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Abstract. Data mining to derive frequent subgraphs from a dataset of
general graphs has high computational complexity because it includes the
explosively combinatorial search for candidate subgraphs and subgraph
isomorphism matching. Although some approaches have been proposed
to derive characteristic patters from graphs, they limit the graphs to be
searched within a specific class. In this paper, we propose an approach to
conduct a complete search of various classes of frequent subgraphs in a
massive dataset of labeled graphs within practical time, and discuss the
relation between the biases and diffusion kernels. The power of our ap-
proach comes from the algebraic representation of graphs, its associated
operations and well-organized bias constraints to limit the search space
efficiently. Its performance has been evaluated using real world datasets,
and the high scalability of our approach has been confirmed with respect
to the amount of data and the computation time.

1 Introduction

Graph mining which discovers characteristic subgraph patterns embedded in a
general graph dataset is an important problem having broad applications. This
problem is very difficult to solve in practical time because the search of candidate
frequent subgraphs is explosively combinatorial; and includes subgraph isomor-
phism matching which is known to be NP-complete. For example, WARMR
is a system to mine frequent subgraphs based on inductive logic programming
(ILP) [3]. It could derive all subgraphs consisting of only a few vertices within
tractable time under its application to a raw graph dataset without introducing
descriptions of higher level structures.

To alleviate the difficulty of the computation time, some other approaches
have introduced certain approximations. The most well known approximation is
to apply a greedy search as in SUBDUE [2] and GBI [14, 11]. However, they are
not very suitable to many applications requiring a complete search of the results.
Another approach is to limit the graphs to be searched within simpler classes.
The levelwise version space algorithm proposed by De Raedt et al. limits the
search space to frequent paths embedded in the graphs for the tractable compu-
tation [4]. However, this is also weak for certain application areas to require the
mining of subgraphs but not paths.



2 Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda

To overcome these limitations, some approaches which achieve to mine a com-
plete set of frequent patterns from a massive dataset of graphs or ordered trees
have been proposed. Although each method can efficiently discover the patterns,
the searched patterns are limited within a specific class. For example, TreeM-
iner [15] and FREQT [1] can quickly discover all frequent patterns from ordered
trees or non-ordered trees. However, they can not be applied to more complex
structures such as labeled graphs. On the other hand, AGM [5], FSG [10], and
gSpan [13] can mine frequent patterns from a set of graphs. However, they can
not efficiently discover frequent patterns of paths and/or trees, because their
data structures and their search operations are not dedicated to path and/or
tree structure mining.

In this paper, we propose a generic and efficient framework to mine various
classes of substructures. By introducing bias for each class of substructure, e.g.,
connected subgraphs, path structures, ordered subtrees, and general subtrees,
to the principle of AGM, the complete search of the frequent substructures of
each class is achieved. We call this new framework Biased Apriori-based Graph
Mining (B-AGM). We discuss the relation between the biases for frequent sub-
graph mining and diffusion kernels. We evaluate its performance in terms of the
required computation time under various amounts of real world datasets.

2 Problem Definitions and AGM

We use the basic principle of AGM algorithm in our extended framework. By
applying some specific biases to the algorithm, our B-AGM discovers frequent
subgraphs of various classes. In this section, we explain the problem definitions
and the AGM framework. In the next section we propose the biases which enable
the graph mining of various classes.

2.1 Graph structured data

A graph G consists of 4 sets, the set of vertices V, the set of edges F, the set
of vertex labels Ly, and the set of edge labels Lg. When V|, E, Ly and Lg
are provided as V. = {vy,vs,..., 0}, E = {en = (v;,v5)|vi,v; € V}, Ly =
{lb(v;)|Vv; € V}, and Lg = {lb(en)|Ver € FE}, respectively, the graph G is
mathematically defined as G = (V, F, Ly, Lg), where multiple vertices can have
an identical label, and multiple edges also can have. For the convenience of
description, the tuples of G are represented as V(G), E(G), Lv (G), and Lg(G),
respectively. The number of vertices, |V(G)]|, is called the size of the graph G.
A graph structure can be expressed by using an adjacency matrix. Let num(lb(ey))

and num(lb(v;)) be natural numbers assigned to an edge label lb(ep) and a
vertex label Ib(v;), respectively for calculation efficiency. Given a graph G =
(V,E,Lv,Lg), (i, j)-element z; ; of an adjacency matrix X}, representing the
graph G of size k is defined as follows.

- {num(lb(eh)) if en = (vi,0;) € B(G)
A N i (vi,0,) ¢ B(G) ’
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where i,7 € {1,--+,k}. The vertex corresponding to the i-th row (i-th column)
of an adjacency matrix is called the i-th vertex. The graph structure represented
by an adjacency matrix X}, is denoted as G(Xy). The representation of the adja-
cency matrix on an identical graph differs depending on the assignment of rows
and columns to the vertices of the graph. To remove this ambiguity, a canonical
form of adjacency matrices representing an identical graph is introduced.

To mathematically define the canonical form of a graph and for the efficient
matrix handling, an adjacency matrix X is represented and processed in form
of the following code?.

code(Xy) = 1,921 329 3T1 4+ T—2 kER—1,k,

where it is a concatenation of (i, j)-element z; ;. Furthermore, the CODE in-
cluding the vertex labels is defined as

CODE(Xg) = num(lb(v1)) - - - num(lb(vi))code(Xy),

where it is a concatenation of num(lb(v;))s and code(Xy). The canonical form
of the adjacency matrices representing a graph is the unique matrix having the
maximum (minimum) CODE.

Given a set GD of graph structured data, the support sup(G;) of a subgraph
G, is defined as the ratio of the number of graphs including G to the total
number of graph data in the dataset G. The subgraph having the support
more than or equal to a specified minimum support is called a frequent subgraph.
A frequent subgraph of size k is called a frequent k-subgraph. When the dataset
of graph structured data and the minimum support are given as input, the data
mining of graph structure is to derive all frequent subgraphs in the dataset [6].

2.2 AGM algorithm

We proposed an approach named AGM (Apriori-based Graph Mining) algorithm
in which the knowledge representation and the search operations are highly ded-
icated to the graph structured data mining [5,7]. The AGM algorithm is so
generic that it can discover not only frequent connected subgraphs but also fre-
quent unconnected subgraphs. AGM framework derives all frequent subgraphs
based on the monotonic property of the support measure. Based on this property,
frequent subgraphs are derived stepwisely in ascending order of their sizes be-
ginning with frequent 1-subgraphs. Fig. 1 is the outline of the AGM algorithm.
First, a 1 x 1 adjacency matrix representing a vertex is generated for every
vertex label appearing in the dataset, and they are substituted for ;. Next,
the support of each candidate frequent subgraph is calculated by accessing the
database, and only the frequent subgraphs are retained in a set F;. Subsequently,
Generate-Candidate function generates the candidate frequent subgraphs of size
k + 1 from frequent k-subgraphs in Fj, and they are substituted for Cy1. This
process is repeated until C becomes empty. Finally, the complete set of frequent
subgraphs is provided.

® This definition can be expanded to directed graph [7].
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Generate-Candidate function consists of three parts, i.e., join operation, sub-
graph checking operation, and canonical form derivation. In join operation, ad-
Jacency matrices of the candidate frequent subgraphs of size k + 1 are generated
by joining two adjacency matrices of frequent k-subgraphs in Fj. Given two
adjacency matrices Xg and Yz in Fj, they are joinable if and only if all of the
following conditions are fulfilled.

Condition 1 X and Yy are identical except the k-th row and the k-th column,

€.,
_ Xk—l X1 _ Xk—l Y.
Xk_(xg 0>’Yk_<y2T 0 ,and
Ib(vi € V(G(Xk))) =1b(vi € V(G(Y2))), (i=1,-+,k—1).

Condition 2 X}, is the canonical form of G(X}). This avoids the redundant join.
Condition 3 CODE(Xy) > CODE(Yj) is fulfilled.*.
If X and Y} are joinable, their join operation is defined as follows.

X1 xp NAT
T
Zk+1 = X5 0 Zk k41 s

T
Yo Zrt1,x O

Ib(vi € V(G(Zr41))) = Ib(vi € V(G(X%))), (i=1,--+,k),and
b(vns1 € V(G(Zhs1))) = Ib(ox € V(G(%))).
X and Yy are called the first generator matrix and the second generator matrix
of Zj 41, respectively. Two elements 2, 41 and zg41 x of Z; 41 are not determined
by X and Yj. The possible graph structures for G(Zx41) are those wherein there
is a labeled edge or wherein there is no edge between k-th vertex and {k + 1}-
th vertex. Then, (|Lg(F)| + 1) adjacency matrices with zj x41 = zgy1x are
generated, where |Lg(FE)| is the number of edge labels. The adjacency matrix
generated under the above conditions is called a normal form.

For the necessary condition of G(Zk41) being a frequent subgraph, all in-
duced subgraphs of G(Zg41) must be frequent subgraphs. The application of
this condition reduces the candidates. This is done though subgraph checking
in G(Zg41) which is described in detail in the literature [6]. After generating
the matrices of candidate subgraphs, a database is accessed to calculate their
supports. However, the canonical form of these matrices must be identified to
collect all counts of the graph, since multiple normal form matrices can repre-
sent an identical graph. This is done through canonical form derivation which is
described in detail in the literature [5,7].

3 Extension to Mine Various Class Structures

The original AGM performs the complete mining of the frequent and general
subgraphs. However, a version of AGM contains a bias to derive the frequent

4 Tn the case that a canonical form is the minimum CODE,CODE(Xi) < CODE(Yx)
is fulfilled.
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// GD is a database consisting of graph structured data.
// Fr and Cj is a set of adjacency matrix of frequent and candidate k-graphs, resp.
// minsup is minimum support.
0) Main(G D, minsup){
1) i +{all adjacency matrices consisting of one vertex};
2) k1
3)  while(Cr # 0) {
4) Count(GD, Ck);
5) Fy < {ckx € Cx|sup(G(ck)) > minsup};
6) Crt1 « Generate-Candidate(Fy);
7) k+—k+1;

9) return Uk{fk € Fx|fx is canonical};
Fig. 1. Outline of Algorithm

induced subgraph only [5,7]. The induced subgraph of a graph G has a subset of
the vertices of G and the same edges between pairs of vertices as in G'. To limit
the search of the frequent subgraph within this class, the following bias has been
applied in the past work. When counting frequency of each candidate frequent
subgraph, AGM checks whether it is contained in each graph in a database as
an induced subgraph.

In the following subsection, we propose further biases which enable the graph
mining of various classes based on the AGM framework as depicted in Fig. 2.
We call this framework B-AGM. A bias for a specific class of the graph structure
consists of the dedicated definitions of the canonical form and the join opera-
tion. By choosing appropriate bias on the platform of the AGM framework, the
complete mining for the frequent subgraphs of the objective class we are seeking

for 1s defined.

frequent connected
subgraph frequent path

frequent ordered tree
frequent subgraph

frequent tree
graph connected path |lordered tree| tree .. bias
derivation|| graph derivation|| derivation|| derivation ||derivation| preorder
. numbering
Generate-Candidate Count ‘ normalize ‘ B-AGM ! A C A B AC
m‘subgrﬂph check ’7 icali ‘ ‘canomca.l coding A0 1 0 0 1 1
¢1r 0 1 1 0 O
I Al0O 1 0 0 0 O
convertible Blo 1 0 0 0o o
minimum support Graph O‘iderm input Al1 0 0 0 0 O
PP m c\1 0 0 0 0 0
Fig. 2. B-AGM Framework Fig. 3. Tree Coding Method

3.1 Bias for ordered subtree derivation

This bias derives frequent ordered trees included in a forest.
Canonical Form
The definition of canonical form is altered from the original. When the preorder
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natural numbers which are assigned to the vertices of an ordered tree are con-
sistent with the columns and rows of its adjacency matrix, the matrix is defined
as the canonical form of the ordered tree as shown in Fig. 3. This is because the
numbering of the preorder in the ordered tree uniquely specifies the topological
tree structure. Accordingly, the definition of the preorder tree represents the
canonical form. Under this definition, AGM can search only canonical form ma-
trices but not non-canonical form matrices. This extremely enhances the search
efficiency. Its proof is omitted due to the space limitation.

Join Operation

The original condition 1 and 2 are retained, and the following new condition 3
and an extra condition 4 are introduced.

Condition 3 In the case that G(Y%) is connected, code(Xy) < code(Yy) is ful-
filled.

Condition 4 G(X4) is a connected graph®.

4 Relation between Mining Biases and Diffusion Kernels

In this section, we discuss the relation between our biases for frequent subgraph
mining and diffusion kernels. Kernel-based algorithms are paid much attention
in the statistical learning community. Konder et. al introduced diffusion kernels
for direct use to learning algorithm which was used to quantifying the similarity
between vertices in a graph [9]. Diffusion process on a graph for discrete time is
modeled as follows. Heat or other substances on each vertex diffuse to its respec-
tive neighbors through the corresponding edges with time. Given an undirected
graph GG, a matrix to determine diffusion process is defined as

1 fori~j
Hij =4 —d; fori=j |,
0 otherwise

where d; 1s the degree of vertex ¢, and i ~ j means that there is an undirected
edge between i-th and j-th vertices. It is similar to an adjacency matrix. Consider
the random field obtained by attaching independent, zero mean variance o2
random variables Z;(0) to each vertex i. The random variables diffuse a fraction
a to the neighbor at discrete time steps t = 1,2, - - ; that is,

Zilt+1)=Zi(t)+ o Y (Z(t) - Zi(1)), (1)
JEViing

where V' is a set of vertixes of the graph. Assuming T'(t) = (1 + aH), Z(t) =
(Z1(t), -+, Z1v|(t))T can be written as Z(t) = T'(t)Z(0). An exponential kernel
K for a graph is defined as K = ¢’ The (i, j)-element of K is used to quan-
tifying a similarity between i-th and j-th vertices of a graph, which means if
structures of neighborhoods of two vertices are similar, quantities of diffusing
substances should also be similar after infinity time steps.

5 Other biases for connected graph, path, and general tree derivations and their cor-
responding experiments are described in [8].
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1/5
115 1/5
15 1/5
Initial state diffusion 1step latter, Final state

Fig. 4. Diffusion Process
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Fig. 5. Candidate Graph Generation

For sake of simplicity, we discuss a complete graph G. Eq. (1) is represented
as

Zt+ 1) =T+ aH)Z(t). (2)

Let G be a complete graph with five vertices, and one of them be filled with a
certain substance, i.e., Z1(0) = 1, and Z;(0) = 0 for ¢ = 2,3,4,5. If it comes to
1

equilibrium in one step, the value of a is ¢ according to Eq. (2). It is denoted

as Z(1) = [[ + +H]Z(0). Fig. 4 shows that the & of substance diffuses from a
vertex filled with the substance to another vertex not containing the substance
in one step, and the substance is at equilibrium.

On the other hand, our AGM mines frequent subgraphs in a stepwise manner
by expanding vertices. A bias to derive frequent subgraphs which are complete
graphs with no vertex and edge labels are defined as follows.

Canonical Form

All matrices generated by the following join operation are canonical forms.
Join Operation

The original condition 1 and 2 are retained, and the following new condition is
added. X =Y} and both z; 41 and 241 & of generated matrices are 1.

Iﬁiﬁal stéie
113

13 3

1/5
1/5 115

=)

1/5 1/5
4 step, Final state

Fig. 6. Diffusion Process (2)
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Adjacency matrices of candidate graphs are stepwisely generated as

1 0111

1011
1>:>X4: 1101 szz
0 1110

where the number of matrices in each size becomes 1. Assuming A is an adjacency
matrix of a complete graph G with no self loops, Eq. (2) is

=

01 0
X1:(0):>X2:(10>3X3:<1

=]
S I
e e
=N
O = = e

Zit+1) =4+ a(A-d)]Zt) = [(1 — ad))] + aAlZ(?). (3)
In the case of general diffusion, the substance diffuses to all adjacent vertices.
However, we assume that the substance diffuses to one of vertices not containing
the substance one by one as shown in Fig. 6. First, a vertex is filled with the
substance in the initial state as well as Fig. 4. Next, a vertex is added to the
vertex with the substance. Subsequently, the substance in the vertex diffuses to
the added vertex in the one step. The substance gradually diffuses to the other
vertexes. Finally, all of the vertices are filled with 1/5 of the substance. H, «,
and d; change with time in our case, although they are uniform in the general
case. Therefore, we rewrite Eq. (2) and (3) as

Zt+1) = [[+a)HO)ZE) = {1 — at)di(t)} + a)AD)]Z(2).  (4)

In concrete terms, a(t), d;(t) and A(¢) is denoted as

1 1 1 1
a(O) = 57 Oz(l) = g’ Oz(?) = Za 0(3) = 5; dl(o) = 1: dl(l) = 2; dZ(Q) = 3: di(?’) = 4;
01000 01100 01110 0111
10000 10100 10110 1011
A(O): 00000 ,A(l): 11000 ,A(Q): 11010 ,A(3): 1101
00000 00000 11100 1110
00000 00000 00000 1111
In general, a(t) = HLZ, d;(t) =t + 1. Hence, Eq. (4) for a complete graph is
1
VA 1) = ——[T+ A(#)]Z(t).
(t+1) = 51+ AD1Z() (5)

The substance diffuses to one of vertices not containing the substance one
by one in our case, although the substance diffuses to all adjacent vertices in
the case of general diffusion. Since to limit the search space to a specific class
of frequent subgraphs by a bias corresponds to constraining a matrix H in the
diffusion kernel, we can conclude that our biases for frequent subgraph mining
are related to diffusion kernels. There is a systematic regularity for the complete
graph, and furthermore such systematic regularities for other classes of graphs
may similarly exist. If Eq. (5) is generalized for the other classes of the graphs,
approximate subgraph matching instead of exact subgraph matching may be
able to be applied, when the support values of candidate graphs are calculated.
We will investigate other cases that derived subgraphs are not complete graphs
in our future plan.



Specific Biases for Mining Frequent Substructures 9

) § -+ TreeMiner
_— , o 1 —=—B-AGM

Pattern

computation time [sec]
8

0 : . s 4 :
minimum support [%]

Fig.7. Examples of Ordered Tree Fig.8. Minimum Support vs. Computa-

Data & Pattern tion Time

5 Experiment and Discussion

IBM PC 300PL with Windows 2000 was used for the experiments, with a Pen-
tium I11-667 MHz and 192 MB of main memory. Zaki presented experimental
results of substructure discovery from a set of logs files over 1 month at the RPI
computer science department’s web site [15]. After the preprocessing, the dataset
had 595,691 user browsing subtree with 13,361 unique labels (web pages). We
used the same data provided by Zaki on our experiment and recalculated with
the same machine to compare our approach with TreeMiner. TreeMiner can find
frequent patterns embedded in tree dataset. It is defined that pattern P discov-
ered by TreeMiner is embedded in tree data D if and only if two vertices in a
branch in P are on the same path from the root to a leaf in D. For example,
Fig. 7, an ordered tree in the right is embedded in the data. We used the same
definition in the comparison of the result to obtain equivalent result. The func-
tion to count frequency is changed to adjust to the definition of frequent patterns
of TreeMiner in B-AGM. Fig. 8 shows computation time for various minimum
support values. Fig. 8 shows that B-AGM is comparable to TreeMiner.

FSG [10], gSpan [13], MolFea [4], TreeMiner [15] and FREQT [1] take a
complete search strategy similarly to AGM. FREQT and TreeMiner require O(n)
memory to store tree data, where n is the number of vertices in the tree. Although
our approach requires O(n?) memory for the storage, FREQT and TreeMiner can
not be applied to graph mining problems. Our proposed method can conduct
a complete search of various classes of frequent subgraphs. The advantage of
our approach is very flexible and quickly adaptable for new classes of patterns
in graph mining. AGM with each bias can derive the complete result within
practical time for each class of problem respectively where the performance is
far faster than or comparable to the other approaches which are optimized within
a specific class [8]. This is because the representation of graphs and its associated
operations are well-organized and dedicated to the graph mining. Our method
is considered to be highly practical in many applications.

6 Conclusion

We proposed a generic framework for the data mining of graph structures. By
introducing additional biases, it can easily derive various types of frequent sub-
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structures. We evaluated its performance in terms of the required computation
time for the real world datasets. The wide cover on problem classes and the
computational efficiency which are superior to the other approaches have been
confirmed. We will investigate the relation between our biases for frequent sub-
graph mining and diffusion kernels in other cases that derived subgraphs are not
complete graphs in our future plan.
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