
Expressivity versus Efficiency of Graph Kernels

Jan Ramon1 and Thomas Gärtner2,3

1 Department of Computer Science, K.U.Leuven, Belgium
2 Fraunhofer Institut Autonome Intelligente Systeme, Germany

3 Department of Computer Science III, University of Bonn, Germany
jan.ramon@cs.kuleuven.ac.be

Thomas.Gaertner@ais.fraunhofer.de

Abstract. Recently, kernel methods have become a popular tool for ma-
chine learning and data mining. As most ‘real-world’ data is structured,
research in kernel methods has begun investigating kernels for various
kinds of structured data. One of the most widely used tools for modeling
structured data are graphs. In this paper we study the trade-off between
expressivity and efficiency of graph kernels. First, we motivate the need
for this discussion by showing that fully general graph kernels can not
even be approximated efficiently. We also discuss generalizations of graph
kernels defined in literature and show that they are either not positive
definite or not very useful. Finally, we propose a new graph kernel based
on subtree patterns. We argue that while a little more computationally
expensive, this kernel is more expressive than kernels based on walks.

1 Introduction

Support vector machines [1] are among the most successful recent developments
within the machine learning community. Along with some other learning al-
gorithms they form the class of kernel methods [10]. The computational attract-
iveness of kernel methods is due to the fact that they can be applied in high
dimensional feature spaces without suffering from the high cost of explicitly
computing the feature map. This is possible by using a positive definite kernel
k on any set X . For such k : X ×X → R it is known that a map φ : X → H into
a Hilbert space H exists, such that k(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ X .

Kernel methods have so far successfully been applied to various tasks in
attribute-value learning. Much ‘real-world’ data, however, is structured – there
is no natural representation of the instances of the learning problem as a tuple
of constants. In computer science graphs are a widely used tool for modeling
structured data. They can be used, for example, as a representation for molecules.

Unfortunately, due to the powerful expressiveness of graphs, defining appro-
priate kernel functions for graphs has proven difficult. In order to control the
complexity of such kernels, one line of existing research has concentrated on
special kinds of graphs, in particular, trees [2] or strings [11, 9] which results
in efficient kernels, but loses most of the power of general graphs. Others [4, 7]
have investigated efficient kernels for general graphs based on particular kinds of
walks, which captures more, but still far from all of the structure of the graph.

More recently [5] answered the questions whether it is possible to define
kernels that take the entire structure of graphs into account. While those kernels
can be defined, computing them is hard. For that reason, alternative graph
kernels based on common walks are investigated that, for example, allow for
gaps in the label sequences corresponding to the walks.

In this paper we show several other results concerning graph kernels. Com-
plete graph kernels are those graph kernels that distinguish between two graphs
if and only if they are not isomorphic. It is known that computing complete
graph kernels is at least as hard as deciding whether two graphs are isomorphic.
In this paper we will show that even approximating k with a constant bound
on the approximation-error is as hard as deciding whether two graphs are iso-
morphic. Also we review the basic ideas of previous work on graph kernels and
show that these ideas can not directly be generalized to more expressive graph
kernels. We show this by demonstrating that straight-forward generalizations
do either lead to non positive definite graph kernels or to trivial feature spaces.
These results motivate the search for other, more expressive graph kernels.

The remainder of this paper is structured as follows: In Section 2 we review
some basic definitions. In Section 3 we show that complete graph kernels can
not be efficient. In Section 4 we discuss a general framework for graph kernels
based on common subgraphs, and discuss consequences of generalizing previ-
ously studied graph kernels. In Section 5 we propose a new instantiation of this
framework, a graph kernel that uses the count of subtrees as features. Finally,
in Section 6 we give conclusions and directions for further work.

2 Graphs

We first review a few basic definitions and introduce some notations that will be
used in the sequel of this paper. For a more in-depth discussion of graphs and
related concepts the reader is referred to [3, 8].

Labeled directed graphs Generally, a graph G is described by a finite set
of vertices V, a finite set of edges E . Therefore, a graph is commonly denoted
G(V, E). For labeled graphs there is additionally a set of labels L along with a
function label assigning a label to each edge and vertex. For unlabeled graphs,
we will assume label(v) has the same value for all vertices. We will denote the
space of all graphs with G. We will sometimes assume some enumeration of the
vertices and labels in a graph, i.e., V = {νi}n

i=1 where n = |V| and L = {`r}r∈N
1. For undirected graphs, each edge is a set containing two vertices. For directed
graphs without parallel edges each edge is a tuple consisting of the initial and
terminal vertex of the edge E ⊆ V×V. Edges (v, v) in a directed graph are called
loops.

1 While `1 will be used to always denote the same label, l1 is a variable that can take
different values, e.g., `1, `2, The same holds for vertex ν1 and variable v1.

Some special graphs, relevant for the description of graph kernels are walks,
paths, cycles, trees and forests. A walk2 w of a graph G(V, E) is a sequence of
vertices w = v1, v2, . . . vn+1; vi ∈ V such that (vi, vi+1) ∈ E . The length of the
walk is equal to the number of edges in this sequence, i.e., n in the above case.
A path is a walk in which vi 6= vj ⇔ i 6= j. A cycle is a path with (vn+1, v1) ∈ E .

A graph G = (V, E) is called connected if there is a walk between any two
vertices in the following graph: (V, E ∪ {(u, v) : (v, u) ∈ E}) For a graph G =
(V(G), E(G)), we denote by G[V∗] the subgraph induced by the set of vertices
V∗ ⊆ V(G), that is G[V∗] = (V∗, {(u, v) ∈ E(G) : u, v ∈ V∗}). A subgraph of G
is a graph H = (V(H), E(H)) with V(H) ⊆ V(G) and E(H) ⊆ E(G[V(H)]). A
graph is acyclic if no subgraph of a graph is a cycle. A subforest is an acyclic
subgraph; a subtree is an connected subforest. We denote the set of all graphs
by G.

A graph is isomorphic to another graph if there is an edge (and label) pre-
serving bijection between all vertices in one graphs and all vertices in the other
graph. A graph is homomorphic to another graph if there is an edge (and label)
preserving surjection between all vertices in one graphs and all vertices in the
other graph.

We also need to define some functions describing the neighborhood of a vertex
v in a graph G(V, E): δ+(v) = {u : (v, u) ∈ E} and δ−(v) = {u : (u, v) ∈ E}.
Here, |δ+(v)| is called the outdegree of a vertex and |δ−(v)| the indegree.

Product Graphs Product graphs [6] are a very interesting tool in discrete
mathematics. The four most important graph products are the Cartesian, the
strong, the direct, and the lexicographic product. While the most fundamental
one is the Cartesian graph product, in our context the direct graph product is
the most important ones.

Usually, graph products are defined on unlabeled graphs. However, in many
real-world machine learning problems it could be important to be able to deal
with labeled graphs. Here is the definition of the direct product graph of two
labeled graphs as given in [5]

We denote the direct product of two graphs G1 = (V1, E1), G2 = (V2, E2) by
G1 ×G2. The vertex and edge set of the direct product are respectively defined
as:

V(G1 ×G2) = {(v1, v2) ∈ V1 × V2 : (label(v1) = label(v2))}
E(G1 ×G2) = {((u1, u2), (v1, v2)) ∈ V2(G1 ×G2) :

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ (label(u1, v1) = label(u2, v2))}

A vertex (edge) in graph G1×G2 has the same label as the corresponding vertices
(edges) in G1 and G2. The graphs G1, G2 are called the factors of G1 ×G2.

2 What we call ‘walk’ is sometimes called an ‘edge progression’.

3 Complete Graph Kernels

Given some set, there are many possible ways to define positive definite kernels
on it. The optimal choice not only depends on the structure of the data but
also on the concept class and the data itself. The concept class is the class of all
relevant concepts. The concept that is used to determine the class of examples
belongs to the concept class but is unknown to the learning system. There exists a
wide range of learning theory results putting bounds on the number of examples
needed to learn certain concept classes assuming that a kernel evaluation can be
performed in unit time. However, for graphs this is not evident. In this section,
we show this by proving that kernels that approximate kernels that map graphs
on separated points in feature space, are necessarily hard to compute. First,
we need to define positive definite kernel, complete graph kernel, and distance
induced by a kernel. A thorough discussion on kernels and kernel based learning
is given in [10].

Positive Definite Kernel Let X be a set. A symmetric function k : X×X → R is a
positive definite kernel on X if, for all n ∈ Z+, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ R,
it follows that

∑
i,j∈{1,...,n} ci cj k(xi, xj) ≥ 0.

Complete Kernel Let Φ : G → H be a map from this set into a Hilbert space H.
Furthermore, let k : G × G → R be such that 〈Φ(G), Φ(G′)〉 = k(G,G′). If Φ is ,
k is called a complete graph kernel.

Induced Distance Let k : X ×X → R be a positive definite kernel on any set X
and let x, y ∈ X . Then, dk(x, y) =

√
k(x, x)− 2k(x, y) + k(y, y) is the distance

induced by k. Note that for the map φ : X → H such that 〈φ(x), φ(y)〉 = k(x, y)
for all x, y, it holds that dk(x, y) = ‖φ(x) − φ(y)‖. If k is complete, dk is a
distance, otherwise dk is a pseudo-distance.

A proposition similar to the following result has been presented in [5]

Proposition 1. Let k : G × G → R be a complete graph kernel. If there is
an algorithm such that the time needed to compute k(G1, G2) for any graphs
G1(V1, E1), G2(V2, E2) ∈ G is bounded by a function f(|V1|, |E1|, |V2|, |E2|), then
there is an algorithm that decides whether two graphs G1 and G2 are isomorphic
and runs in time O(f(|V1|, |E1|, |V2|, |E2|)).

Proof. Let φ be the map corresponding to the complete kernel k. As φ is injective,

k(G,G)− 2k(G,G′) + k(G′, G′) = 〈φ(G)− φ(G′), φ(G)− φ(G′)〉 = 0

if and only if G, G′ are isomorphic. Hence, to decide whether G1 and G2 are
isomorphic, it is sufficient to evaluate the three kernel expressions k(G1, G1),
k(G1, G2) and k(G2, G2) and do a simple addition, which can clearly be done in
time O(f(|V1|, |E1|, |V2|, |E2|)) ut

As deciding graph isomorphism is known to be hard and the previous theorem
shows that evaluating a complete kernel is equally hard, one can conclude that
no efficiently computable complete kernel on G exists. We can even prove a
stronger result: it is impossible to define an efficiently computable function that
approximates closely a complete kernel.

Proposition 2. Let k : G × G → R be a complete graph kernel such that for
any two non-isomorphic graphs G1 and G2, dk(G1, G2) ≥ d. Let k′ be a function
that approximates k such that ∀x, y : |k(x, y) − k′(x, y)| < d/8. Then, if there
is an algorithm such that the time needed to compute K(G1, G2) for any graphs
G1, G2 ∈ G is bounded by a function f(|V1|, |E1|, |V2|, |E2|), then there is an
algorithm that decides whether two graphs G1 and G2 are isomorphic and runs
in time O(f(|V1|, |E1|, |V2|, |E2|)).

Proof. Assume that such a k′ exists. Then, we could for any two graphs G1 and
G2 compute dk′(G1, G2) in time O(f(|V1|, |E1|, |V2|, |E2|)). We then have

dk′(G1, G2)− dk(G1, G2)

=
(
k′(x, x)− 2k′(x, y) + k′(y, y)

)− (
k(x, x)− 2k(x, y) + k(y, y)

)

< d/2.

Therefore, it is sufficient to compare dk′(G1, G2) to d/2 to decide whether the
graphs are isomorphic or not: if dk′(G1, G2) is smaller than d/2, dk(G1, G2) can
not be larger than d and the graph are isomorphic while if it is larger than d/2,
the distance induced by k between the graphs can not be zero. ut

This theorem says in fact that there is no efficiently computable function that
approximates a complete kernel sufficiently well to be able to distinguish between
near (in feature space) but non-isomorphic graphs. Apart from the hardness of
graph isomorphism, one can apply other computational complexity results on
graphs to kernels. E.g. one can not expect to be able to define graphs kernels
to learn efficiently concepts which are known to be hard to compute (such as
containing subgraphs).

4 Graph Kernels based on Common Subgraphs

In this section we first briefly introduce the general idea behind previous ap-
proaches to define efficient graph kernels. Then we present you results indicating
that straight-forward generalizations of these ideas do not result in positive def-
inite functions. This motivates our search for other graph kernels, presented in
the next section.

We will consider only those subgraphs that do not contain isolated vertices.
To be able to give different weights to different sizes of subgraphs we assume a
sequence λ0, λ1, . . . of weights with λi > 0.

4.1 General Approach

The general idea of graph kernels defined so far is to measure common sub-
graphs of two graphs. Conceptually, the feature map φ of the graph kernel k
with k(G,G′) = 〈φ(G), φ(G′)〉 has one feature φh for every graph h from some
given set H.

The graph kernel mentioned in the previous section can then be described
by:

Φh(G) =
√

λ|E(h)|
∣∣∣{g is subgraph of G : h is isomorphic to g}

∣∣∣ (1)

As computing this kernel is NP-hard, alternative kernels are based on homo-
morphism

φh(G) =
√

λ|E(h)|
∣∣∣{g is subgraph of G : h is homomorphic to g}

∣∣∣ (2)

4.2 Common Walks

In [4, 7, 5] kernels are considered where H is the set of paths. The kernel between
two graphs can then efficiently be computed as a matrix power series of the
adjacency matrix of their direct product graph. This principle can be formulated
as follows:

fH(G,G′) =
∑

h∈H

λ|E(h)|
∣∣∣{g is subgraph of G×G′ : h ' g}

∣∣∣ (3)

To be precise, not all kernels considered in [4, 7, 5] fit directly in this framework.
This is because for some kernels the cardinality of the set of walks is replaced by
the probability of observing a random walk with a label sequence correspond-
ing to this walk; for other kernels only some particular labels along the walks
are compared and not all. Both modifications are, however, not conceptually
different from this framework.

The computation of fH does not necessarily require to check graph isomorph-
ism, as the summation can be over all subgraphs of G × G′ that satisfy some
property. That property must be the characteristic property of H. When count-
ing common walks (H is the set of walks) fH is a positive definite kernel function
corresponding to the inner product under the map φh, h ∈ H [5]. For appropriate
weight sequences fH can be computed in cubic time.

4.3 Common Paths, Trees, and Forests

In this section we consider functions fH where H is some set of acyclic graphs,
either all paths, all trees, or all forests. We call these functions a subpath, subtree,
and subforest function, respectively.

Proposition 3. The subpath, subtree, and subforest functions are not positive
definite.

Proof. Let G be a single loop and let G′ be a graph with two vertices and a single
edge connecting these vertices. Then G × G and G are isomorphic, as well as
G′×G′, G×G′, and G′. In G the only path is the trivial path consisting of just
one vertex. G′ has one edge, so it has three paths: two trivial ones consisting of
one vertex and one consisting of the two vertices and the edge connecting them.
Hence,

k(G,G)− 2k(G,G′) + k(G′, G′) = λ0 − 2(2λ0 + λ1) + 2λ0 + λ1 = −λ0 − λ1 < 0

ut

4.4 Common Graphs

In this section we consider the function fH where H is the set of all graphs and
µ is the set cardinality. We call this function the subgraph function.

Proposition 4. The subgraph function is positive definite.

Proof. Let G,G′ be any two graphs. The number of subgraphs of their product
graph is 2|E(G×G′)|. The number of edges of a given label in the product graph
is simply the product of the number of edges of that label in each factor. As
kernels are closed under products and as ax, a ≥ 1 can be written as the limit of
a polynomial series with positive coefficients, the subgraph function is positive
definite. ut
Although the subgraph function is positive definite, it is not likely to be useful
in practice, as it does not take the structure of the graphs into account

5 Tree-structured Pattern Kernels

In section 3, we argued that generally usable graph kernels can not even be
approximated efficiently. All graph kernels investigated in literature so far are
conceptually based on some measure of the walks in two graphs that have some
or all labels in common. Computation of these kernels is made possible by using
the direct product graph and computing a closed form of the limit of a matrix
power series of the adjacency matrix of the product graph. For such kernels, one
can easily find pairs of graphs which are mapped to the same point in feature
space, e.g. Figure 1 shows two directed graphs and Figure 2 shows two undirected
graphs whose images in the Hilbert space are the same. Such graphs can not be
distinguished by any kernel machine using a walk-based graph kernel.

In section 4 we then showed that functions based on counting paths, trees,
and forests in the product graph are not positive definite. In this section we will
push the limit of efficiently computable graph kernels by describing a method
for counting the number of common subtree patterns in two graphs. Roughly,
the subtree patterns we consider are rooted subgraphs such that there is a tree
homomorphic to the subgraph, and the number of distinct children of both root
nodes in the pattern and tree are the same.

Formally, let G(V, E) ∈ G be a graph. If r ∈ V, then r is a subtree pattern
of G rooted at r. If t1, t2, . . . , tn are subtree patterns of G rooted at respect-
ively r1, r2, . . . , rn (with all ri different), and if (r, r1), (r, r2), . . . (r, rn) ∈ E , then
r(t1, t2, . . . , tn) is a subtree pattern of G rooted at r. r is also called the parent
node of the nodes ri of the nodes ri of the subtree pattern.

a

b

c

a

a

b

c

Fig. 1. Directed graphs mapped to the same point in walks feature space

a

a

a b

b

b a

a

a

a
b
b
b
b
b
ba

a
a

b b b
a a

G2G1

Fig. 2. Undirected graphs mapped to the same point in walks feature space

Every subtree pattern has a tree-structured signature just as every walk had
a signature represented by the sequence of labels of the vertices in the sequence.
So for each possible subtree pattern signature, we associate a feature whose value
is the number of times that a subtree of that signature occurs in the graph.

Let G1(V1, E1), G2(V2, E2) ∈ G be two graphs. We will denote the weighted
count of pairs of subtrees of the same signature of height less than or equal to h,
with the first one rooted at r ∈ V(G1) and the second one rooted at s ∈ V(G2)
with kr,s,h. Now, if h = 1 and label(s) = label(r) we have kr,s,h = 1. If h = 1
and label(s) 6= label(r) we have kr,s,h = 0. For h > 1, one can compute kr,s,h as
follows:

– Let Mr,s be the set of all matchings from δ+(r) to δ+(s), i.e.

Mr,s =
{

R ⊆ δ+(r)× δ+(s) | (∀(a, b), (c, d) ∈ R : a = c ⇔ b = d
)

∧ (∀(a, b) ∈ R : label(a) = label(b)
)}

– Compute
kr,s,h = λrλs

∑

R∈Mr,s

∏

(r′,s′)∈R

kr′,s′,h−1

Here, λr and λs are positive values smaller than 1 to cause higher trees to
have a smaller weight in the overall sum.

Given two graphs G1(V1, E1), G2(V2, E2) ∈ G, we can then define the subtree-
pattern kernel of G1 and G2 by

ktree,h(G1, G2) =
∑

r∈V1

∑

s∈V2

kr,s,h.

Proposition 5. ktree,h is a positive definite kernel.

Proof. The feature space induced by this kernel contains one feature for each
subtree pattern signature. The value of such a feature is the sum of the weights of
all its occurrences in the graph. An occurrence of a subtree pattern r(t1, . . . , tn)
has weight weight(r(t1, . . . , tn)) = λr

∑
i weight(ti) and the weight of a trivial

subtree pattern r is 1. We have defined the feature space explicitely, ktree,h is
now equal to the inner product in this space and hence ktree,h is positive definite.

ut
One can also define

ktree(G1, G2) = lim
h→∞

ktree,h(G1, G2).

For suitable λr, λs (i.e. causing the sum to remain bounded for increasing values
of h) this limit will converge. Since ktree,h is already a kernel for every h, in prac-
tice ktree,h can be used and for sufficiently large h it will be a good approximation
of ktree.

The graphs in Figure 2 are not equal for this kernel ktree. The feature space
of ktree includes the feature space with all walks, but also includes features such
as the subtree pattern a(b, b, b) which has value 0 for G1 and value 1 for G2.
The computational complexity is higher than the complexity for kernels based
on walks. This is mainly due to the summation over Mr,s. However, if the graph
is not too connected or if there is sufficient diversity in the labels of the vertices,
this extra cost will be fairly low.

6 Conclusions and Further Work

In this paper we discussed several aspects of graph kernels and the trade-off
between efficiency and expressivity. We improved a result that shows that no
efficiently complete graph kernels exist. We presented a framework for kernels
based on common subgraphs and argued that many existing kernels fit into this
framework. We argued that kernels using linear patterns to define feature will not
suffice in all practical cases and proposed a tree-pattern based graph kernel which

has a strictly larger feature space. We also pointed out that some kernels that
count weighted patterns which do not allow vertices to repeat (walks, subtrees
and forests) in the product graph are not positive definite and often hard to
compute and that using all subgraphs (without weighting) results in a kernel
which is not very useful.

There are several possible directions for further work. First, there exists much
work on learnability results for related representation languages such as induct-
ive logic programming. Adapting these results to use graphs as representations
could give more insight on efficiently learnable classes of graph concepts and in
particular provide hints at classes for which efficient kernels could exist. Second,
as many different kernels on graphs are proposed, it would be useful to compare
them in more detail. One possible direction is to empirically evaluate on which
kind of applications which kernel performs better.

Acknowledgments Jan Ramon is a post-doctoral fellow of the Katholieke Uni-
versiteit Leuven. Research supported in part by the EU Framework V project
(IST-1999-11495) Data Mining and Decision Support for Business Competitive-
ness: Solomon Virtual Enterprise and by the DFG project (WR 40/2-1) Hybride
Methoden und Systemarchitekturen für heterogene Informationsräume. The au-
thors thank Peter Flach, Tamás Horváth, Stefan Kramer and Stefan Wrobel.

References

1. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In David Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152. ACM Press, July
1992.

2. M. Collins and N. Duffy. Convolution kernels for natural language. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems, volume 14. MIT Press, 2002.

3. R. Diestel. Graph Theory. Springer-Verlag, 2000.
4. T. Gärtner. Exponential and geometric kernels for graphs. In NIPS Workshop on

Unreal Data: Principles of Modeling Nonvectorial Data, 2002.
5. T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and

efficient alternatives. In Proceedings of the 16th Annual Conference on Computa-
tional Learning Theory and the 7th Kernel Workshop, 2003.

6. W. Imrich and S. Klavžar. Product Graphs: Structure and Recognition. John Wiley,
2000.

7. H. Kashima and A. Inokuchi. Kernels for graph classification. In ICDM Workshop
on Active Mining, 2002.

8. B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer-Verlag, 2002.

9. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2, 2002.

10. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.
11. C. Watkins. Kernels from matching operations. Technical report, Department of

Computer Science, Royal Holloway, University of London, 1999.

