-GBI was evaluated by the average of 10 runs of 10 fold cross validation.

0
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12

14

0 2 4 6 8 10

Number of chunking at a node

E
r
r
o
r
 r
a
t
e
 (
%
)

root node only

every node

Fig. 6. Result of experiment (beam width=1, without pes-
simistic pruning)

The first experi-
ment focused on the
effect of the number
of chunking at each
node of a decision
tree and thus beam
width was set to 1
and the prepruning
was used. The pa-
rameters nr and ne

were changed from
1 to 10 in accor-
dance with 1) and
2) explained in the
previous paragraph, respectively. Fig. 6 shows the result of experiments. In this
figure the dotted line indicates the error rate for 1) and the solid line for 2). The
best error rate was 8.49% when nr = 5 for 1) and 7.55% when ne = 3 for 2).
The corresonding induced decision trees are shown shown in Fig. 7 (nr = 5) and
Fig. 8 (ne = 3). The decrease of error rate levels off when the the number of
chunking increases for both 1) and 2). The result shows that repeated applica-
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tion of chunking at every node results in constructing a decision tree with better
predictive accuracy.

The second experiment focused on the effect of beam width, changing its
value from 1 to 15 using pessimistic pruning. The number of chunking was fixed
at the best number which was determined by the first experiment in Fig. 6,
namely, nr = 5 for 1) and ne = 3 for 2).

a→a→a→a
n=53, p=53

g→a→g→a
n=53, p=31

Y

N

g→t→t
n=34, p=31

1

1

t→c→a→a
n=32, p=17

t→t →a→a
n=9, p=14

c→c
n=23, p=3

N

N

N

N N

Y

Y

Y Y

Y

10

1 1

11

1

1 1 1

31 12

g→c→t→t→a→a
n=2, p=14

12111

NY

Non-promoter
n=19, p=0

Promoter
n=0, p=22

Non-promoter
n=2, p=0

Non-promoter
n=23, p=1

Non-promoter
n=9, p=6

Promoter
n=0, p=14

Promoter
n=0, p=2

Promoter
n=0, p=8

Fig. 7. Example of constructed decision tree (chunking applied 5 times only at
the root node, beam width = 1, with prepruning)

a→a→a→a
n=53, p=53

t→c→t→a
n=53, p=31

Y

N

a→a→t→t
n=53, p=21

1

1

a→a→c
n=53, p=14

c→g→a
n=19, p=10

t→t→a→a→c
n=34, p=4

a→g→c→t→t
n=9, p=10

N

N

N

N N

N

Y

Y

Y Y

Y

Y
1

1 1

13

1 1

1 1

6 11

1 5Non-promoter
n=34, p=1

Promoter
n=0, p=22

Promoter
n=0, p=10

Promoter
n=0, p=7

Promoter
n=0, p=3

Promoter
n=4, p=10

Non-promoter
n=10, p=0

Non-promoter
n=5, p=0

118

3 1

Fig. 8. Example of constructed decision tree (chunking applied 3 times at every
node, beam width = 1, with prepruning)
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The result is summarized in Fig. 11. The best error rate was 4.06% when the
beam width = 12 for 1) (nr = 5) and 3.77% when the beam width = 8 for 1) (ne

= 3). Examples of decision tree are shown in Fig. 9 and Fig. 10. Fig. 12 shows
yet another result when prepruning was used.

g→a→g→a
n=53, p=53

a→a→a→a
n=32, p=53

Y

N

g→t→t
n=32, p=31

1

1

t→g→c
n=32, p=13

N

N

N

Y

Y

Y

9

1 8

11

1

1 7

t→a→a→a
n=14, p=10

21 1

Y N

Non-promoter
n=21, p=0

Promoter
n=0, p=22

Promoter
n=0, p=18

Promoter
n=0, p=6

Non-promoter
n=14, p=4

Non-promoter
n=18, p=3

Fig. 9. Example of constructed decision tree (chunking applied 5 times only at the root
node, beam width = 12, with pessimistic pruning)
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n=53, p=53

g→a→g→a
n=53, p=35

Y

N

g→a→a→a→c
n=32, p=35

1

1

a→g→c→g→c
n=20, p=35

g→c→t→g
n=11, p=33

t→t→t
n=9, p=2

N

N

N

N N

Y

Y

Y Y

Y
3

1 1

18

1 1

1 7 1

31 11

1

1

2

a→a→a
n=7, p=3

9 1

Y N

Promoter
n=0, p=22

Non-promoter
n=21, p=0

Non-promoter
n=12, p=0

Non-promoter
n=9, p=0

Promoter
n=0, p=2

Non-promoter
n=7, p=0

Promoter
n=0, p=3

Promoter
n=4, p=30

Fig. 10. Example of constructed decision tree (chunking applied 3 times at every node,
beam width = 8, with pessimistic pruning)

The result reported in [7] is 3.8 % (they also used 10-fold cross validation)
which is obtained by the M-of-N expression rules extracted from KBANN
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Fig. 11. Result of experiment (with pessimistic pruning)
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Fig. 12. Result of experiment (with prepruning)

(Knowledge Based
Artificial Neural
Network). The ob-
tained M-of-N rules
are too much com-
plicated and not
easy to interprete.
Since KBANN uses
domain knowledge
to configure the
initial artificial neu-
ral network, it is
worth mentioning
that DT-GBI that
does not use any
domain knowledge
induced a decision
tree with com-
parable predictive
accuracy. Compar-
ing the decision
trees in Figs. 9 and
10, the trees are
not stable. Both
gives a similar pre-
dictive accuracy
but the patterns in
the decision nodes are not the same. According to [7], there are many pieces of
domain knowledge and the rule conditions are expressed by the various combi-
nations of these pieces. Among these many pieces of knowledge, the pattern (a
→ a → a → a) in the second node in Fig. 9 and the one (a → a → t →
t) in the root node in Fig. 10 match their domain knowledge, but the others do
not match. We have assumed that two nucleotides that are apart more than 10
nodes are not directly correlated. Thus, the extracted patterns have no direct
links longer than 9. It is interesting to note that the first node in Fig. 9 relates
two pairs (g → a) that are 7 nodes apart as a discriminatory pattern. Indeed,
All the sequence having this pattern are concluded to be non-promoter from the
data. It is not clear at this stage whether the DT-GBI can extract the domain
knowledge or not. The data size is too small to make any strong claims.

5 Conclusion

This paper reports the current status of DT-GBI, which constructs a classi-
fier (decision tree) for graph-structured data by GBI. Substructures useful for
classification task, are constructed on the fly by applying repeated chunking in
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GBI during the construction process of a decision tree. Newly introduced beam
search is very effective in increasing the predictive accuracy. The performance of
DT-GBI is evaluated through experiments on a classification problem of DNA
promoter sequences from the UCI repository and the results show that DT-GBI
is comparable to other method that uses domain knowledge in modeling the
classifier.

Immediate future work includes to incorporate more sophisticated method
for determining the number of cycles to call GBI at each node to improve pre-
diction accuracy. Utilizing the rate of change of information gain by successive
chunking is a possible way to automatically determine the number. Another im-
portant direction is to explore how the partial domain knowledge is effectively
incorporated to constrain the search space. DT-GBI is currently being applied
to much larger medical dataset.
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Abstract. This article aims at pruning noisy or irrelevant subtrees in a
set of trees. The originality of this approach, in comparison with classic
techniques in prototype selection, comes not from the non-deletion of the
whole tree, but rather of some of its subtrees. Our method is based on the
computation of confidence intervals on a set of subtrees according to a
probability distribution. We propose an approach to assess these intervals
on this specific type of data and show experimentally its interest in the
context of learning from noisy data.
Keywords. data reduction, prototype selection, tree-structured data,
noisy data

1 Introduction

The use of structured or semi-structured data is increasing in research domains
such as knowledge discovery in databases or machine learning. For example,
a learning sample can be represented by a relational database. The increasing
interest for directly exploiting such data has lead to a new field of research
named multi-relational learning [1]. XML data are another example of structured
representation. They are easily available in huge quantity on the web, and have
stimulated the interest for tree-structured data.

The tree representation gives an interesting compromise between graphs and
linear representations. Actually, they allow the expression of hierarchical depen-
dences and are less costly for processing than graphs. A lot of recent works are
interested in knowledge discovery from tree-structured data. For example we
can cite the extraction of frequent trees [2, 3], or the detection of tree patterns,
either in the framework of relational databases or in the one of XML data [4, 5].
Trees are also studied in machine learning, particularly in the inference of tree
patterns [6, 7], or in tree automata induction [8, 9].

While trees are less complex data structures than graphs, they are never-
theless more difficult to process than linear representations. Consequently, in
domains where the amount of data is huge, and the level of noise very high (in
data mining for example), it seems interesting to select only relevant data to
work on. This way to proceed allows one to reduce not only the complexity of
data storage but also the generalization error of the induced models. These tasks
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2 A. Habrard, M. Bernard, M. Sebban

are the matter of data reduction which can be achieved via two ways: prototype
selection (PS) [10] and feature selection (FS) [11]. It is important to note that
these methods are usually applied to non-structured data and aim at totally
deleting either an example (PS) or a feature (FS). However, in the context of
tree-structured data, we assume that only some particular subtrees of a given
tree are noisy or irrelevant. Then it is not necessary to completely delete this
tree. The suppression of a subtree can be seen as an hybrid approach of data
reduction. It looks like prototype selection when a tree is completely deleted,
and a local feature selection when only subtrees are removed.

In this paper, we propose a probabilistic approach based on confidence inter-
vals to prune irrelevant subtrees. In fact we study the probability of a subtree to
be in a class issued from a partitioning of the whole set of subtrees (Section 2).
In Section 3, we describe a partitioning method based on tree patterns. Section 4
deals with application of our method both on artificial and real data.

2 Pruning Subtrees

We consider the problem of inferring an estimation model in the presence of noisy
tree-structured data. We aim at pruning noisy and irrelevant subtrees before the
learning process. Our approach consists in estimating a probability distribution
on the set of all the subtrees of the learning sample. We construct a partition
of the learning subtrees, and for each element of this partition, we compute a
confidence interval containing (100 − α)% of the considered learning subtrees.
Those with a too small probability are pruned.

2.1 Definitions and Notations

A tree has a root node and a set, eventually empty, of children. A leaf is a node
without child. Trees, we are interested in, are constructed over a signature. Each
node is labeled by a functional symbol, and all the nodes labeled by the same
symbol have exactly the same number of children. Finally the symbols are typed
and the children ordered.

Definition 1 A signature Σ is a 4-tuple (S, V, arity, σ). S is a finite set whose
elements are called sorts. V is a finite set whose elements are called functional
symbols. arity is a mapping from V into IN , arity(f) is called the arity of f . σ

is a mapping from V into S, σ(s) will be called the sort of s. We denote ΣT the
set of trees defined relative to a signature Σ.

The data reduction method we propose is based on a probability distribution
defined on a set of subtrees. Thus we introduce some notations related to the
subtrees of a sample of trees.

Definition 2 Let T be a sample of trees. We denote Sub(T ) the set of the
subtrees of T and MSub(T ) the multi-set of subtrees of T .
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Reduction of tree-structured data 3

For example, in the sample E = {h(f(a, b)), f(h(b), a)}, Sub(E) = {a, b, f(a, b),
h(b), h(f(a, b)), f(h(b), a)} and MSub(E) = {a, b, a, b, f(a, b), h(b), h(f(a, b)),
f(h(b), a)}

Definition 3 A position is a couple (f, p) (denoted f.p) where f ∈ V and p ∈ IN

such that 1 ≤ p ≤ arity(f). A position allows us to design the subtree correspond-
ing to the child number p of the symbol f (the children are ordered from left to
right).

For example, in the sample E = {h(f(a, b)), f(h(b), a)}, the subtree a is at
position f.2 of the tree f(h(b), a) and at position f.1 of the tree f(a, b).

2.2 Estimation of a Probability Distribution

In a first step, we estimate a probability distribution relatively to a sample
of trees T . This distribution then allows us to compute a probability for each
subtree in Sub(T ). We use a similar approach to the “N-grams” often used
as a model of natural language modeling [12]. This approach assumes that the
probability of a given symbol in a string, can be computed using the n−1 previous
symbols. We use a similar principle, with n = 2, computing the probability of a
symbol relatively to its parent. Note that a different adaptation of this approach
in the context of trees has already been proposed in [9]. For each symbol a of
the sample, we assess via p̂c(a | f.i) its probability to be the child number i of
any symbol f . Formally:

∀a ∈ V , ∀f ∈ V , ∀1 ≤ i ≤ arity(f), p̂c(a | f.i) =
Number of occurrences of a in f.i

Number of occurrences of f
Moreover we estimate for each symbol its probability to be the root of a tree.

∀a ∈ V , p̂r(a) =
Number of examples with a for root

Number of examples
Finally the estimation of the probability of a tree t = f(t1, . . . , tn) is computed
as follows:

p̂a(f(t1, . . . , tn)) = p̂r(f)× ˆppos(t1 | f.1) × · · · × ˆppos(tn | f.n)

where ˆppos is recursively1 defined by:
ˆppos(g(u1, . . . , un) | f.n) = p̂c(g | f.n) × ˆppos(u1 | g.1)× · · · × ˆppos(un | g.n)

For example, the set E = {h(f(a, b)), f(h(b), a)} allows us to define the following
conditional probabilities:

p̂c(a | f.1) = 1

2
p̂c(a | f.2) = 1

2
p̂c(a | h.1) = 0 p̂r(a) = 0

p̂c(b | f.1) = 0 p̂c(h | f.2) = 0 p̂c(b | h.1) = 1

2
p̂r(h) = 1

2

p̂c(h | f.1) = 1

2
p̂c(b | f.2) = 1

2
p̂c(h | h.1) = 0 p̂r(b) = 0

p̂c(f | f.1) = 0 p̂c(f | f.2) = 0 p̂c(f | h.1) = 1

2
p̂r(f) = 1

2

and the probability of the tree t = h(f(a, b)) is computed as follows:

p̂a(t) = p̂r(h)× p̂c(f | h.1) × p̂c(a | f.1) × p̂c(b | f.2) =
(

1

2

)

4

= 1

16

If t is a subtree of a tree of the learning sample (t must be different from the
whole tree), then we compute its probability using ˆppos and taking into account

1 The base case of recursion corresponds to symbols of arity 0
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4 A. Habrard, M. Bernard, M. Sebban

its position relatively to its parent. For example, the probability of the subtree
f(a, b) of the set E is computed as follows:

p̂a(f(a, b)) = p̂c(f | h.1) × p̂c(a | f.1) × p̂c(b | f.2) =
(

1

2

)3

= 1

8
.

2.3 Pruning with Confidence Intervals

In the previous section, we have proposed a way to construct a probability dis-
tribution from a set of trees E. We show here how we can use this distribu-
tion to a priori prune subtrees considered statistically irrelevant for the future
learning process. We consider a subset S of MSub(E) and we compute a confi-
dence interval, according to a risk α. We look for an interval [pmin; 1] such that
a proportion 1 − α of subtrees has a probability greater than or equal pmin:
p(pa(t) ≥ pmin) = 1 − α.

According to the Central Limit Theorem, the mean p̂a(tS) of the probabilities
of the elements of S follows a normal distribution with an expected value µ and
a standard deviation σ√

|S|
. Then the confidence interval around µ is defined as

follows: µ ∈ p̂a(tS) ± σ̂√
|S|

× uα, where σ̂ is the estimated standard deviation

and uα the (1− α)-percentile of the normal distribution. Let pmin be the lower
bound of this interval, such that pmin = p̂a(tS) − σ̂√

|S|
× uα.

Once this lower bound is computed, our decision rule is to delete all the
subtrees of S whose probability is lower than pmin. This leads us to define
formally the notion of relevance of a subtree. This definition is in relation with
the definition of irrelevant features proposed in [11].

Definition 4 Let a distribution D on a set of subtrees S, modeling the same
concept, and let α be a risk. A subtree t is (1 − α)-relevant in S if and only if
p̂a(t) ≥ p̂a(tS) − σ̂√

|S|
× uα.

To end this section introducing our pruning method, we synthesize the main
steps of our approach in Algorithm 12 .

3 Partitioning Subtrees with Regular Tree Patterns

In our method we need to compare the probabilities of subtrees of a sample.
We think that the comparison of the probabilities of two subtrees that never
appeared in the same places (positions) in the sample is irrelevant. Indeed they
a priori do not model the same concept and then we assume that they are not
comparable. We propose in this section a method of partitioning using regular
tree patterns, i.e. tree patterns with only one variable. This approach ensures
that two subtrees that appear in the same context (i.e. subtrees with the same
ancestors and siblings) will be in the same partition.

Definition 5 A regular tree pattern is a tree defined on a signature (S, V ∪
{X}, α, σ) where X is a variable and the tree has exactly one leaf labeled by X.

2 The probability distribution is adapted to delete subtrees with specific symbols
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Reduction of tree-structured data 5

Data: E set of trees
α real

begin

Construct the probability distribution with E;
T ← partitioning MSub(E);
foreach S ∈ T do

Compute an interval [pmin; 1] for the probabilities of the subtrees of S

to the risk α;
foreach t ∈ S do

Adapt the probability distribution in deleting the instance of t;
Delete t if it is not (1 − α)-relevant or if pa(t) = 0;
Rebuild the probability distribution in adding the instance of t;

end

end

end

Algorithm 1: Pruning by confidence interval

Let t a regular tree pattern and t′ an ordinary tree. We denote t.#t′ the substi-
tution of the variable X of t by the tree t′.

To construct a partition of the multi-set of subtrees, our approach consists
in extracting all the regular tree patterns definable from a sample of trees. The
set of all regular tree patterns is given by {t | ∃t′ ∈ MSub(E) and t.#t′ ∈ E}.

Each pattern t allows us to define a class πt of the partition of the multi-set
of subtrees. All the subtrees which can be concatenated to t to obtain a tree of
the learning sample belong to this partition3: πt = {t′ ∈ MSub(E) | t.#t′ ∈ E}.

4 Evaluation in the Context of Learning Stochastic Tree

Automata

We now present experimental results which justify the interest of our method
as a pre-process of the learning task. Since we work on trees, we propose to
evaluate our data reduction approach in the framework of learning stochastic
tree automata from a sample of trees [8]. In such a context, we have a sample of
trees, supposed to be generated from a probability distribution. The objective
is to learn the probabilistic model which has generated the data. We propose
to compare the automata inferred with noisy data and those induced after the
pruning process. We achieved two series of experiments. The first one deals with
situations where the target automaton is a priori known. In this case, we can
use a measure of distance between the inferred model to the target automaton.
However, we do not always know this one. Then, we also evaluate our approach
in a second series of experiments, using a perplexity measure. This criterion
assesses the relevance of the model on a test sample.

3 The complexity of the approach, relative to the size of trees, depends on the parti-
tioning
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6 A. Habrard, M. Bernard, M. Sebban

4.1 Stochastic Tree Automata

A tree automata [13, 14] defines a regular language on trees as a finite automaton
defines a regular language on strings. Stochastic tree automata are an extension
of tree automata, defining a probability distribution on the tree language defined
by the automaton. We use an extension of these automata taking into account
the notion of type: stochastic many-sorted tree automata (SMTA) defined on a
signature [15]. We do not detail here these automata and their learning method.
The interested reader can refer to [8, 4]. We only specify that a learned stochastic
tree automaton allows one to associate a probability to each tree of a sample.
Since we apply a pruning method on a set of sorted trees, we have to ensure that
pruned trees still respect a signature. Practically, we replace pruned subtree by
a unique symbol which does not appear in the sample and has a different type.

4.2 Evaluation Criteria

Distance from the Target Automaton: [16] defines distances between two
hidden Markov models introducing the co-emission probability, as the prob-
ability that two independent models generate the same string. [17] presents
an adaptation of the co-emission to stochastic tree automata. The co-emission
probability of two stochastic tree automata M1 and M2, constructed over the
same signature Σ, is denoted A(M1, M2) and defined as follows: A(M1, M2) =
∑

t∈ΣT PM1
(t)∗PM2

(t). Where PMi
(t) is the probability of t given the model Mi.

The co-emission probability allows us to define a distance Da which can be in-
terpreted as the measure of the angle between the vectors representing automata
in a space where the base is the set of trees of ΣT .

Definition 6 The distance Da between two automata M1 and M2 is defined by:

Da(M1, M2) = arccos

(

A(M1,M2)√
A(M1,M1)∗A(M2,M2)

)

Perplexity measure In the case of tree automata, the quality of a model
A can be evaluated by the average likelihood on a set of trees S relative to

the distribution defined by A: LL =
(

1
‖S‖

∑|S|
j=1 log PA(tj)

)

4. A perfect model

can predict each element of the sample with a probability equal to one, and so
LL = 0. In a general way we consider the perplexity of the test set which is
defined by PP = 2LL. A minimal perplexity (PP = 1) is reached when the
model can predict the probability of each element of the test sample. Therefore
we consider that a model is more predictive than another if its perplexity is
lower. A problem occurs when a tree of the test sample cannot be recognized
by the learned automaton A. Actually the probability of this example is 0 and
the perplexity cannot be computed. To avoid this problem a classical method
consists in smoothing the distribution of the learned model using an interpolation
approach [18] with an unigram model A0 recognizing all the examples. The
probability of a tree t, in our experiments, is then given by:

P̂ (t) = 0.9 ∗ p(t|A) + 0.1 ∗ p(t|A0)

4 ‖S‖ is the number of nodes in S and PA(tj) is the probability of tj according to A
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Reduction of tree-structured data 7

4.3 Experimentations

Recall that our objective is to study the interest of our pruning method in the
context of learning tree automata from noisy data. Then we need to be able to
artificially corrupt the data. When we work with positive and negative instances,
a classic approach to noise data is to invert the labels of some examples. In our
framework, all examples are unlabeled (more exactly they are only positive)
and we need to introduce the noise in the structure of the examples. Our noise
protocol consists in changing a proportion γ of the leaves of the trees. In our
experiments we artificially corrupt the training samples with values of γ varying
from 1% to 50%, and we apply our pruning method with different values of α

from 0.01 to 0.25. We present, at first, the results on the experiments considering
a target automaton. Then we present those with a target automaton a priori
unknown. We use two criteria of performance to evaluate the results: the mean
of the quality measure (the distance Da or the perplexity measure) on all the
levels of noise and the standard deviation around this mean. We also test the
significance of our results using a Student paired t-test over the means with a
critical risk of 5%. Note that all the results presented correspond to the optimal
α value.

Experimentations Knowing the Target Automaton We suppose here that
the target automaton is a priori known. This automaton allows us to generate
a sample of trees according to the distribution defined by this automaton. We
first infer an automaton from a noisy sample (one for each level of noise). Then
we apply our pruning method on the noisy sample with different values of α. We
infer an automaton with each pruned sample. We finally measure the distance
Da between each of the inferred automata and the target one. We achieved
our experiments on five artificial datasets. One on a tree grammar representing
stacks of objects, one on a simple grammar representing conditional statements
(denoted Cond.), one on a grammar on boolean expressions (denoted Bool.)
and two other artificial datasets (Art1 and Art2). The results are synthesized on
Table 1. We give, for each dataset, the size of the initial sample (IS) in the number
of subtrees, and the percentage of reduction of our pruning method (Red). In the
same table we also give the average distance Da

5 observed between the target
automaton and the inferred automata ± the standard deviation. Da I represents
the distance relative to the automaton learned on the initial noisy sample, and
Da Pr the distance to the one learned from the pruned sample. In order to
assess the relevance of our approach, we decided to compare its performances
with those obtained by a simple Monte Carlo selection (denoted by MCS in the
table). To achieve this comparison, we randomly removed the same proportion
of subtrees (i.e. Red %) from the initial multi-set of subtrees (MSub(E)). Then,
the described results are obtained from learning sets with exactly the same size.
The last two columns concern the significance of the results (Sig1 for Pr vs I and
Sig2 for Pr vs MCS). The experiments have shown that, not only the pruning
of the noisy sample allows us to learn an automaton closer to the target one with

5 The means computed are the means of the distances on the different levels of noise
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8 A. Habrard, M. Bernard, M. Sebban

Base IS Red Da I Da Pr Da MCS Sig1 Sig2

Stacks 35724 5% 0.721 ± 0.514 0.420 ± 0.332 0.869 ± 0.496 yes yes

Cond. 71863 5% 0.618 ± 0.187 0.590 ± 0.224 1.050 ± 0.316 no yes

Bool. 43185 26% 0.350 ± 0.240 0.242 ± 0.230 0.227 ± 0.142 yes no

Art1 33137 0.5% 1.230 ± 0.265 0.556 ± 0.237 1.374 ± 0.339 yes yes

Art2 30113 7.4% 0.846 ± 0.398 0.599 ± 0.247 1.011 ± 0.485 yes yes

Table 1. Distances Da to the target automaton

an average reduction of 8.8% of subtrees, but also our approach is highly better
than the Monte Carlo sampling. The obtained results are particularly interesting
on the databases Stacks, Bool., Art1 and Art2. On these databases, the standard
deviation of computed distances without pruning is significantly higher than the
one of computed distances with pruning.

Experimentations without Knowing the Target Automaton In this con-
text, we consider to have a characteristic sample of trees. We divide this sample
in two sets: a training set and a test set. As we want to evaluate our approach
in the context of noise, we corrupt the training set with the different levels of
noise. We learn an automaton for each of the noisy samples. Then we apply
our pruning method on each of these samples with the different values of α.
We learn a tree automaton for each of the pruned sample obtained. Then we
evaluate all the inferred automata on the test set with the perplexity measure.
Note that the test set is never noised. To make our experiments we use a 5-folds
cross-validation. We did our experiments on 8 datasets. We have used a sam-
ple of each of the five artificial databases presented in the previous section. We
also evaluate our method on real data with a sample of the PKDD’02 discov-
ery challenge6 database (dataset on hepatitis) obtained as described in [4]. We
also use the database Student Loan of the UCI Irvine [19] and a dataset on the
toxicity of the tacrine molecule presented in [20]. These two datasets correspond
to structured data in 1st order logic and were converted into trees according to
the principle presented in [15]. The results are presented on Table 2. We give
for each dataset the average percentage of sample reduction with the pruning
method (Red). The average perplexity measure with noisy data without pruning
(P I) and the average perplexity obtained after the pruning process (P Pr) ±
the standard deviation. The last column indicates if the results are significant.
The results have shown that the perplexity is reduced in most of the cases, ex-
cept for the Stacks and the Tacrine, with an average reduction of 10% of the
training sample. In most of the experiments, the standard deviation is lower
after a pruning phase than with no pruning. This remark tends to confirm that
our method is relatively robust.

We summarize our results in a concise way on Figure 1. Each dot represents
a database. A dot under the bisecting line expresses the fact that the pruning
approach is better than the one with no pruning.

6 http://lisp.vse.cz/challenge/ecmlpkdd2002/
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Reduction of tree-structured data 9

Base Red P I P Pr Significant

Stacks 6% 2.23 ±0.274 2.24 ± 0.279 no

Cond. 4.6% 1.73 ± 0.241 1.70 ± 0.202 no

Bool. 13% 3.49 ± 0.302 3.47 ± 0.270 yes

Art1 17% 3.61 ± 0.219 3.26 ± 0.210 yes

Art2 3% 4.23 ± 1.456 3.96 ± 0.837 no

PKDD02 0.5% 14.84 ± 7.498 13.52 ± 7.235 yes

Tacrine 12% 5.78 ± 4.171 6.01 ± 4.111 no

Student Loan 17% 11.9 ± 1.871 11.43 ± 2.112 yes

Table 2. Results with the perplexity measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

D
a 

w
ito

ut
 p

ru
ni

ng

Da with pruning

Bool.

Stacks

Cond.

Art1
Art2

 10

 10

P
er

pl
ex

ity
 w

ith
 p

ru
ni

ng

Perplexity without pruning

S. Loan

PKDD02

Tacrine

Stacks

Cond.

Bool.

Art1
Art2

Fig. 1. Results of the experimentations

5 Conclusion

In this paper we have presented an original approach allowing to prune subtrees
in a set of trees. This approach of data reduction can be considered as an hybrid
approach. It can actually delete whole trees and is related to prototype selection.
It also allows one to delete some parts of the examples and the method is close
to feature selection, with the difference that a subtree is deleted locally for one
example. Our pruning method is based on the utilization of confidence intervals
computed from a probability distribution on subtrees appearing in a same con-
text in the examples. Our experiments have shown that our approach is robust
and allows us to learn more efficient models closer to the target one in terms of
distance or with a smaller perplexity. Moreover, our method allows us to reduce
the size of the learning sample, this can be crucial in some applications.

Since we worked in the framework of the inference of probabilistic models
on trees, we have to avoid the deletion of too many subtrees. Indeed, in this
context, we aim at estimating correctly the distribution of the data. If we delete
too many subtrees, we modify considerably the distribution of the initial learning
sample and then it may be almost impossible to infer a correct distribution. A
simple solution can be to tune the parameter α. Another complementary point
of view consists in working on the method of partitioning. A larger partitioning
of the learning subtrees, i.e. with a high number of classes, may more often lead
to delete fewer subtrees than a smaller one. Our approach was experimentally
evaluated as pre-process of a learning task. Since its works on any database of
trees, and because a production rule can be seen as a tree, we are currently
working on the simplification of knowledge bases.
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Susanne Hoche1?, Taḿas Horv́ath2,1??, and Stefan Wrobel1,2

1 Fraunhofer AiS, Institute for Autonomous intelligent Systems, Schloss Birlinghoven,
D-53754 Sankt Augustin,Germany

2 University of Bonn, Department of Computer Science III, Römerstraße 164, D-53117 Bonn,
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Abstract. Acyclic conjunctive queries form a polynomially evaluable fragment
of definite nonrecursive first-order Horn clauses. Labeled graphs, a special class
of relational structures, provide a natural way for representing chemical com-
pounds. We propose an algorithm specific to learning acyclic conjunctive queries
predicting certain properties of molecules represented by labeled graphs. To com-
pensate for the reduced expressive power of the hypothesis language and thus
the potential decrease in classification accuracy, we combine acyclic conjunctive
queries with constrained confidence-rated boosting. Preliminary experimental re-
sults indicate the potential of the method for problems involving labeled graphs.

1 Introduction

Machine Learning is traditionally concerned with the problem of approximating an un-
known target functionf : X → Y , where the domain orinstance spaceX is the Carte-
sian product of a fixed set ofattributes. Attributes are usually unordered or linearly
ordered sets. Despite the number of successful real-world applications using attribute-
value representation of the instances, the need of applying other representation lan-
guages in machine learning has long been recognized. One obvious argument has been
the problem that attribute-value representation is not appropriate for describing learn-
ing tasks involving instances with complex structures. Multi-relational learning, also
referred to as Inductive Logic Programming (ILP) [22, 30], is one of the most suc-
cessful directions among the approaches of considering more expressive representation
languages in learning.

In ILP, various classes of first-order languages are used to describe the input (i.e.,
examples and background knowledge) and output (i.e., hypotheses) components of the
learning algorithms. First-order languages, on the one hand, provide a natural way for
describing learning problems over structurally complex instance spaces. In addition,
hypotheses in this language are relatively easy to understand for users. On the other

? Partially supported by the DFG project (WR 40/1-3)Nachhaltige Informationsfusion: Aktives
Lernen

?? Partially supported by the DFG project (WR 40/2-1)Hybride Methoden und Systemarchitek-
turen f̈ur heterogene Informationsräume
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hand, however, serious decidability and complexity problems may arise from their use
during the learning process. As an example, the membership problem, i.e., the problem
of deciding whether an instance belongs to the concept represented by an hypothesis,
becomes undecidable in first-order logic. To control such problems, different techniques
(e.g., hypothesis language and search biases) have been proposed in ILP.1

Labeled graphs are one of the most important tools describing objects and the way
they are connected. They are relational structures defined usually over vocabularies con-
sisting of a single binary and a finite set of unary predicate symbols. They provide, in
particular, a natural way for representing chemical compounds. Although ILP is con-
cerned with learning from relational structures, and many ILP applications have been
devoted to computational chemistry, surprisingly there are only few results (see, e.g.,
[12]) in the direction of restricting instances to labeled graphs. Such a structural as-
sumption could then be exploited in the learning process to control decidability and
complexity problems mentioned above.

In this work, we propose a boosted algorithm designed to learn acyclic conjunc-
tive queries predicting unknown properties of chemical compounds. Our algorithm as-
sumes that compounds are represented by relational structures corresponding to labeled
graphs. We consider learning problems of the following form:Givendisjoint setsE+

andE− of labeled graphs representing chemical compounds,finda set of definite first-
order Horn clauses consistent (within some error) withE+ andE−. Since examples
are disjoint labeled graphs, we use the learning from interpretations ILP setting [7] as
the most plausible model for our purpose. In the algorithm presented, we apply top-
down induction, a popular technique based on refinement operators [23] for first-order
clauses. In our approach, refinement operators are defined by building blocks. In this
work, we assume that such building blocks are provided by an expert. We are work-
ing on automatic extraction of building blocks for labeled graphs. We will discuss this
problem later on.

In computational chemistry, pattern matching is usually defined by subgraph iso-
morphism. Since subgraph isomorphism generalizes the Hamiltonian path problem, it
is NP-complete. In planar graphs, however, it can be solved in linear time for any pat-
tern of constant size [9]. The importance of this result is that many molecules can be
represented by planar graphs. In contrast to this approach, we define pattern matching
by first-order logical implication, which in turn is equivalent to homomorphism [20] be-
tween relational structures in the problem setting considered. Since isomorphisms are
special homomorphisms, we thus apply a more general operator in pattern matching.
This may be important e.g. in those applications, where the length of paths connecting
substructures is not relevant. Homomorphism between finite relational structures gener-
alizes the graph vertexk-coloring problem, and is thus NP-hard. It becomes, however,
polynomial for patterns of smalltree-width[26]. Intuitively, tree-width measures the
degree of cyclicity of structures. In this paper, we restrict the search space to patterns
of tree-width one, also referred to as acyclic patterns. We note that homomorphism for
this fragment is LOGCFL-complete [14] and is therefore highly parallelizable.

1 We note that limitations regarding expressive power are not resolved completely by first-order
logic, as first-order sentences are only able to capturelocal propertiesof structures (see, e.g.,
[8]).
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In [17], we have presented a greedy algorithm for learning acyclic patterns. By this
restriction, however, we reduce the expressive power of the hypothesis language. To
compensate for the reduced expressiveness and thus the decrease in classification ac-
curacy potentially resulting from it, in the proposed algorithm we combine acyclic pat-
terns with confidence-rated boosting [27]. Ensemble methods, in particular boosting,
are successful tools for increasing the prediction accuracy of classification learners by
combining a set of only moderately accurate base hypotheses into one highly accurate
strong hypothesis. Boosting works by repeatedly calling a base learner on reweighted
versions of the training data, and thereby constructing an ensemble of specialized rules,
or base hypotheses, which are finally combined into one prediction by weighted major-
ity vote. In the framework of confidence-rated boosting, each base hypothesis not only
predicts a classification but also generates a confidence score for this prediction.

The rest of the paper is organized as follows. In Section 2, we first review the nec-
essary notions and results related to acyclic conjunctive queries. Section 3 is devoted
to constrained confidence-rated boosting. In Section 4, we present our algorithm, and
in Section 5, we empirically evaluate it on the domain of mutagenicity [19]. Finally, in
Section 6 we conclude and discuss directions for future works.

2 Acyclic Conjunctive Queries

In this work, we restrict the hypothesis space to acyclic conjunctive queries, a practi-
cally relevant, efficiently evaluable fragment of first-order definite Horn-clauses. As an
advantage over other ILP approaches using standard PROLOG evaluation techniques,
we note that acyclic conjunctive queries allow evaluation of a set of instances in one
single step. In this section we repeat the necessary notions related to acyclic conjunc-
tive queries from our previous work [17]. In the Appendix, we give further details on
acyclic conjunctive queries. For a detailed introduction to acyclic conjunctive queries
the reader is referred to e.g. [1].

Throughout this section, we consider vocabularies consisting of a set of constant
symbols, a distinguished predicate symbol called the target predicate, and a set of pred-
icates called the background predicates. Thus, (non-constant) function symbols are not
included in the vocabulary. Examples are ground atoms of the target predicate, and
the background knowledge is an extensional database consisting of ground atoms of
the background predicates. Furthermore, we assume that hypotheses are definite non-
recursive first-order clauses, or in the terminology of relational database theory, con-
junctive queries of the formL0 ← L1, . . . , Ll, whereL0 is a target atom, andLi is a
background atom fori = 1, . . . , l.

In order to define a special class of conjunctive queries, calledacyclicconjunctive
queries, we first need the notion of acyclic hypergraphs. Ahypergraph(or set-system)
H = (V,E) consists of a finite setV calledvertices, and a familyE of subsets ofV
calledhyperedges. A hypergraph isα-acyclic [10], or simplyacyclic, if one can remove
all of its vertices and edges by deleting repeatedly either a hyperedge that is empty or
is contained by another hyperedge, or a vertex contained by at most one hyperedge [15,
31]. Note that acyclicity as defined here is not ahereditaryproperty, in contrast to e.g.
the standard notion of acyclicity in ordinary undirected graphs, as it may happen that
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an acyclic hypergraph has a cyclic subhypergraph. For example, consider the hyper-
graphH = ({a, b, c}, {e1, e2, e3, e4}) with e1 = {a, b}, e2 = {b, c}, e3 = {a, c}, and
e4 = {a, b, c}. This is an acyclic hypergraph, as one can remove step by step first the
hyperedgese1, e2, e3 (as they are subsets ofe4), then the three vertices, and finally, the
empty hypergraph is obtained by removing the empty hyperedge that remained from
e4. On the other hand, the hypergraphH ′ = ({a, b, c}, {e1, e2, e3}), which is a subhy-
pergraph ofH, is cyclic, as there is no vertex or edge that could be deleted by the above
definition. In [10], other degrees of acyclicity are also considered, and it is shown that
among them,α-acyclic hypergraphs form the largest class properly containing the other
classes.

Using the above notion of acyclicity, now we are ready to define the class of acyclic
conjunctive queries. LetQ be a conjunctive query andL be a literal ofQ. We denote
by Var(Q) (resp. Var(L)) the set of variables occurring inQ (resp.L). We say thatQ
is acyclic if the hypergraphH(Q) = (V,E) with V = Var(Q) andE = {Var(L) :
L is a literal inQ} is acyclic. For instance, from the conjunctive queries

P (X, Y,X)← R(X, Y ), R(Y, Z), R(Z,X)
P (X, Y, Z)← R(X, Y ), R(Y, Z), R(Z,X)

the first one is cyclic, while the second one is acyclic.

3 Constrained Confidence-Rated Boosting

Boosting has established itself as a successful method for improving the classification
accuracy of a learning system by combining the predictions of several base classifiers
learned in iterative calls to the underlying learner. Numerous algorithms have emerged
which demonstrate superior performance on a broad range of application problems (see,
e.g., [11, 25, 5, 24, 16]).

The idea common to all boosting algorithms is to “boost” a weak learner performing
only slightly better than random guessing into an arbitrarily accurate learner by repeat-
edly calling it on reweighted versions of the training data, and thereby constructing an
ensemble of specialized rules, or base hypotheses. Predictions are based on all members
of the learned ensemble by combining the individual predictions by weighted majority
vote into one strong hypothesis.

The reweighted versions of the training setE = E+ ∪ E− on which the base
learner is repeatedly called are obtained by maintaining a probability distributionDt

over E modeling the weightDt
i associated with each training exampleei in the t-th

iteration of boosting.Dt
i indicates the influence of an instanceei when learning a base

classifierCt. Initially, the influence of all the instances is identical, i.e., the probability
distributionD1 is uniform. In each iterative callt of the base learner, a base hypothesis
Ct with an associated weightc̃t is learned based onE weighted according to the current
distributionDt.

In the framework of confidence-rated boosting, the prediction of a base hypothesis
Ct is confidence-rated. The sign ofc̃t indicates the label predicted byCt to be assigned
to an instance, whereas the absolute value ofc̃t is interpreted asCt’s prediction confi-
dence, or the reliability ofCt’s prediction. A base hypothesis’ prediction confidence is,
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on the one hand, used as its vote in the final, strong, hypothesisH, and, on the other
hand, to update the distributionDt for the next iteration of the base learner. The distri-
bution is modified such that the weights of misclassified instances are increased while
the weights of correctly classified instances are decreased. This way, the learner has to
focus on those examples which are not correctly classified by the current ensemble.

Depending on the exact framework, a base hypothesis can apply distinct predic-
tion confidences to different examples. Here, we employ a form of confidence-rated
boosting in which a base hypothesis is restricted to make a prediction only for those
examples which are covered by it, and to abstain otherwise. We furthermore restrict,
following Cohen and Singer’s approach to constrained confidence-rated boosting [5],
the base hypotheses to either of two forms. A hypothesis either predicts, in the binary
case we deal with here, the positive class with a positive prediction confidence, or it is
the default hypothesis, just comprising the target predicate to be learned and satisfying
all examples, with an assigned negative confidence.

We note that hypotheses obtained by boosting algorithms are potentially more com-
plex than those generated by standard ILP learning systems. However, constraining the
base hypotheses to either of the above two forms improves comprehensibility of strong
hypotheses.

As suggested by [5], we aim at minimizing the ensemble’s training error by search-
ing in each round of boosting for a base hypothesis maximizing the objective function
Z̃ which is, for a base hypothesisCt, defined based on the collective weight of all posi-
tive and negative instances covered byCt (in what follows,x ∈ C denotes that instance
x is covered by hypothesisC):

Z̃(Ct) =
√ ∑

xi∈E+,xi∈Ct

Dt
i −

√ ∑
xi∈E−,xi∈Ct

Dt
i . (1)

After the last iteration of the base learner, the strong hypothesisH is formed on
the basis of all hypothesesCt learned over the course of iterations, and their assigned
prediction confidences̃ct defined by

c̃t =
1
2

ln

(∑
xi∈E+,xi∈Ct

Dt
i + 1

2m∑
xi∈E−,xi∈Ct

Dt
i + 1

2m

)
, (2)

wherem = |E| (see also [5]). To classify an instancex, the prediction confidences
of all base hypotheses coveringx are summed up. If this sum is positive, the strong
hypothesis classifiesx as positive, otherwisex is classified as negative:

H(x) = sign

(∑
ht

ht(x)

)
, (3)

whereht : X → < is defined by

ht(x) =
{

c̃t if x ∈ Ct

0 otherwise .
(4)
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Algorithm 1 BACQ
Require: setE of +/− labeled groundP -atoms and a labeled graph represented by groundA

andB atoms
Ensure: a set of confidence-rated acyclic conjunctive queries

1: let Cdefault be the unit clauseP (X1, . . . , XmP )←
2: let D(xi) = 1/m for i = 1, . . . , m // wherem = |E|
3: for t = 1, . . . , T do
4: for k = 1, . . . , K do
5: Ck = Cdefault

6: while ∃C ∈ R(Ck, N) such thatZ̃(C) > Z̃(Ck), // see (1) for the definition of̃Z
whereR(Ck, N) is a set containing (at most)
N randomly selected acyclic refinements ofCk do

7: Ck = C
8: end while
9: end for

10: let Ct = Cj satisfyingZ̃(Cj) = max
k=1,...,K

Z̃(Ck)

11: let Rt =

{
Ct if Z̃(Ct) > |Z̃(Cdefault)|
Cdefault otherwise

12: let Cov ⊆ E be the set of examples covered byRt

// Cov is computed in a single step (see Algorithm EVALUATE in the Appendix)
13: for i = 1, . . . , m do
14: if xi ∈ Cov then
15: let D(xi) = D(xi) · e−yi·c̃Rt

// whereyi ∈ {+1,−1} according to the label ofxi, andc̃Rt is defined in (2)
16: end if
17: end for
18: let D(xi) = D(xi)/Zt for i = 1, . . . , m, whereZt =

∑
i=1,...,m

D(xi)

19: end for
20: return {(R1, c̃R1), . . . , (RT , c̃RT )}

4 Boosting Acyclic Conjunctive Queries

In this section, we present an algorithm designed to learn acyclic conjunctive queries
predicting unknown properties of chemical compounds. Our algorithm assumes that
compounds are represented by relational structures corresponding to labeled graphs.
More precisely, we assume without loss of generality that the vocabulary consists of a
target predicateP of arity mP , and predicatesA andB of aritiesmA andmB , respec-
tively. For each compound, we have a ground target atom of the formP (a1, . . . , amP

),
wherea1 is the identifier of the compound, anda2, . . . , amP

are attribute values for
the whole compound (e.g.,ε-lumo). Each (chemical) atom is described by a fact of the
form A(b1, . . . , bmA

), whereb1 is the identifier of the compound containing the atom,
b2 is the atom’s identifier, andb3, . . . , bmA

are attribute values for the atom. Finally,
each bond is represented by a ground atom of the formB(c1, . . . , cmB

), wherec1 is
the compound identifier,c2, c3 are the identifiers of the atoms connected by the bond,
and c4, . . . , cmB

are attribute values for the bond. Thus, the groundA andB atoms
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represent the (labeled) vertices and (labeled) edges of the labeled graphs. We note that
our approach assumes that molecules are represented in the learning from interpretation
setting [7].

The algorithm combining top-down induction of acyclic conjunctive queries with
constrained confidence-rated boosting is given in Algorithm 1. In Steps 1 and 2 of the
algorithm, we first initialize the target clause and the distribution over the set of training
examples. Then, we learnT weak hypotheses (Steps 3–19 of the Algorithm), whereT
is a user defined parameter.

To find a weak hypothesis, i.e., an acyclic conjunctive query, we apply top-down
induction using the following refinement operator. We first select at random a literal
with one of the predicate symbolsP , A, or B from the clause to be refined. Then,
depending on its predicate symbol, we add a set of literals to the clause as follows.
If the selected literal is aP -literal (i.e., it is the head of the clause), with the same
probability,

– either an atom or an acyclic building block (e.g., a benzene ring) is added to the
clause,

– or one of the attributes of theP -atom is selected at random, and the best special-
ization for this attribute with respect tõZ defined in Eq. (1) is computed.

If an A-atom (i.e., a labeled vertex in the graph) has been selected, we add to the clause

– either literals representing a labeled edge ending in this vertex,
– or an acyclic building block containing the selected vertex,
– or constraints specializing one of the attributes of the vertex in a similar fashion as

described above.

Finally, for B-atoms, i.e., for labeled edges,

– we add either a set of literals defining an acyclic building block,
– or compute the best value for one of its attributes.

We note that none of the above refinements violates the acyclicity property. In particular,
building blocks are restricted to be acyclic, and thus, as they share at most one edge with
the labeled acyclic graph corresponding toCk in Step 6, adding such a building block
always results in an acyclic clause.

At the same time of adding a set of literals (i.e., atom, bond, or acyclic building
block) to the clause, for each attribute of the literals we compute the best value with re-
spect toZ̃ and specialize the attribute with the value for whichZ̃ is maximal. In contrast
to the greedy search used in [5], in Steps 5–8 of the algorithm, we apply simple local
search for finding an acyclic conjunctive query. That is, we start the local search with
the default clause, and refine it as long as its randomly selected refinement improves
the quality measured bỹZ. We repeat the random local search algorithmK times (see
Step 4 of the algorithm) and select the acyclic conjunctive query of the best quality
(Step 10). In Steps 12–18, we then update the distribution over the training set.
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4.1 Building Blocks

In the work presented here, we assume that buildings blocks are provided by an expert.
However, we are working on the automatic extraction of acyclic building blocks. Since
structures are restricted to labeled chemical graphs, we are going to consider only cycle
and tree patterns. To extract cycle patterns, we are going to compute the set of cycles of
length`, for every` = 2, . . . , L. L is a user defined parameter bounding the length of
cycles. For a fixed̀, this can be done by evaluating first the acyclic conjunctive query

cycle(Y1, . . . , Y`)← B(X, Y1, Y2, Z1,1, . . . , Z1,mB−3),
B(X, Y2, Y3, Z2,1, . . . , Z2,mB−3),

...

B(X, Y`, Y1, Z`,1, . . . , Z`,mB−3)

and then removing from the answer set the tuples(a1, . . . , a`) satisfyingai = aj for
some1 ≤ i < j ≤ `. By this step we filter those closed walks that are not cycles. If
the remaining set is nonempty then for all possible subsets{V1, . . . , Vk} of the nominal
attributes ofA andB, and for all possible combinations{v1, . . . , vk} of the values of
these attributes, we can check in a similar way, whether there is a cycle of length` such
thatVi = vi in each atom and in each bond in the cycle for everyi = 1, . . . , k. This
method is exponential in the number of nominal attributes ofA andB. However, it is
effective if the number of nominal attributes is small. To extract tree patterns, we are
going to investigate the labeled graph obtained by removing all edges occurring in a
cycle.

5 Empirical Results on the Domain of Mutagenicity

We evaluated our approach on the ILP-benchmark problem ofMutagenicity[19]. The
learning task is to predict the mutagenicity of nitroaromatic compounds. Mutagenic
compounds are often known to be carcinogenic and to cause damage to the DNA. Not
all compounds can be empirically tested for mutagenicity, and the prediction of muta-
genicity is vital to understanding and predicting carcinogenesis.

Of the several relational descriptions that are available for the domain [29], we use
the strongly structured descriptionB4 which comprises a description of the atoms of
the molecules and the bonds between these atoms; global properties of the molecule as
e.g. their hydrophobicity; chemical structures present in the molecules as e.g. benzenic
or methylic groups.

Here, we consider the subset of188 so called regression-friendly compounds125 of
which are classified as having positive levels of mutagenicity. The predictive accuracy
is estimated by 10-fold-cross-validation, where we use the same folds as [29] for their
experiments with Progol. The accuracy and standard deviation obtained in our exper-
iments with BACQ is displayed in Table 1 for various numbers of iterations ranging
from 50 to 400, together with reference results on the same dataset using background
knowledgeB4, and the sources from which these results are reported. ACQ is an ILP
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Table 1. Accuracy± standard deviation for the Mutagenicity domain for BACQ with different
numbers of iterations ranging from 50 to 400 (i.e., T in Algorithm 1), in comparison to other
systems

ACQ C2RIB FOIL Fors G-Net ProgolSTILL
[17] [16] [19] [18] [2] [19] [28]

87.0 88.0 82.0 89.0 92.0 88.0 90.0
n/a ±3.4 ±3.0 ±6.0 ±8.0 ±2.0 ±5.0

BACQ BACQ BACQ BACQ BACQ BACQ BACQ BACQ
50 100 150 200 250 300 350 400

89.9 89.9 91.5 90.4 92.0 92.0 91.5 91.5
±4.6 ±4.6 ±3.8 ±4.9 ±3.8 ±3.8 ±3.8 ±4.5

learner based on acyclic conjunctive queries which we previously introduced [17] and
which serves as a starting point for the work presented in this paper.

The classification accuracy obtained after only T=50 iterations with BACQ is lower
than, however in the range of the standard deviation of, the best result reported so far for
the Mutagenicity domain, accomplished with the system G-Net [2]. The result is also
on par with the second best result reported for the domain, achieved with the system
STILL [28]. For increasing T=250, and T=300, respectively, the classification accuracy
is identical to the best one reported for this domain, G-Net [2], however with only half
the standard deviation. Irrespective of the number of boosting iterations, our results with
BACQ lie well in the range of the standard deviations reported for the learning systems
most successful on the Mutagenicity domain. The classification accuracy of ACQ is
significantly outperformed by any result of BACQ.

In our experiments, carbon5 aromaticring, carbon6 ring, carbon5 ring, het-
ero aromatic6 ring, heteroaromatic5 ring, ring6, ring5 were used as cycle building
blocks, and nitro and methyl as tree building blocks (see also [19]). As an example, the
acyclic building block defining carbon5 aromaticring is

carbon5 aromaticring(X, Y1, . . . , Y5)←
atom(X, Y1, c, U1, V1), . . . , atom(X, Y5, c, U5, V5),
bond(X, Y1, Y2, 7), bond(X, Y2, Y3, 7), . . . , bond(X, Y5, Y1, 7)

6 Conclusion

In this paper, we have presented an algorithm specific to learning acyclic conjunctive
queries predicting unknown properties of chemical compounds. Here, chemical com-
pounds have been represented by relational structures corresponding to labeled graphs.
In our work, building blocks have been used for top-down induction of acyclic con-
junctive queries. In the experiments, we have assumed that such buildings blocks were
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provided by an expert. Although this seems to be a reasonable assumption when con-
sidering chemical graphs, we are working on the automatic extraction of cycle and tree
patterns as building blocks.

In ILP, examples are usually evaluated one by one (by some PROLOG system).
One of the major advantages of our approach is that acyclic conjunctive queries allow,
in contrast to the standard ILP evaluation approach, examples to be evaluated in one
step.

Restricting the search space to acyclic patterns implies, however, a reduced expres-
siveness and a potential decrease in classification accuracy. These shortcomings are
counteracted by applying constrained confidence-rated boosting. Our first experiments
indicate that combining acyclic conjunctive queries with constrained confidence-rated
boosting has indeed a potential for real-world problems involving labeled graphs. As
future work, we are going to evaluate the method on further such domains.
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Appendix: Acyclic Conjunctive Queries

In this appendix we give an algorithm for acyclic conjunctive query evaluation. In [3]
it is shown that the class of acyclic conjunctive queries is identical to the class of con-
junctive queries that can be represented byjoin forests[4]. Given a conjunctive query
Q, the join forestJF (Q) representingQ is an ordinary undirected forest such that its
vertices are the set of literals ofQ, and for each variablex ∈ Var(Q) it holds that the
subgraph ofJF (Q) consisting of the vertices that containx is connected (i.e., it is a
tree).

Now we show how to use join forests for efficient acyclic query evaluation. LetE
be a set of ground target atoms,B be a set of ground atoms, and letQ be an acyclic
conjunctive query with join forestJF (Q). In order to find the subsetE′ ⊆ E implied
by Q with respect toB, we can apply the following method. LetT0, T1, . . . , Tk (k ≥ 0)
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algorithm EVALUATE

input: extensional database D and join tree T with root
labeled by n0

output: {n0θ: θ is a substitution mapping the nodes of T into D}

let R = {n0θ: θ is a substitution mapping n0 into D}
let the children of n0 be labeled by n1, . . . , nk ( k ≥ 0)
for i = 1 to k

S = evaluate (D, Ti) // Ti is the subtree of T rooted at ni

R = the natural semijoin of R and S wrt. n0 and ni

return R

denote the set of connected components ofJF (Q), whereT0 denotes the tree contain-
ing the head ofQ, and letQi ⊆ Q denote the query represented byTi for i = 0, . . . , k.
The definition of theQi’s implies that they form a partition of the set of literals ofQ
such that literals belonging to different blocks do not share common variables. There-
fore, the subqueriesQ0, . . . , Qk can be evaluated separately; if there is ani, 1 ≤ i ≤ k,
such that the Boolean conjunctive queryQi (i.e., a conjunctive query with empty head)
is false with respect toB thenQ implies noneof the elements ofE with respect to
B, otherwiseQ andQ0 imply the same subset ofE with respect toB. By definition,
Q0 implies an atome ∈ E if there is a substitution mapping the head ofQ0 to e and
the atoms in its body intoB, andQi (1 ≤ i ≤ k) is true with respect toB if there
is a substitution mappingQi’s atom intoB. That is, using algorithm EVALUATE given
below,Q impliesE′ with respect toB if and only if

(E′ ⊆ EVALUATE (B ∪ E, T0)) ∧

(
k∧

i=1

(EVALUATE (B, Ti) 6= ∅)

)
.

It remains to discuss the problem of how to compute a join forest for an acyclic con-
junctive query. Using maximal weight spanning forests of ordinary graphs, in [4] Bern-
stein and Goodman give the following method to this problem. LetQ be an acyclic
conjunctive query, and letG(Q) = (V,E,w) be a weighted graph with vertex set
V = {L : L is a literal ofQ}, edge setE = {(u, v) : Var(u) ∩ Var(v) 6= ∅}, and
with weight functionw : E → IN defined byw : (u, v) 7→ |Var(u) ∩ Var(v)|. Let
MSF (Q) be a maximal weight spanning forest ofG(Q). Note that maximal weight
spanning forests can be computed in polynomial time (see, e.g., [6]). It holds that ifQ
is acyclic thenMSF (Q) is a joint forest representingQ. In addition, given a maximal
weight spanning forestMSF (Q) of a conjunctive queryQ, instead of using the method
given in the definition of acyclic hypergraphs, in order to decide whetherQ is acyclic,
one can check whether the equation∑

(u,v)∈MSF (Q)

w(u, v) =
∑

x∈Var(Q)

(Class(x)− 1) (5)

holds, where Class(x) denotes the number of literals inQ that containx (see also [4]).
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Abstract. The product homomorphism method is a combinatorial tool that can
be used to develop polynomial PAC-learning algorithms in predicate logic. Using
the product homomorphism method, we show that a single nonrecursive definite
Horn clause is polynomially PAC-learnable if the background knowledge is a
function-free extensional database over a single binary predicate and the ground
atoms in the background knowledge form a unary partial function. That is, the
background knowledge corresponds to a directed graph, where each node has
outdegree at most 1. The proof is based on a detailed analysis of products and
homomorphisms of the class of digraphs corresponding to unary partial functions.

1 Introduction

Attribute-value languages are often not suitable for representing complex real-world
machine learning problems. Therefore, one of the research challenges in machine learn-
ing is to study learning in other representation languages. Among such approaches, in-
ductive logic programming (ILP) [8] is concerned with learning in predicate logic, in
particular, with learning logic programs.

The general ILP learning problem is computationally intractable. Therefore, one
of the challenging problems in ILP is to show positive and negative theoretical results
about the efficient learnability of different fragments of predicate logic in the formal
models of computational learning theory. Most of such positive results have been ob-
tained by restricting the hypothesis language. In particular, the most frequently used
restrictions aredeterminatenessand learning withconstant depth bound[5].

In contrast to these approaches, in this work we present a positive learnability re-
sult by restricting the background knowledge. We assume that there is a single binary
background predicateR, and that the groundR-atoms in the background knowledge
represent a unary partial function. This structural assumption implies that the back-
ground knowledge corresponds to a digraph where each vertex has outdegree at most

? Partially supported by the DFG project (WR 40/2-1)Hybride Methoden und Systemarchitek-
turen f̈ur heterogene Informationsräume.
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1. To prove polynomial learnability for such family of learning problems in the PAC
model of learning [9], we use the product homomorphism method [4], a general combi-
natorial method specific to deriving polynomial learning algorithms in predicate logic.
The method is based on finding a combinatorial characterization for the existence of a
certain homomorphism from products of relational structures. From the structural as-
sumption on the background knowledge it follows that we have to study products and
homomorphisms related to unary partial function graphs.

Using the product homomorphism method, we obtained positive PAC result for the
cases when the ground atoms in the background knowledge form a forest [4] or a unary
function graph [3] (i.e., when each vertex has outdegree1). The result of this paper gen-
eralizes these results, as unary partial function graphs include both cases; a connected
component of a unary partial function graph is always either a tree or a function graph
consisting of a single connected component. Though the structural difference between
unary function and unary partial function graphs may seem to be insignificant, it turns
out that the presence of both types of components requires a careful revision of the
results in [3].

The paper is organized as follows. In Section 2, we first give the necessary concepts
related to unary partial function graphs, and in Section 3 we then formulate our learning
problem. In Section 4, we briefly describe the product homomorphism method, and
in Section 5, we derive a polynomial PAC-learning algorithm by using the product
homomorphism method. Finally, in Section 6, we give some concluding remarks along
with some open problems. Due to space limitation, we omit the proofs in this extended
abstract.

2 Graphs and unary partial function graphs

We assume the reader is familiar with the basic concepts of graph theory (see, e.g., [2]).
Throughout this paper, by graphs we always mean directed graphs. For a graphG, we
denote byV (G) (resp.E(G)) the set of vertices (resp. edges) ofG.

Let Gi be a graph for1 ≤ i ≤ t. The product G =
∏t

i=1 Gi is a graph with
V (G) =

∏t
i=1 V (Gi) such that for all~u = (u1, . . . , ut), ~v = (v1, . . . , vt) ∈ V (G) it

holds that(~u,~v) ∈ E(G) iff (ui, vi) ∈ E(Gi) for everyi = 1, . . . , t. Thet-th power of
G, denotedGt, is the product oft copies ofG.

A homomorphismfrom a graphG1 to a graphG2 is a mapϕ : V (G1) → V (G2)
such that(ϕ(u), ϕ(v)) ∈ E(G2) whenever(u, v) ∈ E(G1). We call a homomorphism
singly rootedif we specify the image of one vertex inV (G1) in advance, and we call a
homomorphismmultiply rootedif we specify images of multiple vertices inV (G1) in
advance. A homomorphism fromG1 to G2 mappingui to vi for i = 1, . . . , k is denoted
by

G1 −−−−−−−−−−−→
{u1/v1,...,uk/vk}

G2 .

We note that a homomorphism always maps one connected component into one con-
nected component.

okada
34



2.1 Unary partial function graphs

A graphG is aunary partial function graphif every vertex ofG has outdegree at most
1. The name is justified by viewingG as a graph representing aunary partial function
f : V (G) ↪→ V (G) such thatf(u) = v iff (u, v) ∈ E(G) for everyu, v ∈ V (G).
As an example, the graph given in Fig. 1 is a unary partial function graph consisting of
three connected components. Excepta5, each vertex has outdegree 1.
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Fig. 1.The directed graph representing the unary functionf .

For the rest of this section, letG denote a unary partial function graph consisting of
a single connected component. Then it holds thatG has at most one vertex of outdegree
0. If G has such a vertex thenG is acyclic, as in this case it is a directed tree such that the
edges are directed towards the root (which is the vertex of outdegree0). Otherwise (i.e.,
when each of the vertices of the connected component has outdegree 1)G is cyclicand
it may be viewed as a directed cycle with directed trees “hanging” from some vertices
of the cycle. The edges of the trees are directed towards the cycle. We note that the
directed cycle may be aloop (i.e., a cycle may have length 1).Cyclic vertices are those
on the cycle (e.g.,a15 on Fig. 1). The other vertices are callednoncyclic.

For a vertexv ∈ V (G), we denote byf(v) the successor ofv. We definef (0)(v) =
v andf (k)(v) denotesf(f (k−1)(v)) for everyk > 0. Note thatf (k)(v) may be unde-
fined. For instance, for the graph on Fig. 1 it holds thatf (2)(a3) = a5 andf (3)(a3) is
undefined.

Let k ≥ 0 be an integer. We defineh(f (k)(v)), theheightof f (k)(v), by

h(f (k)(v)) =
max{d : f (k)(v) = f (d)(u) for someu ∈ V (G)} if f (k)(v) is noncyclic

∞ if f (k)(v) is cyclic

0 otherwise .
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For the graph on Fig. 1, we haveh(f (2)(a3)) = h(a5) = 4, h(f (3)(a3)) = 0, and
h(a15) =∞.

If G is cyclic thenδ(v) denotes the length of the unique directed path connectingv
to the cycle, otherwise (i.e., ifG is a tree) it denotes the length of the unique directed
path connectingv to the root. In both cases, the other endpointf (δ(v))(v) of the path is
denoted byr(v) and is referred to as theroot of v. In our example on Fig. 1,δ(a3) = 2,
asr(a3) = a5, andδ(a11) = 2, asr(a11) = a13.

If G is cyclic then we denote byLcycle(G) the length of its cycle; ifG is a tree then
Lcycle(G) = 0. If v is a vertex of a general unary partial function graph (i.e., one which
may consist of more than one connected component) thenLcycle(v) denotesLcycle(G′),
whereG′ is the connected component containingv. In Fig. 1,Lcycle(a11) = 3.

Let u, v ∈ V (G) such thatu = r(u) andv = r(v). Thenσ(u, v) is the smallest
nonnegative integerd satisfyingf (d)(u) = v. Note that by the definition ofu andv,
both of them are either cyclic or noncyclic. In the first case,σ(u, v) denotes the length
of the (smallest) directed path leading fromu to v on the cycle ofG. In the second case,
bothu andv must be roots of a tree. SinceG consists of a single connected component,
u = v and hence,σ(u, v) = 0 always holds for this case.

Now let u, v ∈ V (G) such thatr(u) = r(v). Then there is a unique maximal
integerd, 0 ≤ d ≤ min{δ(u), δ(v)}, such thatf (δ(u)−d)(u) = f (δ(v)−d)(v). This node
is called theleast common ancestorof u andv, and is denoted bylca(u, v).

We are ready to define thedistancebetween two vertices. Letu, v ∈ V (G). Then
their distance is an ordered pair of nonnegative integers defined by

dpf (u, v) ={
(d1, d2) such thatf (d1)(u) = lca(u, v) = f (d2)(v) if r(u) = r(v)
(δ(u) + σ(r(u), r(v)), δ(v)) otherwise .

On Fig. 1,dpf (a3, a8) = (1, 2), aslca(a3, a8) = a4, anddpf (a11, a16) = (2 + 1, 1).
In the following proposition we formulate some properties of products of unary

partial function graphs, that will be used many times in what follows.

Proposition 1. Let Gi be unary partial function graphs andbi ∈ V (Gi) for i =
1, . . . , t. Let G =

∏t
i=1 Gi be the product of theGi’s and~b = (b1, . . . , bt) be the

product vertex obtained from thebi’s. Then forG and~b the following properties hold.

(i) G is a unary partial function graph.
(ii) ~b is cyclic iff all thebi’s are cyclic.

(iii) If~b is cyclic thenLcycle(~b) = lcm(Lcycle(b1), . . . , Lcycle(bt)), wherelcm(n1, . . . , nt)
denotes the least common multiple ofn1, . . . , nt.

3 Learning simple logic programs

In this section we define a special class of logic programs [7] that will be discussed
from the point of view of learnability.
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3.1 Simple logic programs

Throughout this paper we consider (relational)vocabulariesconsisting of atarget pred-
icateP of arity m, a binarybackground predicateR, and constantsa1, . . . , an. Thus,
a term is either a variable or a constant, and anatom is of the formP (t1, . . . , tm)
or R(t1, t2), where thet’s are terms. Depending on its predicate symbol, an atom is
said to be aP -atom or anR-atom. A literal is an atom or its negation. An atom is
ground if it contains no variables. Abasic clauseis a first-order Horn clause of the
form L0 ← L1, . . . , Ll whereL0 is aP -atom andLi is anR-atom fori = 1, . . . , l.
It is also viewed as the set of literals it contains. Asimple logic programconsists of a
basic clause and a setB of groundR-atoms. SinceR is binary, the groundR-atoms in
B form a directed graph with verticesa1, . . . , an.

A substitutionθ = {x1/t1, . . . , xs/ts} is a mapping of variables to terms such that
xi 6= ti for i = 1, . . . , s. Let W be a literal (respectively a clause). ThenWθ is the
literal (respectively clause) obtained fromW by rewriting simultaneously each variable
xi to ti in W for i = 1, . . . , s. A clauseC subsumesa clauseD, denotedC ≤θ D, if
there exists a substitutionθ such thatCθ ⊆ D.

To close this subsection, letC be a basic clause,B be a set of groundR-atoms,
andA be a groundP -atom. We say thatC subsumesA with respect toB, denoted
C ≤θ,B A, if C subsumes the basic clauseA ← B, i.e.,C ≤θ (A ← B). It holds that
C ≤θ,B A iff A is impliedby the simple logic program consisting ofC andB.

3.2 The learning problem

In this section we give a formal description of the family of learning problems consid-
ered in this paper. We assume that the reader is familiar with the basic notions of the
PAC-model of learning [9].

Let B be a set of groundR-atoms. In what follows,B is referred to asbackground
knowledge, and its elements are calledbackground atoms. As R is a binary predicate,
B can be viewed as a graph with verticesa1, . . . , an.

The instance spaceof the learning problem is the set of all groundP -atoms. LetC
be a basic clause. Then theconceptCB represented byC wrt. B is the set of ground
P -atoms implied by the simple logic program consisting ofC andB, i.e.,

CB = {A : A is a groundP -atom andC ≤θ,B A} .

Theconcept classCB,m, corresponding toB is the family of conceptsCB, whereC is
a basic clause. (For the next definition, we recall thatm is the arity of the target pred-
icateP .) Throughout this paper, we consider the familyFm,n (m,n > 0) of learning
problems defined by

Fm,n = {CB,m : B corresponds to a unary partial function graph overn vertices} .

That is, a concept classCB,m belongs toFm,n iff for every ai there is at most one
aj such thatR(ai, aj) ∈ B (1 ≤ i, j ≤ n). Theparametersmeasuring the size of a
learning problem inFm,n arem andn.1

1 In Section 5.4, we shall show that the size of the target basic clause as parameter can be omitted
by extending the standard representation language.
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4 The product homomorphism method

In order to prove polynomial PAC-learnability forFm,n, we shall apply the following
basic result [1] from computational learning theory.

Theorem 1. A family of learning problems is polynomially PAC-learnable if

(i) the hypothesis finding task can be solved in time polynomial in the parameters,
(ii) the VC-dimension of the concept classes is bounded by a polynomial of the param-

eters.

According to the first step of the above theorem, we have to show that the hypothesis
finding problem for the concept classes inFm,n can be solved in time polynomial in
m andn. More precisely, we consider the followingsingle clause hypothesis finding
problem: GivenCB,m ∈ Fm,n and disjoint setsE+ andE− of groundP -atoms,find a
basic clauseC such thatE+ ⊆ CB andE− ∩CB = ∅, if such a basic clause exists, and
output“no”, otherwise.

In [4], we have shown thatCB,m is closed under nonempty intersectionfor every
CB,m ∈ Fm,n. That is, for every subsetC ⊆ CB,m satisfying

⋂
c∈C c 6= ∅ it holds that⋂

c∈C c ∈ CB,m. This implies that for a setS of groundP -atoms, the intersection of all
concepts containingS, denotedGB(S), is also a concept inCB,m, i.e.,GB(S) ∈ CB,m,
where

GB(S) =
⋂
{CB ∈ CB,m : S ⊆ CB} .

In other words,GB(S), also referred to as theconcept generated byS, is the smallest
concept inCB,m that containsS. But this means that a consistent clause for the above
defined single clause hypothesis finding problem exists iffGB(S) andE− are disjoint.
Thus, the single clause hypothesis finding problem can be solved by computing first
anefficiently evaluablebasic clause representing the conceptGB(E+) and then testing
whetherGB(E+) ∩ E− = ∅ holds.

The following theorem, a special case of the product homomorphism theorem in
[4], gives a combinatorial characterization of the concept generated by a set of ground
P -atoms.

Theorem 2. Let CB,m ∈ Fm,n, S = {P (b1,1, . . . , b1,m), . . . , P (bt,1, . . . , bt,m)} for
somet > 0, and let~bj denote(b1,j , . . . , bt,j) for j = 1, . . . ,m. Then

GB(S) =

{
P (b1, . . . , bm) : Bt −−−−−−−−−−−−−−−−−−−−−−→

{~b1/b1,...,~bm/bm,~a1/a1,...,~an/an}
B

}
,

where~ak denotes the (t-tuple) product constants(ak, . . . , ak) for k = 1, . . . , n.

Theorem 2 above provides the following method, called theproduct homomorphism
method[4], for obtaining a hypothesis finding algorithm forFm,n:

1. Find a combinatorial characterization for the existence of multiply rooted homo-
morphisms from products of unary partial function graphs to unary partial function
graphs.
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2. Give an algorithm such that for everyCB,m ∈ Fm,n and for every setS of ground
P -atoms it translates the combinatorial characterization in time polynomial inm,
n, and|S| into a basic clauseC such that

– CB = GB(S) and
– C can be evaluated with respect toB in time polynomial inm andn.

5 Application of the product homomorphism method

Using the product homomorphism method, in this section we derive an efficient PAC
algorithm for learning simple logic programs with partial function graph background
knowledge.

5.1 Homomorphisms between unary partial function graphs

In order to apply the product homomorphism method to unary partial function graphs,
we first need to find necessary and sufficient conditions for the existence of multiply
rooted homomorphisms from products of unary partial function graphs into unary par-
tial function graphs. Since unary partial function graphs are closed under product by (i)
of Proposition 1, in the next theorems we study rooted homomorphisms between unary
partial function graphs. Furthermore, as a homomorphism always maps one connected
component into one connected component, it is sufficient to consider unary partial func-
tion graphs consisting of a single connected component.

Theorem 3. Let G1 and G2 be unary partial function graphs consisting of a single
connected component, letb1, . . . , bk ∈ V (G1) be distinct vertices for somek ≥ 1, and
c1, . . . , ck ∈ V (G2). ThenG1 −−−−−−−−−−→

{b1/c1,...,bk/ck}
G2 iff

(i) G1 −−−−→
{bi/ci}

G2 for everyi = 1, . . . , k,

(ii) f (d1)(cu) = f (d2)(cv) for every1 ≤ u < v ≤ k, where(d1, d2) = dpf (bu, bv).

Condition (i) of the above theorem indicates that one has to studysingly rooted
homomorphisms between unary partial function graphs. The following theorem gives a
necessary and sufficient condition for the existence of a singly rooted homomorphism
between unary partial function graphs. We denote byn1 | n2 thatn1 dividesn2.

Theorem 4. Let G1 and G2 be unary partial function graphs consisting of a single
connected component and letb ∈ V (G1), c ∈ V (G2). ThenG1 −−−→

{b/c}
G2 iff

(i) G2 is cyclic satisfyingLcycle(G2) | Lcycle(G1) wheneverG1 is cyclic,

(ii) h(f (k)(c)) ≥ h(f (k)(b)) for everyk ≥ 0 .
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5.2 Products of unary partial function graphs

The product homomorphism method indicates that the learning algorithm must consider
the product oft copies of the graph representing the background knowledge, wheret
is the number of positive examples. However, that product is exponentially large; it
containsnt nodes, wheren is the number of constants mentioned in the background
knowledge. Therefore we cannot work with this graph explicitly. Instead, we must show
that the relevant parameters implied by Theorems 3 and 4, i.e., cycle lengths, heights,
and distances between vertices can be computed directly from those of the original
graph corresponding to the background knowledge.

For computing cycle lengths, we can directly apply (iii) of Proposition 1. We start
by giving a lemma that can be used for determining the height of a product vertex.

Lemma 1. Let Gi be unary partial function graphs fori = 1, . . . , t, G =
∏t

i=1 Gi,

and~b = (b1, . . . , bt) ∈ V (G). Thenh(f (k)(~b)) = mini=1,...,t h(f (k)(bi)) for every
k ≥ 0.

To state Lemma 4 below for computing the distance between two product vertices,
in the following lemma we first characterize the distance of a product vertex from its
root. Then, in Lemma 3, we give a necessary and sufficient condition for two vertices
of the product graph to be in the same connected component.

Lemma 2. Let Gi be unary partial function graphs,bi ∈ V (Gi) for i = 1, . . . , t, and
consider the product graphG =

∏t
i=1 Gi and product vertex~b = (b1, . . . , bt) ∈ V (G).

Let I denote the set of indices{i : 1 ≤ i ≤ t, r(bi) is noncyclic}. Then the distance of
~b from its rootr(~b) is given by

δ(~b) =

{
maxi=1,...,t δ(bi) if I = ∅
mini∈I δ(bi) otherwise .

Lemma 3. Let Gi be unary partial function graphs fori = 1, . . . , t, G =
∏t

i=1 Gi,

and~b = (b1, . . . , bt) ~c = (c1, . . . , ct) ∈ V (G). Then~b and~c are in the same connected

component ofG iff for everyi = 1, . . . , t it holds thatf (δ(~b)+d)(bi) = f (δ(~c))(ci), where
d = 0 if some of thebi’s belongs to a noncyclic connected component; otherwise,d is
a nonnegative integer satisfying

d ≡ σ(f (δ(~b))(bk), f (δ(~c))(ck)) (mod Lcycle(bk))

for everyk = 1, . . . , t.

The following lemma follows directly from Lemmas 2 and 3.

Lemma 4. Let Gi, G, bi, andci, 1 ≤ i ≤ t, be defined as in the previous lemma and
assume that the product vertices~b = (b1, . . . , bt) and~c = (c1, . . . , ct) belong to the
same connected component ofG. Then

dpf (~b,~c) =

{
(δ(~b)− d1, δ(~c)− d1) if r(~b) = r(~c)
(δ(~b) + d2, δ(~c)) otherwise ,
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whered1 = max{d ≥ 0 : f (δ(~b)−d)(bi) = f (δ(~c)−d)(ci) for i = 1, . . . , t} andd2 is the
smallest nonnegative integer satisfying

d2 ≡ σ(f (δ(~b))(bi), f (δ(~c))(ci)) (mod li)

for everyi = 1, . . . , t.

Since the congruence system in Lemmas 3 and 4 can be solved efficiently (see, e.g.,
[6]), one can decide efficiently whether~b and~c are in the same connected component,
and if so, then their distancedpf (~b,~c) can be computed in polynomial time.

5.3 A combinatorial characterization of GB

Combining the results of Sections 5.1 and 5.2 with Theorem 2, in this section we give
a combinatorial characterization of the concept generated by a set of groundP -atoms
wrt. unary partial function graph background knowledge. LetS be the set of ground
atoms{P (b1), . . . , P (bt)}, wherebi = (bi,1, . . . , bi,m) for i = 1, . . . , t (t > 1). Let
~bj denote the product vertex(b1,j , . . . , bt,j) for j = 1, . . . ,m. Let

Iconst(S) = {(j, q) : 1 ≤ j ≤ m, 1 ≤ q ≤ n, and~bj = ~aq} ,

Ivar(S) = {j : 1 ≤ j ≤ m,~bj 6= ~aq for someq, 1 ≤ q ≤ n} ,

Icyclic(S) = {j ∈ Ivar(S) : r(~bj) is cyclic} ,

Hpairs(S) = {(u, v) : u, v ∈ Ivar(S), u < v, and~bu,~bv are in the same connected component} ,

Hconst(S) = {(j, q) : j ∈ Ivar(S), 1 ≤ q ≤ n, and~bj ,~aq are in the same connected component} .

Theorem 5. If B is a unary partial function graph then

GB(S) = {P (b1, . . . , bm) :
bj = aq for all (j, q) ∈ Iconst(S), (1)

f (Lcycle(
~bj))(r(bj)) = r(bj) for all j ∈ Icyclic(S), (2)

h(f (k)(bj)) ≥ h(f (k)(~bj)) for all k = 0, . . . , n andj ∈ Ivar(S), (3)

f (d1)(bu) = f (d2)(bv) for all (u, v) ∈ Hpairs(S), where(d1, d2) = dpf (~bu,~bv), (4)

f (d1)(bj) = f (d2)(aq) for all (j, q) ∈ Hconst(S), where(d1, d2) = dpf (~bj ,~aq)} (5)

Proof sketch.By Theorem 2,P (b1, . . . , bm) ∈ GB(S) iff

(B)t −−−−−−−−−−−−−−−−−−−−−−→
{~b1/b1,...,~bm/bm,~a1/a1,...,~an/an}

B . (6)

Thus, it is sufficient to show that (6) holds iff conditions (1) - (5) hold. For the “only
if” part, the proof of (1) is automatic, (2), (3) hold by Theorem 4, and (4), (5) by (ii) of
Theorem 3. To prove the “if” part, the connected components of(B)t can be considered
separately.
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(i) For connected components not containing any non-constant product vertex from
~b1, . . . ,~bm, there are projections providing a homomorphism intoB and mapping
each occurring product constant~a to a.

(ii) By Theorems 3 and 4, (2)–(4) provide the required rooted homomorphisms for
connected components containing at least one non-constant vertex from~b1, . . . ,~bm.

(iii) Finally, for connected components containing at least one non-constant vertex from
~b1, . . . ,~bm and at least one constant product vertex, (2)–(3) and (5) provide the
required rooted homomorphisms by Theorems 3 and 4. ut

5.4 Concept representation and polynomial learnability

The last step of the product homomorphism method is to give an algorithm translating
the combinatorial characterization given by Theorem 5 into an efficiently evaluable
basic clause. From our previous results [4] on the length of product cycles it follows
that there are cases when the size of any consistent basic clause is exponential inn,
i.e., whenLcycle(~bj) in (2) is exponential inn. Thus, the standard representation using
only the predicatesP andR is not suitable for polynomial learnability if the size of the
target concept is not considered as a learning parameter. Therefore, we introduce new
predicates of the form PATHd(x, y), which hold if there is a path of lengthd from x to
y, for everyd. Note that PATHd(x, x) holds iff d = 0 or d > 0 andLcycle(x) | d. Using
the extended representation language, we are ready to give Algorithm 1 computing a
clause that representsGB(S) for a setS of groundP -atoms and unary partial function
graph background knowledgeB.

Algorithm 1 UNARYPARTIAL FUNCTIONGRAPH

Require: ground setS = {P (b1), . . . , P (bt)} and a unary partial function graphB
Ensure: clauseC such thatCB = GB(S)

1: let C = {P (t1, . . . , tm)}, wheretj = aq if (j, q) ∈ Iconst(S) for someq, otherwisetj is
the variablex~bj

for j = 1, . . . , m

2: for all j ∈ Icyclic(S) do

if δ(~bj) = 0 then C = C ∪ {¬PATHLcycle(
~bj)(tj , tj)}

elseC = C ∪ {¬PATHδ(~bj)(tj , yj),¬PATHLcycle(
~bj)(yj , yj)}

3: for all j ∈ Ivar(S) andk = 0, . . . , δ(~bj) do
if k < h(f (k)(δ(~bj))) < ∞ then C = C ∪{¬PATHk(tj , y

′
j),¬PATHh(f(k)(~bj))(y

′′
j , y′j)}

4: for all (u, v) ∈ Hpairs(S) do

C = C ∪ {¬PATHd1(tu, zu,v),¬PATHd2(tv, zu,v)} where(d1, d2) = dpf (~bu,~bv)
5: for all (j, q) ∈ Hconst(S) do

C = C ∪ {¬PATHd1(tj , z
′
j,q),¬PATHd2(aq, z

′
j,q)} where(d1, d2) = dpf (~bj ,~aq)

6: return C

Steps (1)–(5) of Algorithm 1 translate Conditions (1)–(5) of Theorem 5, respec-
tively. We have the following theorem.
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Theorem 6. Algorithm 1 is correct, i.e.,CB = GB(S), and it is polynomial inm, n,
and |S|. The size ofC (in the extended representation language) isO

(
m2 + mn

)
. C

can be evaluated wrt.B in time polynomial inm andn.

Example 1.To illustrate Algorithm 1, consider the unary partial function graphG given
in Fig. 1. Using the binary background predicateR, let B be the corresponding back-
ground knowledge, i.e.,R(u, v) ∈ B iff (u, v) ∈ E(G) for everyu, v ∈ V (G).2

Let P be a ternary target predicate andS = {P (a6, a3, a12), P (a11, a9, a18)}.
Thus,~b1 = (a6, a11), ~b2 = (a3, a9), and~b3 = (a12, a18). By definition,Iconst(S) =
∅, Ivar(S) = {1, 2, 3}, and by (ii) of Proposition 1,Icyclic(S) = {3}. To compute
Hpairs(S), we apply Lemma 3 for every(u, v), u, v ∈ Ivar(S). For(1, 2) corresponding
to (~b1,~b2) = ((a6, a11), (a3, a9)), we have to check whether

f (δ(~b1)+d)(a6) = f (δ(~b2))(a3) and f (δ(~b1)+d)(a11) = f (δ(~b2))(a9) (7)

hold ford = 0. By Lemma 2, we have

δ(~b1) = δ((a6, a11))= min
i∈{1}

δ(bi) = δ(a6) = 1

δ(~b2) = δ((a3, a9)) = min
i∈{1}

δ(bi) = δ(a3)= 2 .

In both equations,I = {1}, asr(a11) andr(a9) are cyclic. The equations in (7) thus
hold by

f (1)(a6) = a5 = f (2)(a3) and f (1)(a11) = a12 = f (2)(a9)

respectively. Hence,(1, 2) ∈ Hpairs(S). It can be shown in the same way thatHpairs(S) =
{(1, 2)} andHconst(S) = ∅.

Now we are ready to illustrate Algorithm 1 step by step on inputsS andB.

Step 1: C = {P (x~b1
, x~b2

, x~b3
)} becauseIconst = ∅.

Step 2: SinceIcyclic(S) = {3}, we have to computeδ(~b3) andLcycle(~b3). By Lemma 2,
δ(~b3) = 0, and from (iii) of Proposition 1 we haveLcycle(~b3) = lcm{3, 4} = 12.
Thus, in this step we add the literal¬PATH12(x~b3

, x~b3
) to C.

Step 3: For j = 1 andk = 0 we first have to computeh(f (0)(~b1)). By Lemma 1, we
haveh(f (0)(~b1)) = min{h(f (0)(a6)), h(f (0)(a11))} = min{0, 1} = 0. Forj = 1
andk = δ(~b1) = 1, h(f (1)(~b1)) = 1 by Lemma 1. Sinceh(f (1)(~b1)) ≯ 1, we add
no literals toC. For similar reasons, we add no new literals toC for j = 2, 3.

Step 4: As Hpairs = {(1, 2)}, we havedpf (~b1,~b2) = (1, 2) by Lemma 4, and add
therefore¬PATH1(x~b1

, z1,2),¬PATH2(x~b2
, z1,2) to C.

Step 5: Hconst(S) = ∅ and thus, no literals will be added toC in this step.
Step 6: The algorithm finally returns the clause

P (x~b1
, x~b2

, x~b3
)← PATH12(x~b3

, x~b3
), PATH1(x~b1

, z1,2), PATH2(x~b2
, z1,2) .

2 We note that B is obtained from the background knowledge in the running example of [3] by
removing edge(a5, a4).
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Since the VC-dimension of a concept classC is at mostlog(C), from the bound on
the size of the target concept in Theorem 6 it follows that the VC-dimension ofCB,m is
polynomial inm andn if B is a unary partial function graph. Thus, by Theorems 1 and
6 we have the following main result of this paper.

Theorem 7. Using the extended representation language, simple logic programs with
B being a unary partial function graph are efficiently PAC-learnable.

6 Remarks and open problems

Using the product homomorphism method, we have shown that simple logic programs
with unary partial function graph background knowledge are polynomially PAC-learnable
in an extended representation language. The importance of this result is that we have not
assumed any bound on the size of the target clause, the target clause is not necessarily
determinate, and its size may be exponential in the standard representation language.

Finally, we list some interesting open problems for further research. In practical
applications, usually there is no consistent hypothesis consisting of a single clause.
Since unary partial function graphs generalize forests, from our previous results in [4]
it follows that the problem of deciding whether there exists a consistent hypothesis con-
sisting ofk clauses is NP-complete for any fixedk ≥ 3 for unary partial function graph
background knowledge. It would be interesting to see whether the optimal solution can
be approximated in polynomial time. A further research topic would be to investigate
whether the positive PAC result of this paper holds for colored unary partial function
graphs, i.e., when the vocabulary is extended by a set of unary background predicates.
Finally, it would be interesting to apply the product homomorphism method to other
classes of directed graphs, in particular to classes generalizing unary partial function
graphs.
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Abstract. Recently, an algorithm called Freqt was introduced which
enumerates all frequent induced subtrees in an ordered data tree. We
propose a new algorithm for mining unordered frequent induced sub-
trees. We show that the complexity of enumerating unordered trees is
not higher than the complexity of enumerating ordered trees; a strategy
for determining the frequency of unordered trees is introduced.

1 Introduction

Recently, several exploratory data mining algorithms for structural databases
have been proposed which search for frequent structures in such databases. These
frequent pattern mining algorithms use the same principles as Apriori [2], the
well-known frequent item set mining algorithm. A structure may be a sequence,
a tree or a graph. In this paper, we focus on frequent tree mining. In general,
the frequent tree discovery task is the task of discovering all trees — referred
to as the pattern trees — that occur frequently in some large tree called a data
tree. Within this general setup, there are several blanks to be filled in:

– What kind of trees are considered? Is the given database an ordered tree, a
node labeled tree or an edge labeled tree?

– What kind of occurrence relation is used? Does a pattern tree occur in a
data tree when the pattern tree is an induced subtree (which means that
parental relations between vertices in the data tree must be the same as in
the pattern tree) or when it is an embedded subtree (where a parent in a
pattern tree may be an ancestor in the data tree)?

– How are tree occurrences counted? Is each occurrence in the data tree counted,
or is the data tree partitioned into several separate trees, and is only the oc-
currence of a tree in a sufficient number of partitions interesting?

Previous publications have dealt with several of these possibilities:

– Wang and Liu [5] developed an algorithm for discovering both ordered and
unordered induced edge-labeled subtrees. A pattern tree is frequent when its
root can be mapped to the root of a sufficient number of partitions in the
data tree. To determine the inclusion relation, for each pair of pattern and
partition, an O(nm1.5) algorithm is used, where n is the size of the pattern
tree and m is the size of the partition. The algorithm features a strategy
for enumerating unordered trees which requires some redundant trees to be
generated.
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– Asai et al. [1] developed an algorithm called Freqt for discovering induced
subtrees in a node labeled, ordered data tree. The algorithm counts each
occurrence in a data tree, but can easily also be used for partition counting.
It uses an efficient scheme for generating and counting ordered trees.

– Zaki [6] developed an algorithm for discovering embedded subtrees in a node
labeled, ordered data tree. The algorithm counts occurrences in partitions,
but can easily also be used to count occurrences separately. It enumerates
trees in a similar way as Freqt, but uses a different evaluation technique
based on scope lists.

The algorithms of Asai et al. [1] and Zaki [6] share their efficient enumeration
technique for ordered trees; both algorithms define their own evaluation tech-
nique for such trees. As also indicated by Wang et al. [5], in some structured
databases a child order is of minor importance or even unavailable; for such
databases, it is more interesting to search for patterns that do not take the or-
der into account. In this paper, we will propose an algorithm for discovering
unordered frequent induced subtrees.

In section 2 we will extend the enumeration technique of [1] and [6] to ef-
ficiently enumerate unordered trees. We will define one ordered tree to be the
normal form of the unordered trees. As a consequence of the absence of order,
a new evaluation technique is required to compute the frequency of trees. In
section 3 we will therefore define a new bottom-up algorithm for this task. This
algorithm promises to be more efficient than the approach of [5] as it reuses the
matchings of previous trees to compute the frequency of new trees.

2 Unordered Tree Enumeration

For an efficient algorithm, it is of major importance that all possible pattern trees
are enumerated efficiently. An efficient enumeration technique is a technique that
enumerates each unordered tree exactly once. We will first show why techniques
from [1] and [6] cannot straightforwardly be applied to unordered trees.

The algorithms of [1] and [6] use rightmost path expansions. Starting with
pattern trees with only one node, nodes are added only to the rightmost path to
generate new pattern trees. The technique is illustrated in Fig. 1. As can be seen
in this figure, several ordered pattern trees may be constructed by this technique
which represent the same unordered pattern trees. Ordered trees which represent
the same unordered pattern trees are considered to be equivalent. In an efficient
enumeration technique, no two equivalent pattern trees are constructed. We will
propose an efficient technique here; the technique is novel to the best of our
knowledge.

In our technique, we define one of the equivalent ordered trees to be the
normal form of the corresponding unordered tree. We first introduce some no-
tation. Given a node v in an ordered tree T , firstchild(v) denotes the first child
of v, lastchild(v) is the last child, nextsibling(v) is the next node in the ordered
child list of v’s parent and prevsibling(v) is the previous node in that list. With
subtree(v) we denote the subtree in T of which v is the root.
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Tree T∗i String l(T∗i )
T∗1 (0, A)(1, A)(2, A)(1, A)
T∗2 (0, A)(1, A)(1, A)(2, A)
T∗3 (0, A)(1, A)(1, A)(1, A)
T∗4 (0, A)(1, A)(1, A)
T∗5 (0, A)(1, A)(1, B)
T∗6 (0, A)(1, B)(1, A)
T∗7 (0, B)(1, A)(1, B)
T∗8 (0, B)(1, B)(1, A)

Fig. 1. Enumeration of pattern trees in the alphabet {A,B} using rightmost path
expansions. Only a selected number of trees is expanded after 2 steps. Dotted lines
indicate an expansion. By conceiving pattern trees as nodes and expansions as edges,
an enumeration tree [1] is obtained which relates pattern trees to each other. Pattern
trees T ∗1 and T ∗2 , trees T ∗5 and T ∗6 and trees T ∗7 and T ∗8 are equivalent. Of a selected
number of trees, the pre-order label is given.

Given an ordered tree T , we define the following pre-order string l(T ) for this
tree: in a depth-first tree traversal, add a tuple label l(v) =(depth(v),label(v))
for each node v to an initially empty string when this node v is visited for the
first time. Some examples of this pre-order notation are also given in Fig. 1.

Note that each of these strings corresponds to exactly one tree. In a string,
the order of the tuples exactly matches the order of rightmost path expansions;
a pre-order string of a tree can therefore also be read as a series of subsequent
tree expansions that leads to this tree.

A tree T1 is called a prefix of a tree T2 if l(T1) is a prefix of l(T2). Tree T1 is
an immediate prefix of T2 if T1 is a prefix of T2 and |T1| + 1 = |T2|. A suffix is
defined analogously.

Given an order on the labels, we define the following order on tuples: (d1, l1) <
(d2, l2) iff d1 > d2 (this may sound counterintuitive, but will become clear later)
or l1 < l2 if d1 = d2. Other (in)equalities are derived from this order.

Given two trees T1 and T2, we define that l(T1) < l(T2) iff:

– either, T2 is a prefix of T1,
– or, at the leftmost position i at which l(T1) and l(T2) differ, (d1, l1) < (d2, l2)

for the tuples (d1, l1) ∈ T1 and (d2, l2) ∈ T2 occurring at that position.

In the example, l(T ∗1 ) < l(T ∗2 ) < l(T ∗3 ) < l(T ∗4 ) < l(T ∗5 ) < l(T ∗6 ) < l(T ∗7 ) < l(T ∗8 ).
The enumeration tree of Fig. 1 was obtained by expanding the rightmost path
bottom-up; the order of the pattern trees is obtained by performing a post-order
walk in the enumeration tree.
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Fig. 2. A tree in ordered normal form and its pre-order string. The nodes are numbered
in the order of expansion.

We define that a tree T1 is in (ordered) normal form if no equivalent tree T2

exists with l(T2) < l(T1).
We will now illustrate some observations with respect to this normal form.

Lemma 1. Given an ordered tree T , T is in normal form if and only if for each
node v ∈ T , l(subtree(v)) ≤ l(subtree(v′)), for each next sibling v′ of v.

Proof. Omitted here; see [3]. ut

We will illustrate this lemma on the example of Fig. 2. Under the assumption
that this tree is in normal form, we consider two node order changes: an exchange
of nodes v5 and v7 (exchange 1) and an exchange of nodes v7 and v10 (exchange
2). In the pre-order string, these exchanges correspond to exchanges of subtrings:

(0, A)(1, A)(1, B)(2, B)|(3, A)(4, A)|(3, A)(4, B)(4, B)|(3, A)(4, B)(2, B)(3, A)(4, A)(3, A)
⇒ Exchange 1 ⇒

(0, A)(1, A)(1, B)(2, B)|(3, A)(4, B)(4, B)|(3, A)(4, A)|(3, A)(4, B)(2, B)(3, A)(4, A)(3, A)

(0, A)(1, A)(1, B)(2, B)(3, A)(4, A)|(3, A)(4, B)(4, B)|(3, A)(4, B)|(2, B)(3, A)(4, A)(3, A)
⇒ Exchange 2 ⇒

(0, A)(1, A)(1, B)(2, B)(3, A)(4, A)|(3, A)(4, B)|(3, A)(4, B)(4, B)|(2, B)(3, A)(4, A)(3, A)

As the tree was in normal form, both exchanges should yield an equivalent tree
with a higher pre-order string. Indeed, in case of exchange 1, (4, B) > (4, A) due
to l(subtree(v7)) = (3, A)(4, B)(4, B) > (3, A)(4, A) = l(subtree(v5)); in case of
exchange 2, (3, A) > (4, B) as l(subtree(v10)) is a prefix of l(subtree(v7)).

Lemma 2. Let T be a pattern tree in normal form. Then every prefix of T is
also in normal form.

Proof. This follows from the previous lemma. ut
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According to this lemma it is sufficient to only generate rightmost path expan-
sions that immediately yield trees in normal form; even then one still enumerates
a normal form for each possible tree: the enumeration is complete. We will now
consider such expansion techniques in more detail. How can valid expansions be
characterized?

By a rightmost path expansion only subtrees of some nodes on the rightmost
path are modified. Only for these subtrees one has to check again that they are
higher than their previous sibling subtree. In the example of Fig. 2, expansions
which lead to a tree in normal form, are:

– (4, l), with l ≥ l(v8) = B. If l < B: subtree(v12) < subtree(v4), which is not
allowed; if l = B: subtree(v12) is still a prefix of subtree(v4), and therefore
higher. If l > B: subtree(v12) > subtree(v4). From subtree(v7) > subtree(v5)
follows that subtree(v15) > subtree(v13) if l ≥ B. Finally, before expansion,
already subtree(v3) > subtree(v2), while subtree(v3) was not a prefix. This
shows that all subtrees are still higher than their previous sibling;

– (3, l), with l ≥ l(v15) = A; obviously, in this case the new node is higher than
or equal to subtree(v15), and subtree(v3) > subtree(v2). Also subtree(v12) >
subtree(v4), as the new node in subtree(v12) is at a higher level in the tree
than the ‘next’ node v8 in subtree(v4);

– (2, l) with l ≥ l(v12) = B: the new node is higher than the previous sibling
subtree(v12); subtree(v3) was already higher than subtree(v1);

– (1, l) with l ≥ l(v3) = B: the new node is higher than its previous sibling.

The example shows the importance of knowing the largest suffix subtree (subtree(v12))
which is a prefix of its previous sibling subtree (subtree(v4)). This previous sib-
ling restricts the level and the label of new nodes. One can show the following:

Lemma 3. Given a tree T in normal form, the lowest prefix node v is the node
on the rightmost path for which the size of subtree(v) is maximized and subtree(v)
is a prefix of subtree(prevsibling(v)). A tree may not have a lowest prefix node,
in which case the lowest prefix node is undefined. The next prefix node (d′, l′) is
the node in l(subtree(prevsibling(v))) immediately after l(subtree(v)), if a lowest
prefix node v is defined. An expansion (d, l) yields a tree in normal form iff:
(d, l) ≥ p(d) and (d, l) ≥ (d′, l′) (if the lowest prefix node is defined). Here p(d)
is the label of the node at depth d on the rightmost path of T .

Proof. Omitted here; see [3]. ut

Furthermore, one can also show the following:

Lemma 4. Given is a tree T in normal form which is normally expanded with
a node (d, l). Then the location of the lowest prefix node either:

– does not change if (d, l) equals the next prefix node (d′, l′) (when defined);
– or, otherwise, becomes (d, l) if l equals the label of p(d);
– or, otherwise, becomes undefined.

Proof. Omitted here; see [3]. ut
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Algorithm Enumerate
Input: a tree T in normal form, its representation as a string l(T ), and an
index t which is either undefined or points to a position in l(T ).
Output: a print of each tree that can be obtained by expanding this tree to
a new tree in normal form.

1. print(T )
2. if t is defined then
3. Increase t
4. Let (d, l) be the tuple at position t in l(T ).
5. Enumerate ( T expanded with (d, l), l(T ) · (d, l), t ).
6. for each rightmost expansion (d′, l′) > (d, l), l′ ≥ l(p(d′)) do
7. if l′ = l(p(d′)) then
8. Enumerate ( T expanded with (d′, l′), l(T ) · (d′, l′), position of p(d′) in l(T ) );
9. else

10. Enumerate ( T expanded with (d′, l′), l(T ) · (d′, l′), undefined );
11. Decrease t
12. else
13. for each rightmost expansion (d′, l′), l′ ≥ l(p(d′)) do
14. if l′ = l(p(d′)) then
15. Enumerate ( T expanded with (d′, l′), l(T ) · (d′, l′), position of p(d′) in l(T ) );
16. else
17. Enumerate ( T expanded with (d′, l′), l(T ) · (d′, l′), undefined );

Fig. 3. An algorithm for enumerating all trees in normal form.

If the example tree is expanded with (4, B), v12 remains the lowest prefix node.
If the example tree is expanded with (4, C), the tree no longer has a lowest prefix
node.

All these observations can be used to construct an efficient enumeration al-
gorithm, as given in Fig. 3. With l(T ) · (d, l) we denote the concatenation of
l(T ) and (d, l). Index t points to the next prefix node. By increasing t in line
3., we either obtain the next prefix node (which should be added to the tree to
maintain the prefix), or we walk out of the lowest prefix node’s sibling subtree.
In this latter case, the complete previous tree was copied, and we may continue
copying the next tree. In lines 8., 10., 15. and 17., we redefine the value of t as
indicated by our observations.

Theorem 1. Given an alphabet of symbols, Algorithm Enumerate enumerates
exactly one ordered normal form for each unordered node-labeled tree that can be
constructed using this alphabet.

Proof. This follows from the lemmas. ut

The overhead of this procedure is small. A datastructure is needed which
efficiently stores the pre-order string and allows for a quick lookup of the right-
most path in the tree that is represented by the pre-order string. The additional
constraints on rightmost path expansions can be checked in constant time. This
shows that the problem of enumerating unordered trees is not much more com-
plex than the problem of enumerating ordered trees.
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Fig. 4. To make sure children are mapped injectively, a bipartite matching problem
has to be solved between the sets of children. If G(v, w) is solvable, we store pointers
between the mapping (v, w) and the mappings between the children of v and w.

3 Tree counting

In the previous section we introduced an algorithm which enumerates all un-
ordered pattern trees. In practice, this is impossible as the number of unordered
trees is infinite given an alphabet of labels. A frequency criterion is used to stop
further expansion of a tree. If a tree occurs less frequently than a certain prede-
fined threshold in a large data tree, it is not expanded further, as every tree that
could be constructed subsequently can only be less frequent. As the overhead of
the enumeration technique is minimal, the performance of the algorithm largely
depends on the speed with which the (in)frequency of a tree is determined.

We will first define the frequency of a pattern tree T . A node v in a pattern
tree T can be mapped to a node w in a data tree iff v has the same label as w
and there is an injective mapping from the children of v to the children of w.
The frequency of a tree T is the number of nodes in the data tree to which the
root of T can be mapped. Other frequency criteria built on partitioning can be
determined in similar ways.

An easy — but not very efficient way — of determining the frequency is to
determine for each pattern tree anew how many times it can be mapped to a
data tree. An O(nm1.5) algorithm (with n the number of nodes in the pattern
tree and m the number of nodes in the data tree) exists for this task, as given
in [4]. We take this algorithm as starting point for our counting strategy.

The first step of our algorithm is to determine for each label all locations
in the database at which this label occurs. Those labels which fail to meet the
predefined frequency criterion, are removed from further consideration.

An important task of the tree mapping algorithm is to determine that there
is an injective mapping from ‘pattern children’ to ‘database children’. Assume
that a node v in a pattern tree and a node w with the same label in a data tree
are given, and that each child of v can be mapped to one or more children of
w, then the algorithm still has to make sure that an injective mapping can be
obtained. The situation is clarified in Fig. 4. The mappings between children of
v and children of w constitute a bipartite graph; to determine whether there is
an injective mapping is a problem known as the maximum bipartite matching
problem. The most efficient algorithm for this task has complexity O(|E|

√
|V |),

where E is the set of edges in the bipartite graph and V is the set of vertices.
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Algorithm Update
Input: a tree T in normal form, its associated mappings, and an expansion (d, l).
Output: an expanded tree T in which the mappings have been updated.

1. Let v be the node at depth d− 1 on the rightmost path of the pattern tree.
2. Add a node v′ at depth d with label l
3. for all m ∈ Map(v) do
4. Let w be the node in the data tree to which m maps
5. k1, k2 := number of children of w (respectively v) with label l
6. if k1 − k2 ≥ 0 then
7. for all children w′ of w with label l do
8. Add to Map(v′) a mapping from v′ to w′

9. else Remove Mappings(m)

Procedure Remove Mappings
Input: a mapping m from a node v in T to a node w in a data tree
Output: a tree in which m is removed and the mappings of all nodes which are

a child of the rightmost path are updated accordingly.

10. Let m′ be parent(m), if v is not the root
11. Remove Mappings Below(m)
12. if v is not the root of T then
13. Let G be the (new) bipartite graph matching problem associated with m′

14. if G has no bipartite matching then Remove Mappings(m′)

Procedure Remove Mappings Below
Input: a mapping m from a node v in T to a node w in a data tree
Output: a tree in which m is removed and the mappings of all nodes which are

below v and are child of the rightmost path are updated accordingly.

15. for all children v′ of v not on the rightmost path of T do
16. for all m′ ∈ Map(v′, m) do Remove m′ from Map(v′)
17. Let v′ be the child of v on the rightmost path of T
18. for all m′ ∈ Map(v′, m) do Remove Mappings Below ( m′ )
19. Remove m from Map(v)

Fig. 5. An algorithm for updating the datastructure that is associated to a pattern
tree T .

With G(v, w) we denote the bipartite graph that is involved in the determination
of the injective child mapping of v to w. This graph contains all children of v
and w, as well as all the mappings between these children. A node v can be
mapped to a node w in the data tree iff there is an associated G(v, w) for which
a bipartite matching can be computed that maps each child of v to a different
child of w.

The datastructure that is used by our counting algorithm has the following
invariant property. Given a pattern tree, with each node v ′ that is a child of a
node v on the rightmost path, we store exactly those mappings that are included
in some solvable bipartite graph G(v, w) that belongs to a mapping stored in the
parent v; furthermore, we maintain pointers between each mapping of v ′ and the
mapping in the parent to which this mapping is associated. For the root node
we store all possible mappings to the data tree.
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Fig. 6. Example of tree mappings, before and after expansion with v5 = (2, A).

The algorithm in Fig. 5 describes how the invariant is maintained when a
tree T is expanded with a node (d, l). From the set of mappings of the parent,
after this update, we can determine the frequency of the expanded tree.

In this algorithm, we use the following notation. With parent(v ′) we denote
the parent of a node v′ in a tree; Map(v) denotes all mappings stored for a given
node v in the pattern tree. Given a node v′ and a mapping m ∈Map(parent(v′)),
with Map(v′,m) we denote those mappings in Map(v′) which have a pointer to
mapping m. If m is a mapping from v′ to w′, with parent(m) we denote the
mapping from the parent of v′ to the parent of w′.

We will briefly discuss some elements of the algorithm and illustrate these
using the example of Fig. 6. In line 5.-6. we use the observation that a new
node v′ (in the example, v5) can be mapped to every node which has the same
label l (in the example, w4, w6 and w9). In general, given a mapping (v → w) ∈
Map(parent(v′)), the siblings of the new node could be mapped injectively to the
children of w in the old situation. If the number of children of w with label l is
larger than the number of children of v with label l, the added node can always be
mapped to one of those additional nodes to solve the bipartite matching G(v, w).
If the number of children in the data tree is insufficient, such as in the example
for v4 → w10, the bipartite matching problem G(v, w) can no longer be solved
and the mapping associated to that matching problem must be removed. This
mapping is in its turn part of some other matching problem of its parent node
(in the example, G(v1, w7)). The parent’s bipartite matching may no longer be
solvable either. Therefore, it is necessary to recursively check that the matching
problem for that ancestor node can still be solved (line 9.).

If some bipartite matching problem can no longer be solved, the correspond-
ing mapping is removed. This mapping may have pointers to some mappings
in the children (v1 → w7 has pointers to v2 → w8, v4 → w8 and v4 → w10);
according to the definition of the invariant, these child mappings should also be
removed, which is done by the Remove Mapping Below procedure.

The advantage of the invariant is that the number of (active) child mappings
is kept very small. Still all those mappings are updated which are later required
to determine the frequency of expanded trees. For this reason the procedure is
also restricted to the rightmost path; the bipartite matching of other subtrees is
not required to recompute all matchings after rightmost path expansion.

We propose to compute the frequent trees by traversing the enumeration tree
in a depth-first fashion. The disadvantage of such a strategy is that it is diffi-
cult to apply some pruning strategies that are frequently used in Apriori-like

okada
63



10

algorithms. The advantage is that the memory demand is much smaller; it is
sufficient to store the mappings of the current tree only, together with informa-
tion for undoing the removal of mappings when the enumeration backtracks over
an expansion. For the latter purpose, with every expansion, we store a list of
all the mappings that have been removed by that expansion. As every mapping
can only be removed once, one can easily see that once a mapping is added to
the pattern tree in line 8., information about this mapping is not removed from
memory before the enumeration backtracks over the expansion to which this
mapping belongs. The memory requirement of the algorithm is therefore still
quite large: if n is the number of nodes in the largest frequent pattern tree, and
m is the length of longest mapping list, the memory demand is of order O(nm).
In practice, of course, the memory footprint is much lower as large trees are not
very frequent in most databases.

4 Conclusions and future research

In this paper we introduced an algorithm for mining frequent unordered induced
subtrees. It extends the enumeration technique that was introduced in [1] and [6]
for ordered subtrees. We showed that the enumeration of unordered subtrees is
not much more difficult than the enumeration of ordered trees. The evaluation
of unordered trees turns out to be more complex, from space as well as time
complexity point of view. We propose to reduce the memory demand by a depth-
first enumeration strategy, but this turns some pruning strategies difficult.

We envision many directions for future research. First of all, the validity of
our approach should be verified experimentally. One can imagine several small
optimizations to our algorithm which have not been discussed here; for example,
one could also compute all solutions to a bipartite matching problem in stead
of only computing one. Furthermore, we are also interested in ways to efficiently
combine unordered trees with ordered trees to obtain a similar algorithm as the
algorithm of Wang and Liu [5]; we are also interested in an algorithm for mining
frequent unordered embedded subtrees.
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Abstract. Recently, kernel methods have become a popular tool for ma-
chine learning and data mining. As most ‘real-world’ data is structured,
research in kernel methods has begun investigating kernels for various
kinds of structured data. One of the most widely used tools for modeling
structured data are graphs. In this paper we study the trade-off between
expressivity and efficiency of graph kernels. First, we motivate the need
for this discussion by showing that fully general graph kernels can not
even be approximated efficiently. We also discuss generalizations of graph
kernels defined in literature and show that they are either not positive
definite or not very useful. Finally, we propose a new graph kernel based
on subtree patterns. We argue that while a little more computationally
expensive, this kernel is more expressive than kernels based on walks.

1 Introduction

Support vector machines [1] are among the most successful recent developments
within the machine learning community. Along with some other learning al-
gorithms they form the class of kernel methods [10]. The computational attract-
iveness of kernel methods is due to the fact that they can be applied in high
dimensional feature spaces without suffering from the high cost of explicitly
computing the feature map. This is possible by using a positive definite kernel
k on any set X . For such k : X ×X → R it is known that a map φ : X → H into
a Hilbert space H exists, such that k(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ X .

Kernel methods have so far successfully been applied to various tasks in
attribute-value learning. Much ‘real-world’ data, however, is structured – there
is no natural representation of the instances of the learning problem as a tuple
of constants. In computer science graphs are a widely used tool for modeling
structured data. They can be used, for example, as a representation for molecules.

Unfortunately, due to the powerful expressiveness of graphs, defining appro-
priate kernel functions for graphs has proven difficult. In order to control the
complexity of such kernels, one line of existing research has concentrated on
special kinds of graphs, in particular, trees [2] or strings [11, 9] which results
in efficient kernels, but loses most of the power of general graphs. Others [4, 7]
have investigated efficient kernels for general graphs based on particular kinds of
walks, which captures more, but still far from all of the structure of the graph.
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More recently [5] answered the questions whether it is possible to define
kernels that take the entire structure of graphs into account. While those kernels
can be defined, computing them is hard. For that reason, alternative graph
kernels based on common walks are investigated that, for example, allow for
gaps in the label sequences corresponding to the walks.

In this paper we show several other results concerning graph kernels. Com-
plete graph kernels are those graph kernels that distinguish between two graphs
if and only if they are not isomorphic. It is known that computing complete
graph kernels is at least as hard as deciding whether two graphs are isomorphic.
In this paper we will show that even approximating k with a constant bound
on the approximation-error is as hard as deciding whether two graphs are iso-
morphic. Also we review the basic ideas of previous work on graph kernels and
show that these ideas can not directly be generalized to more expressive graph
kernels. We show this by demonstrating that straight-forward generalizations
do either lead to non positive definite graph kernels or to trivial feature spaces.
These results motivate the search for other, more expressive graph kernels.

The remainder of this paper is structured as follows: In Section 2 we review
some basic definitions. In Section 3 we show that complete graph kernels can
not be efficient. In Section 4 we discuss a general framework for graph kernels
based on common subgraphs, and discuss consequences of generalizing previ-
ously studied graph kernels. In Section 5 we propose a new instantiation of this
framework, a graph kernel that uses the count of subtrees as features. Finally,
in Section 6 we give conclusions and directions for further work.

2 Graphs

We first review a few basic definitions and introduce some notations that will be
used in the sequel of this paper. For a more in-depth discussion of graphs and
related concepts the reader is referred to [3, 8].

Labeled directed graphs Generally, a graph G is described by a finite set
of vertices V, a finite set of edges E . Therefore, a graph is commonly denoted
G(V, E). For labeled graphs there is additionally a set of labels L along with a
function label assigning a label to each edge and vertex. For unlabeled graphs,
we will assume label(v) has the same value for all vertices. We will denote the
space of all graphs with G. We will sometimes assume some enumeration of the
vertices and labels in a graph, i.e., V = {νi}n

i=1 where n = |V| and L = {`r}r∈N
1. For undirected graphs, each edge is a set containing two vertices. For directed
graphs without parallel edges each edge is a tuple consisting of the initial and
terminal vertex of the edge E ⊆ V×V. Edges (v, v) in a directed graph are called
loops.

1 While `1 will be used to always denote the same label, l1 is a variable that can take
different values, e.g., `1, `2, . . .. The same holds for vertex ν1 and variable v1.
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Some special graphs, relevant for the description of graph kernels are walks,
paths, cycles, trees and forests. A walk2 w of a graph G(V, E) is a sequence of
vertices w = v1, v2, . . . vn+1; vi ∈ V such that (vi, vi+1) ∈ E . The length of the
walk is equal to the number of edges in this sequence, i.e., n in the above case.
A path is a walk in which vi 6= vj ⇔ i 6= j. A cycle is a path with (vn+1, v1) ∈ E .

A graph G = (V, E) is called connected if there is a walk between any two
vertices in the following graph: (V, E ∪ {(u, v) : (v, u) ∈ E}) For a graph G =
(V(G), E(G)), we denote by G[V∗] the subgraph induced by the set of vertices
V∗ ⊆ V(G), that is G[V∗] = (V∗, {(u, v) ∈ E(G) : u, v ∈ V∗}). A subgraph of G
is a graph H = (V(H), E(H)) with V(H) ⊆ V(G) and E(H) ⊆ E(G[V(H)]). A
graph is acyclic if no subgraph of a graph is a cycle. A subforest is an acyclic
subgraph; a subtree is an connected subforest. We denote the set of all graphs
by G.

A graph is isomorphic to another graph if there is an edge (and label) pre-
serving bijection between all vertices in one graphs and all vertices in the other
graph. A graph is homomorphic to another graph if there is an edge (and label)
preserving surjection between all vertices in one graphs and all vertices in the
other graph.

We also need to define some functions describing the neighborhood of a vertex
v in a graph G(V, E): δ+(v) = {u : (v, u) ∈ E} and δ−(v) = {u : (u, v) ∈ E}.
Here, |δ+(v)| is called the outdegree of a vertex and |δ−(v)| the indegree.

Product Graphs Product graphs [6] are a very interesting tool in discrete
mathematics. The four most important graph products are the Cartesian, the
strong, the direct, and the lexicographic product. While the most fundamental
one is the Cartesian graph product, in our context the direct graph product is
the most important ones.

Usually, graph products are defined on unlabeled graphs. However, in many
real-world machine learning problems it could be important to be able to deal
with labeled graphs. Here is the definition of the direct product graph of two
labeled graphs as given in [5]

We denote the direct product of two graphs G1 = (V1, E1), G2 = (V2, E2) by
G1 ×G2. The vertex and edge set of the direct product are respectively defined
as:

V(G1 ×G2) = {(v1, v2) ∈ V1 × V2 : (label(v1) = label(v2))}
E(G1 ×G2) = {((u1, u2), (v1, v2)) ∈ V2(G1 ×G2) :

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ (label(u1, v1) = label(u2, v2))}

A vertex (edge) in graph G1×G2 has the same label as the corresponding vertices
(edges) in G1 and G2. The graphs G1, G2 are called the factors of G1 ×G2.

2 What we call ‘walk’ is sometimes called an ‘edge progression’.
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3 Complete Graph Kernels

Given some set, there are many possible ways to define positive definite kernels
on it. The optimal choice not only depends on the structure of the data but
also on the concept class and the data itself. The concept class is the class of all
relevant concepts. The concept that is used to determine the class of examples
belongs to the concept class but is unknown to the learning system. There exists a
wide range of learning theory results putting bounds on the number of examples
needed to learn certain concept classes assuming that a kernel evaluation can be
performed in unit time. However, for graphs this is not evident. In this section,
we show this by proving that kernels that approximate kernels that map graphs
on separated points in feature space, are necessarily hard to compute. First,
we need to define positive definite kernel, complete graph kernel, and distance
induced by a kernel. A thorough discussion on kernels and kernel based learning
is given in [10].

Positive Definite Kernel Let X be a set. A symmetric function k : X×X → R is a
positive definite kernel on X if, for all n ∈ Z+, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ R,
it follows that

∑
i,j∈{1,...,n} ci cj k(xi, xj) ≥ 0.

Complete Kernel Let Φ : G → H be a map from this set into a Hilbert space H.
Furthermore, let k : G × G → R be such that 〈Φ(G), Φ(G′)〉 = k(G,G′). If Φ is ,
k is called a complete graph kernel.

Induced Distance Let k : X ×X → R be a positive definite kernel on any set X
and let x, y ∈ X . Then, dk(x, y) =

√
k(x, x)− 2k(x, y) + k(y, y) is the distance

induced by k. Note that for the map φ : X → H such that 〈φ(x), φ(y)〉 = k(x, y)
for all x, y, it holds that dk(x, y) = ‖φ(x) − φ(y)‖. If k is complete, dk is a
distance, otherwise dk is a pseudo-distance.

A proposition similar to the following result has been presented in [5]

Proposition 1. Let k : G × G → R be a complete graph kernel. If there is
an algorithm such that the time needed to compute k(G1, G2) for any graphs
G1(V1, E1), G2(V2, E2) ∈ G is bounded by a function f(|V1|, |E1|, |V2|, |E2|), then
there is an algorithm that decides whether two graphs G1 and G2 are isomorphic
and runs in time O(f(|V1|, |E1|, |V2|, |E2|)).

Proof. Let φ be the map corresponding to the complete kernel k. As φ is injective,

k(G,G)− 2k(G,G′) + k(G′, G′) = 〈φ(G)− φ(G′), φ(G)− φ(G′)〉 = 0

if and only if G, G′ are isomorphic. Hence, to decide whether G1 and G2 are
isomorphic, it is sufficient to evaluate the three kernel expressions k(G1, G1),
k(G1, G2) and k(G2, G2) and do a simple addition, which can clearly be done in
time O(f(|V1|, |E1|, |V2|, |E2|)) ut
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As deciding graph isomorphism is known to be hard and the previous theorem
shows that evaluating a complete kernel is equally hard, one can conclude that
no efficiently computable complete kernel on G exists. We can even prove a
stronger result: it is impossible to define an efficiently computable function that
approximates closely a complete kernel.

Proposition 2. Let k : G × G → R be a complete graph kernel such that for
any two non-isomorphic graphs G1 and G2, dk(G1, G2) ≥ d. Let k′ be a function
that approximates k such that ∀x, y : |k(x, y) − k′(x, y)| < d/8. Then, if there
is an algorithm such that the time needed to compute K(G1, G2) for any graphs
G1, G2 ∈ G is bounded by a function f(|V1|, |E1|, |V2|, |E2|), then there is an
algorithm that decides whether two graphs G1 and G2 are isomorphic and runs
in time O(f(|V1|, |E1|, |V2|, |E2|)).

Proof. Assume that such a k′ exists. Then, we could for any two graphs G1 and
G2 compute dk′(G1, G2) in time O(f(|V1|, |E1|, |V2|, |E2|)). We then have

dk′(G1, G2)− dk(G1, G2)

=
(
k′(x, x)− 2k′(x, y) + k′(y, y)

)− (
k(x, x)− 2k(x, y) + k(y, y)

)

< d/2.

Therefore, it is sufficient to compare dk′(G1, G2) to d/2 to decide whether the
graphs are isomorphic or not: if dk′(G1, G2) is smaller than d/2, dk(G1, G2) can
not be larger than d and the graph are isomorphic while if it is larger than d/2,
the distance induced by k between the graphs can not be zero. ut

This theorem says in fact that there is no efficiently computable function that
approximates a complete kernel sufficiently well to be able to distinguish between
near (in feature space) but non-isomorphic graphs. Apart from the hardness of
graph isomorphism, one can apply other computational complexity results on
graphs to kernels. E.g. one can not expect to be able to define graphs kernels
to learn efficiently concepts which are known to be hard to compute (such as
containing subgraphs).

4 Graph Kernels based on Common Subgraphs

In this section we first briefly introduce the general idea behind previous ap-
proaches to define efficient graph kernels. Then we present you results indicating
that straight-forward generalizations of these ideas do not result in positive def-
inite functions. This motivates our search for other graph kernels, presented in
the next section.

We will consider only those subgraphs that do not contain isolated vertices.
To be able to give different weights to different sizes of subgraphs we assume a
sequence λ0, λ1, . . . of weights with λi > 0.
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4.1 General Approach

The general idea of graph kernels defined so far is to measure common sub-
graphs of two graphs. Conceptually, the feature map φ of the graph kernel k
with k(G,G′) = 〈φ(G), φ(G′)〉 has one feature φh for every graph h from some
given set H.

The graph kernel mentioned in the previous section can then be described
by:

Φh(G) =
√

λ|E(h)|
∣∣∣{g is subgraph of G : h is isomorphic to g}

∣∣∣ (1)

As computing this kernel is NP-hard, alternative kernels are based on homo-
morphism

φh(G) =
√

λ|E(h)|
∣∣∣{g is subgraph of G : h is homomorphic to g}

∣∣∣ (2)

4.2 Common Walks

In [4, 7, 5] kernels are considered where H is the set of paths. The kernel between
two graphs can then efficiently be computed as a matrix power series of the
adjacency matrix of their direct product graph. This principle can be formulated
as follows:

fH(G,G′) =
∑

h∈H

λ|E(h)|
∣∣∣{g is subgraph of G×G′ : h ' g}

∣∣∣ (3)

To be precise, not all kernels considered in [4, 7, 5] fit directly in this framework.
This is because for some kernels the cardinality of the set of walks is replaced by
the probability of observing a random walk with a label sequence correspond-
ing to this walk; for other kernels only some particular labels along the walks
are compared and not all. Both modifications are, however, not conceptually
different from this framework.

The computation of fH does not necessarily require to check graph isomorph-
ism, as the summation can be over all subgraphs of G × G′ that satisfy some
property. That property must be the characteristic property of H. When count-
ing common walks (H is the set of walks) fH is a positive definite kernel function
corresponding to the inner product under the map φh, h ∈ H [5]. For appropriate
weight sequences fH can be computed in cubic time.

4.3 Common Paths, Trees, and Forests

In this section we consider functions fH where H is some set of acyclic graphs,
either all paths, all trees, or all forests. We call these functions a subpath, subtree,
and subforest function, respectively.

Proposition 3. The subpath, subtree, and subforest functions are not positive
definite.
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Proof. Let G be a single loop and let G′ be a graph with two vertices and a single
edge connecting these vertices. Then G × G and G are isomorphic, as well as
G′×G′, G×G′, and G′. In G the only path is the trivial path consisting of just
one vertex. G′ has one edge, so it has three paths: two trivial ones consisting of
one vertex and one consisting of the two vertices and the edge connecting them.
Hence,

k(G,G)− 2k(G,G′) + k(G′, G′) = λ0 − 2(2λ0 + λ1) + 2λ0 + λ1 = −λ0 − λ1 < 0

ut

4.4 Common Graphs

In this section we consider the function fH where H is the set of all graphs and
µ is the set cardinality. We call this function the subgraph function.

Proposition 4. The subgraph function is positive definite.

Proof. Let G,G′ be any two graphs. The number of subgraphs of their product
graph is 2|E(G×G′)|. The number of edges of a given label in the product graph
is simply the product of the number of edges of that label in each factor. As
kernels are closed under products and as ax, a ≥ 1 can be written as the limit of
a polynomial series with positive coefficients, the subgraph function is positive
definite. ut
Although the subgraph function is positive definite, it is not likely to be useful
in practice, as it does not take the structure of the graphs into account

5 Tree-structured Pattern Kernels

In section 3, we argued that generally usable graph kernels can not even be
approximated efficiently. All graph kernels investigated in literature so far are
conceptually based on some measure of the walks in two graphs that have some
or all labels in common. Computation of these kernels is made possible by using
the direct product graph and computing a closed form of the limit of a matrix
power series of the adjacency matrix of the product graph. For such kernels, one
can easily find pairs of graphs which are mapped to the same point in feature
space, e.g. Figure 1 shows two directed graphs and Figure 2 shows two undirected
graphs whose images in the Hilbert space are the same. Such graphs can not be
distinguished by any kernel machine using a walk-based graph kernel.

In section 4 we then showed that functions based on counting paths, trees,
and forests in the product graph are not positive definite. In this section we will
push the limit of efficiently computable graph kernels by describing a method
for counting the number of common subtree patterns in two graphs. Roughly,
the subtree patterns we consider are rooted subgraphs such that there is a tree
homomorphic to the subgraph, and the number of distinct children of both root
nodes in the pattern and tree are the same.
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Formally, let G(V, E) ∈ G be a graph. If r ∈ V, then r is a subtree pattern
of G rooted at r. If t1, t2, . . . , tn are subtree patterns of G rooted at respect-
ively r1, r2, . . . , rn (with all ri different), and if (r, r1), (r, r2), . . . (r, rn) ∈ E , then
r(t1, t2, . . . , tn) is a subtree pattern of G rooted at r. r is also called the parent
node of the nodes ri of the nodes ri of the subtree pattern.

a

b

c

a

a

b

c

Fig. 1. Directed graphs mapped to the same point in walks feature space

a

a

a b

b

b a

a

a

a
b
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b
b
b
ba

a
a

b b b
a a

G2G1

Fig. 2. Undirected graphs mapped to the same point in walks feature space

Every subtree pattern has a tree-structured signature just as every walk had
a signature represented by the sequence of labels of the vertices in the sequence.
So for each possible subtree pattern signature, we associate a feature whose value
is the number of times that a subtree of that signature occurs in the graph.

Let G1(V1, E1), G2(V2, E2) ∈ G be two graphs. We will denote the weighted
count of pairs of subtrees of the same signature of height less than or equal to h,
with the first one rooted at r ∈ V(G1) and the second one rooted at s ∈ V(G2)
with kr,s,h. Now, if h = 1 and label(s) = label(r) we have kr,s,h = 1. If h = 1
and label(s) 6= label(r) we have kr,s,h = 0. For h > 1, one can compute kr,s,h as
follows:

– Let Mr,s be the set of all matchings from δ+(r) to δ+(s), i.e.

Mr,s =
{

R ⊆ δ+(r)× δ+(s) | (∀(a, b), (c, d) ∈ R : a = c ⇔ b = d
)

∧ (∀(a, b) ∈ R : label(a) = label(b)
)}
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– Compute
kr,s,h = λrλs

∑

R∈Mr,s

∏

(r′,s′)∈R

kr′,s′,h−1

Here, λr and λs are positive values smaller than 1 to cause higher trees to
have a smaller weight in the overall sum.

Given two graphs G1(V1, E1), G2(V2, E2) ∈ G, we can then define the subtree-
pattern kernel of G1 and G2 by

ktree,h(G1, G2) =
∑

r∈V1

∑

s∈V2

kr,s,h.

Proposition 5. ktree,h is a positive definite kernel.

Proof. The feature space induced by this kernel contains one feature for each
subtree pattern signature. The value of such a feature is the sum of the weights of
all its occurrences in the graph. An occurrence of a subtree pattern r(t1, . . . , tn)
has weight weight(r(t1, . . . , tn)) = λr

∑
i weight(ti) and the weight of a trivial

subtree pattern r is 1. We have defined the feature space explicitely, ktree,h is
now equal to the inner product in this space and hence ktree,h is positive definite.

ut
One can also define

ktree(G1, G2) = lim
h→∞

ktree,h(G1, G2).

For suitable λr, λs (i.e. causing the sum to remain bounded for increasing values
of h) this limit will converge. Since ktree,h is already a kernel for every h, in prac-
tice ktree,h can be used and for sufficiently large h it will be a good approximation
of ktree.

The graphs in Figure 2 are not equal for this kernel ktree. The feature space
of ktree includes the feature space with all walks, but also includes features such
as the subtree pattern a(b, b, b) which has value 0 for G1 and value 1 for G2.
The computational complexity is higher than the complexity for kernels based
on walks. This is mainly due to the summation over Mr,s. However, if the graph
is not too connected or if there is sufficient diversity in the labels of the vertices,
this extra cost will be fairly low.

6 Conclusions and Further Work

In this paper we discussed several aspects of graph kernels and the trade-off
between efficiency and expressivity. We improved a result that shows that no
efficiently complete graph kernels exist. We presented a framework for kernels
based on common subgraphs and argued that many existing kernels fit into this
framework. We argued that kernels using linear patterns to define feature will not
suffice in all practical cases and proposed a tree-pattern based graph kernel which
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has a strictly larger feature space. We also pointed out that some kernels that
count weighted patterns which do not allow vertices to repeat (walks, subtrees
and forests) in the product graph are not positive definite and often hard to
compute and that using all subgraphs (without weighting) results in a kernel
which is not very useful.

There are several possible directions for further work. First, there exists much
work on learnability results for related representation languages such as induct-
ive logic programming. Adapting these results to use graphs as representations
could give more insight on efficiently learnable classes of graph concepts and in
particular provide hints at classes for which efficient kernels could exist. Second,
as many different kernels on graphs are proposed, it would be useful to compare
them in more detail. One possible direction is to empirically evaluate on which
kind of applications which kernel performs better.
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The increasing relevance of the Web as a mean for sharing information
around the world has posed several new interesting issues to the computer scien-
ce research community. The traditional approaches to information handling are
ineffective in the new context: they are mainly devoted to the management of
highly structured information, like relational databases, whereas Web data are
semistructured and encoded using different formats (HTML, XML, and so on).

In such context, we address the problem of clustering structurally similar
Web documents, and in particular XML documents. This problem has several
interesting applications, related, e.g., to the management of Web data. For exam-
ple, the detection of structural similarities among documents can help in solving
the problem of recognizing different sources providing the same kind of informa-
tion [2], or in the structural analysis of a Web site.

In this paper we propose a novel methodology for clustering XML docu-
ments, focusing on the notion of XML cluster representative, i.e., a prototype
XML document subsuming the most relevant features of the set of XML docu-
ments within the cluster. In particular, we devise a technique to compute a
representative of a set of XML documents, which is capable of capturing all the
structural specificities within the represented documents. To this purpose, the
notion of structural matching between the trees associated to two XML docu-
ments is exploited. Structural matchings allow to both identify the structural
similarities between two XML documents and to build a representative around
these similarities. We also investigate the exploitation of merging and pruning
strategies for refining XML document trees into effective cluster representatives.

1 Preliminaries

Depending on the specific application domain, the notion of tree matching can
be defined in a variety of ways. Here it is exploited in the context of XML trees,
i.e. trees resulting from a hierarchy of XML tags, to the purpose of highlighting
common skeletons. Given two XML documents, a common skeleton is a sub-
structure belonging to both the XML trees: precisely, it is defined as a collection
of tags which all exhibit the same name, depth level and parent node. Some
definitions at the basis of our approach are provided next.

A tree t is a tuple t = 〈rt, Vt, Et, δt〉 where Vt ⊆ IN is the set of nodes,
Et ⊆ Vt × Vt is the set of edges, rt is the root node of t, and δt : Vt 7→ Σ is a
? This work was partially supported by the National Research Council project SP2:

“Strumenti, ambienti e applicazioni innovative per la società dell’informazione -
Legge 449/97-99”.
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node labelling function where Σ is an alphabet of node labels. In addition, we
denote by deptht(v) the depth of a node v in t.

Definition 1 (meaningful matching). Given two XML trees t1 and t2, and
v ∈ Vt1 , w ∈ Vt2 , a meaningful matching (henceforth called m(v, w)) holds if
the following conditions inductively hold: v = rt1 , w = rt2 and δt1(v) = δt2(w);
otherwise, δt1(v) = δt2(w), deptht1(v) = deptht2(w) and m(a, b) holds, where
(a, v) ∈ Et1 and (b, w) ∈ Et2 .

Note that, in general, multiple matchings may occur when a node in a tree
has a meaningful matching with more than one node of a different tree. Formally,
given two trees t1 and t2, a node v ∈ Vt1 has a multiple matching if ∃w′, w′′ ∈ Vt2

s. t. both m(v, w′) and m(v, w′′) hold.
The definition below introduces a criterion exploited to overcome the multiple

matching problem. The idea is avoiding to take into account those meaningful
matchings which are not effectively indicative of strong structural similarities.
The relevance of a meaningful matching is evaluated through the weighting func-
tion wm : V × V 7→ IN, for a set V of nodes.

Definition 2 (match weighting function). Given two nodes v ∈ Vt1 and
w ∈ Vt2 , the weight associated with m(v, w) is computed as: wm(v, w) = 0 if
δt1(v) 6= δt2(w), wm(v, w) = 1 + sumv,w otherwise.

where sumv,w is recursively defined as the sum of the relevance degrees asso-
ciated to the best matchings between the descendants of v and w. Function wm

weights the prominence of a meaningful matching in such a way that the higher
its value, the more relevant the matching itself.

The set of meaningful matchings represent the common paths between two
trees. A tree containing only these common paths is defined as a matching tree,
since it resembles the intersection of the original trees.

Definition 3 (matching tree). A tree t is a matching tree (henceforth called
tm) for two trees t1, t2 if ∀v ∈ Vt, ∃!v1 ∈ Vt1 and ∃!v2 ∈ Vt2 s. t. m(v1, v2) holds.
A matching tree tm is optimal if its size is maximal, i.e., if for each matching
tree um 6= tm, we have |tm| ≥ |um|.

2 Problem Statement

Suitable clustering algorithms for semistructured documents were extensively
studied in the current literature [5]. Hierarchical methods are widely known as
providing clusters with a better quality, especially for text datasets [1, 6]. Our
XRep algorithm is an adaptation of the agglomerative hierarchical algorithm to
our problem. Initially each XML tree is placed in its own cluster, and a matrix
containing the pair-wise tree distance is computed. Next, the algorithm walks
into an iterative step in which the least dissimilar clusters (evaluated on the
basis of their cluster representatives) are merged. As a consequence, the distance
matrix is updated to reflect this merge operation. The overall process is stopped
when an optimal partition is reached.

We address the problem of clustering XML documents in a parametric way
w.r.t. the concepts of distance measure and cluster representative. Viewed in
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this respect, we need to investigate the conditions for the optimality of a cluster
representative, once a suitable distance measure is given.

The notion of proximity, between two patterns drawn from the same feature
space, is essential to the definition of a cluster. We mainly focus on suitably
adapting a distance measure originally conceived to deal with strings, namely
Edit distance. Edit distance between trees is computed as the minimum-cost
sequence of operations required to convert one given tree to another [7, 4].

Intuitively, a representative of a cluster of XML documents is an XML docu-
ment which effectively reflects all the structural contents within the cluster. The
core of the XRep algorithm is the computation of the XML cluster representa-
tive through three main steps: i) (Tree matching) first, the information related
to all meaningful matchings between the XML trees are suitably combined in
order to build an optimal matching tree; ii) (Tree merging) the optimal mat-
ching tree is successively grown into a merge tree by adding to it the uncommon
substructures within the original trees; iii) (Pruning of merge tree) finally, the
merge tree is pruned according to a strategy which aims at removing the least
frequent nodes: this allows to obtain a representative as an XML tree.

3 Cluster Representative

3.1 XML tree matching
We propose a dynamic-programming algorithm for building the optimal match-
ing tree from two XML trees. The idea is that, at each level, all meaningful
matchings are detected and weighted (by means of function wm). Weights take
into account the relevance of meaningful matchings and, as a consequence, allow
to overcome multiple matchings. The bottom-up approach to the construction of
the optimal matching tree consists of two steps: i) matching matrix computation,
ii) removal of multiple matchings.

Matching matrix computation. Given two XML trees t1 = 〈rt1 , Vt1 , Et1 , δt1〉 and
t2 = 〈rt2 , Vt2 , Et2 , δt2〉, all meaningful matchings among nodes at the same level
within both trees are captured by a matching matrix Mm. Mm has |Vt1 | rows
and |Vt2 | columns. For each level k, a sub-matrix Mm(k) collects the meaningful
matchings among the sets of |Vt1(k)| and |Vt2(k)| nodes at level k respectively
belonging to t1 and t2. The computation starts from the last level of the XML
trees and iterates until the roots rt1 and rt2 are reached. At the generic iteration,
it verifies if there are nodes, at the same level in both t1 and t2, which exhibit
meaningful matchings. In these cases, the weight corresponding to each such
meaningful matching becomes the value of the entry associated to the matching
nodes.

Removal of multiple matchings. A multiple matching is denoted by the pre-
sence of at least two non-zero values in some row and/or column of Mm. A
node vi ∈ Vt1 , which corresponds to the i-th row in Mm, can match with a
number of nodes belonging to t2. Let Jvi

= {j1, . . . , jh} be the set of column
indexes corresponding to these nodes. Formally, vi exhibits a multiple matching
if |Jvi | > 1. Multiple matchings can be eliminated by simply choosing the best
matching for each node vi ∈ Vt1 : such a matching corresponds to the column
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index j∗vi
= arg maxj1,...,jh

{Mm(i, j1), . . . ,Mm(i, jh)}. This technique allows the
construction of a marking vector Vm = {j∗v1

, . . . , j∗vn
}, whose generic i-th entry

indicates the best matching node in t2 for vi (both nodes are at the same level).
An optimal matching tree is efficiently built from vector Vm: it suffices that

all nodes vi ∈ Vt1 such that Vm[i] = −1 are removed from t1. These nodes exhibit
no meaningful matchings and, as a consequence, are not taken into account.

3.2 Merging of XML trees

This step aims at building an approximation of the actual cluster representative.
Starting from t2 and the above vector Vm, a merge tree t1,2 is suitably formed in
order to include nodes which reveal to be either common or uncommon to both
trees t1 and t2: each node is taken into account at most once. Given a node vi in
t1 with no meaningful matchings, if the parent node of vi matches with a node
wj ∈ Vt2 , then vi appears in t1,2 as a child of wj .

Both the techniques for building an optimal matching tree and a merge tree
are conceived to work with only two XML documents. We show that this does
not determine a loss of generality, since merge trees are associative and, as a
consequence, can be associated even to clusters consisting of more than two
XML documents. A proof of the associativity of the merging process w.r.t. Edit
distance is illustrated in [3].

3.3 Representative computation

Pruning is at the basis of the refining process which turns a merge tree into an
effective cluster representative. Precisely, leaf nodes are inspected for removal
from the merge tree one at a time. Any performed cut minimizes the distance
between the refined merge tree and the original document trees in the cluster.
The removal of a leaf node from the refined merge tree is reiterated until its
distance from the original cluster trees cannot be further decreased. The pruning
technique for building a cluster representative is parametric w.r.t. the notion of
distance.
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Abstract. Finding related Web pages is important for assisting users’ informa-
tion retrieval from the Web. In general, related Web pages are densely con-
nected with each other by hyperlinks, and graph mining approaches are appli-
cable for discovering such clusters of related Web pages, which are called Web 
communities. Among the research of Web structure mining based on the graph 
structure of hyperlinks, discovery of Web communities is one of the important 
research topics. In this paper, recent approaches for the discovery of Web 
communities are introduced, and requirements for graph mining algorithms 
suitable for the discovery of Web communities are discussed. 

1   Introduction 

At the time the author is writing this paper, Google indexes more than 3 billion 
Web pages in the world. The goal of Web mining is to utilize this huge Web network. 
The Web can be regarded as a graph if we regard each Web page as a vertex and each 
hyperlink as an edge. Web structure mining is based on the graph structure of hyper-
links, and is one of the important research topics that graph mining algorithms are 
really required. There are several goals for Web structure mining, such as ranking 
important Web pages [4][8], discovery of Web communities [3][5], analysis of the 
Web graph from macroscopic point of view [2], and modeling and simulating the 
process of Web graph generation [1]. Among these, discovery of Web communities 
(clusters of related Web pages whose hyperlinks are densely connected) is important 
in order to assist users’ information retrieval from the Web. However, applying graph 
mining algorithms to the Web is not simple since it is huge and is growing. There are 
some requirements for graph mining algorithms in order to handle Web data, such as 
partiality of input data and robustness for missing data. 

This paper introduces some methods for the discovery of Web communities as an 
application of graph mining in order to clarify their characteristics. Requirements to 
graph mining algorithms for handling Web data are also discussed. 
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2   Methods for Discovering Web Communities 

There are two main approaches for the discovery of Web communities; 1) search of 
fixed-size graph structure from Web snapshot data, and 2) decomposition of given 
Web graph into densely connected components. Both are explained below, followed 
by our own approach. 

2.1   Search of fixed-size graph structure 

For example, Web pages of aircraft enthusiasts often have hyperlinks to the com-
panies of aircraft manufacturers. Hyperlinks of these pages (enthusiasts and compa-
nies) compose a bipartite graph and all of these pages are closely related. Kumar’s 
trawling [5] is based on an assumption that Web pages constituting a bipartite graph 
are regarded as an indication of Web community sharing common interest. In his 
experiments, bipartite graph structures are enumerated by applying a priori algorithm. 
In addition to that, randomly selected samples are investigated by manual inspection. 
Its results show that most of the pages constituting a bipartite graph are actually 
closely related. 

2.2   Decomposition of Web graph into densely connected components  

In general, hyperlinks of related Web pages are densely connected with each other 
rather than others. Flake [3] applies maximum-flow minimum-cut theorem of network 
flow theory in order to discover densely connected components, which can be re-
garded as Web communities. His approach is often explained by the following meta-
phor: if edges are water pipes and vertices are pipe junctions, the maximum flow prob-
lem tells us how much water we can move from one junction to another, and the 
maximum flow is proved to be identical to minimum cut. Therefore, if you know the 
maximum flow between two points, you also know what edges you would have to 
remove to completely disconnect the same two points, which are called cut set. The 
approach accepts some Web pages as seeds of target Web community, and finds cut 
set that disconnect a component containing given seed pages.  

2.3   Search of bipartite graphs based on data acquired from a search engine  

A search engine can be regarded as a resource for Web data acquisition. The author 
proposed a method for discovering Web communities from the data acquired from a 
search engine [6][7]. Our method is similar to Kumar’s one since both search bipartite 
graph structures. However, they are different in the following points: 

1. Search of bipartite graphs from partial Web data without using Web snapshot 
data 

Previous approaches of Web community discovery require relatively large-scale 
Web snapshot data. However, collecting Web data and maintaining them is not an 
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easy task. It is pointed out that the difference between Web snapshot data used for 
mining and actual Web data may cause the discovery of outdated Web communities 
[5]. Major search engines contain much updated Web data and they can be used for 
Web data acquisition in order to achieve relatively new Web communities. Some of 
the search engines allow users to access contained data, such as Google API. 

2. Acquisition of backlinks from a search engine in order to follow hyperlink 
backward 

Although most users use search engines in order to find Web pages about some 
keywords, a search engine enables us to follow hyperlinks backward. By attaching 
some option (such as “link:”) to input URL, Web pages that contain hyperlinks to 
input URLs can be searched, which are called backlinks. Since hyperlinks to related 
Web pages often co-occur, backlink search enables us to find related Web pages. 

 

Fig. 1. Outline of our method for discovering Web communities 

Fig.1 shows the outline of our method for Web community discovery. Our goal is 
to discover a bipartite graph containing some given URLs. At first, some URLs re-
garding specific topic (such as baseball or Macintosh) are given as initial centers, and 
fans which co-refer all of the centers are searched by backlink search on a search 
engine (step 1). HTML files of the searched fans are acquired through the internet, 
and all the hyperlinks contained in the files are extracted. The hyperlinks are sorted in 
the order of frequency. Since hyperlinks to related Web pages often co-occur, the top-
ranking hyperlink of the sorted result is expected to point to a page whose contents are 
closely related to the contents of centers. Therefore, the URL of the page is added as a 
new member of centers (step 2). By using newly generated centers, the above steps are 
repeated in order to find more centers (step 3). 

Although this method is quite simple, it succeeds in discovering many related Web 
pages. Experimental results show that 19.8 related centers are actually discovered 
from given 5 seed URLs on average [7]. 
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3   Web Community Discovery as an Application of Graph Mining 

As an application of graph mining algorithms, the following requirements should be 
considered for the discovery of Web communities:  

1. Partiality of input data: Nobody can collect data of the whole Web. Algo-
rithms for the discovery of Web communities need to handle partial Web data. 
Suitable strategies for collecting Web data have to be considered.  

2. Quantities of input data: On the contrary to the above, Web data are still huge 
even though they are partial. Capabilities for handling large-scale data are re-
quired for Web community discovery methods.  

3. Qualities of input data: Depending on the network conditions, some of the 
Web pages may not be accessible. Robustness for missing or noisy data is 
necessary for Web community discovery.  

4. Various structure of Web communities: Although Kumar regards a bipartite 
graph as a characteristic structure for Web communities, there might be other 
characteristic graph structures.  Search algorithms for specific graph structure, 
such as clique or bipartite graph, are important. However, they are not enough 
for discovering real complicated Web communities.  

5. Post processing of discovered Web communities: When fixed graph structure 
is searched from given Web data, many overlapping graphs will be found. 
Post processing of discovered Web communities such as clustering or labeling 
is necessary to assist users’ understanding.  

6. Interactive discovery of Web communities: Discovered Web communities are 
not always satisfactory to users since there are several criteria for “related-
ness” among Web pages. It is preferable if users can control the strategies for 
searching Web communities by giving examples or negative examples. 
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