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Abstract. The product homomorphism method is a combinatorial tool that can
be used to develop polynomial PAC-learning algorithms in predicate logic. Using
the product homomorphism method, we show that a single nonrecursive definite
Horn clause is polynomially PAC-learnable if the background knowledge is a
function-free extensional database over a single binary predicate and the ground
atoms in the background knowledge form a unary partial function. That is, the
background knowledge corresponds to a directed graph, where each node has
outdegree at most 1. The proof is based on a detailed analysis of products and
homomorphisms of the class of digraphs corresponding to unary partial functions.

1 Introduction

Attribute-value languages are often not suitable for representing complex real-world
machine learning problems. Therefore, one of the research challenges in machine learn-
ing is to study learning in other representation languages. Among such approaches, in-
ductive logic programming (ILP) [8] is concerned with learning in predicate logic, in
particular, with learning logic programs.

The general ILP learning problem is computationally intractable. Therefore, one
of the challenging problems in ILP is to show positive and negative theoretical results
about the efficient learnability of different fragments of predicate logic in the formal
models of computational learning theory. Most of such positive results have been ob-
tained by restricting the hypothesis language. In particular, the most frequently used
restrictions aredeterminatenessand learning withconstant depth bound[5].

In contrast to these approaches, in this work we present a positive learnability re-
sult by restricting the background knowledge. We assume that there is a single binary
background predicateR, and that the groundR-atoms in the background knowledge
represent a unary partial function. This structural assumption implies that the back-
ground knowledge corresponds to a digraph where each vertex has outdegree at most
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1. To prove polynomial learnability for such family of learning problems in the PAC
model of learning [9], we use the product homomorphism method [4], a general combi-
natorial method specific to deriving polynomial learning algorithms in predicate logic.
The method is based on finding a combinatorial characterization for the existence of a
certain homomorphism from products of relational structures. From the structural as-
sumption on the background knowledge it follows that we have to study products and
homomorphisms related to unary partial function graphs.

Using the product homomorphism method, we obtained positive PAC result for the
cases when the ground atoms in the background knowledge form a forest [4] or a unary
function graph [3] (i.e., when each vertex has outdegree1). The result of this paper gen-
eralizes these results, as unary partial function graphs include both cases; a connected
component of a unary partial function graph is always either a tree or a function graph
consisting of a single connected component. Though the structural difference between
unary function and unary partial function graphs may seem to be insignificant, it turns
out that the presence of both types of components requires a careful revision of the
results in [3].

The paper is organized as follows. In Section 2, we first give the necessary concepts
related to unary partial function graphs, and in Section 3 we then formulate our learning
problem. In Section 4, we briefly describe the product homomorphism method, and
in Section 5, we derive a polynomial PAC-learning algorithm by using the product
homomorphism method. Finally, in Section 6, we give some concluding remarks along
with some open problems. Due to space limitation, we omit the proofs in this extended
abstract.

2 Graphs and unary partial function graphs

We assume the reader is familiar with the basic concepts of graph theory (see, e.g., [2]).
Throughout this paper, by graphs we always mean directed graphs. For a graphG, we
denote byV (G) (resp.E(G)) the set of vertices (resp. edges) ofG.

Let Gi be a graph for1 ≤ i ≤ t. The product G =
∏t

i=1 Gi is a graph with
V (G) =

∏t
i=1 V (Gi) such that for all~u = (u1, . . . , ut), ~v = (v1, . . . , vt) ∈ V (G) it

holds that(~u,~v) ∈ E(G) iff (ui, vi) ∈ E(Gi) for everyi = 1, . . . , t. Thet-th power of
G, denotedGt, is the product oft copies ofG.

A homomorphismfrom a graphG1 to a graphG2 is a mapϕ : V (G1) → V (G2)
such that(ϕ(u), ϕ(v)) ∈ E(G2) whenever(u, v) ∈ E(G1). We call a homomorphism
singly rootedif we specify the image of one vertex inV (G1) in advance, and we call a
homomorphismmultiply rootedif we specify images of multiple vertices inV (G1) in
advance. A homomorphism fromG1 to G2 mappingui to vi for i = 1, . . . , k is denoted
by

G1 −−−−−−−−−−−→
{u1/v1,...,uk/vk}

G2 .

We note that a homomorphism always maps one connected component into one con-
nected component.



2.1 Unary partial function graphs

A graphG is aunary partial function graphif every vertex ofG has outdegree at most
1. The name is justified by viewingG as a graph representing aunary partial function
f : V (G) ↪→ V (G) such thatf(u) = v iff (u, v) ∈ E(G) for everyu, v ∈ V (G).
As an example, the graph given in Fig. 1 is a unary partial function graph consisting of
three connected components. Excepta5, each vertex has outdegree 1.
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Fig. 1.The directed graph representing the unary functionf .

For the rest of this section, letG denote a unary partial function graph consisting of
a single connected component. Then it holds thatG has at most one vertex of outdegree
0. If G has such a vertex thenG is acyclic, as in this case it is a directed tree such that the
edges are directed towards the root (which is the vertex of outdegree0). Otherwise (i.e.,
when each of the vertices of the connected component has outdegree 1)G is cyclicand
it may be viewed as a directed cycle with directed trees “hanging” from some vertices
of the cycle. The edges of the trees are directed towards the cycle. We note that the
directed cycle may be aloop (i.e., a cycle may have length 1).Cyclic vertices are those
on the cycle (e.g.,a15 on Fig. 1). The other vertices are callednoncyclic.

For a vertexv ∈ V (G), we denote byf(v) the successor ofv. We definef (0)(v) =
v andf (k)(v) denotesf(f (k−1)(v)) for everyk > 0. Note thatf (k)(v) may be unde-
fined. For instance, for the graph on Fig. 1 it holds thatf (2)(a3) = a5 andf (3)(a3) is
undefined.

Let k ≥ 0 be an integer. We defineh(f (k)(v)), theheightof f (k)(v), by

h(f (k)(v)) =
max{d : f (k)(v) = f (d)(u) for someu ∈ V (G)} if f (k)(v) is noncyclic

∞ if f (k)(v) is cyclic

0 otherwise .



For the graph on Fig. 1, we haveh(f (2)(a3)) = h(a5) = 4, h(f (3)(a3)) = 0, and
h(a15) =∞.

If G is cyclic thenδ(v) denotes the length of the unique directed path connectingv
to the cycle, otherwise (i.e., ifG is a tree) it denotes the length of the unique directed
path connectingv to the root. In both cases, the other endpointf (δ(v))(v) of the path is
denoted byr(v) and is referred to as theroot of v. In our example on Fig. 1,δ(a3) = 2,
asr(a3) = a5, andδ(a11) = 2, asr(a11) = a13.

If G is cyclic then we denote byLcycle(G) the length of its cycle; ifG is a tree then
Lcycle(G) = 0. If v is a vertex of a general unary partial function graph (i.e., one which
may consist of more than one connected component) thenLcycle(v) denotesLcycle(G′),
whereG′ is the connected component containingv. In Fig. 1,Lcycle(a11) = 3.

Let u, v ∈ V (G) such thatu = r(u) andv = r(v). Thenσ(u, v) is the smallest
nonnegative integerd satisfyingf (d)(u) = v. Note that by the definition ofu andv,
both of them are either cyclic or noncyclic. In the first case,σ(u, v) denotes the length
of the (smallest) directed path leading fromu to v on the cycle ofG. In the second case,
bothu andv must be roots of a tree. SinceG consists of a single connected component,
u = v and hence,σ(u, v) = 0 always holds for this case.

Now let u, v ∈ V (G) such thatr(u) = r(v). Then there is a unique maximal
integerd, 0 ≤ d ≤ min{δ(u), δ(v)}, such thatf (δ(u)−d)(u) = f (δ(v)−d)(v). This node
is called theleast common ancestorof u andv, and is denoted bylca(u, v).

We are ready to define thedistancebetween two vertices. Letu, v ∈ V (G). Then
their distance is an ordered pair of nonnegative integers defined by

dpf (u, v) ={
(d1, d2) such thatf (d1)(u) = lca(u, v) = f (d2)(v) if r(u) = r(v)
(δ(u) + σ(r(u), r(v)), δ(v)) otherwise .

On Fig. 1,dpf (a3, a8) = (1, 2), aslca(a3, a8) = a4, anddpf (a11, a16) = (2 + 1, 1).
In the following proposition we formulate some properties of products of unary

partial function graphs, that will be used many times in what follows.

Proposition 1. Let Gi be unary partial function graphs andbi ∈ V (Gi) for i =
1, . . . , t. Let G =

∏t
i=1 Gi be the product of theGi’s and~b = (b1, . . . , bt) be the

product vertex obtained from thebi’s. Then forG and~b the following properties hold.

(i) G is a unary partial function graph.
(ii) ~b is cyclic iff all thebi’s are cyclic.

(iii) If~b is cyclic thenLcycle(~b) = lcm(Lcycle(b1), . . . , Lcycle(bt)), wherelcm(n1, . . . , nt)
denotes the least common multiple ofn1, . . . , nt.

3 Learning simple logic programs

In this section we define a special class of logic programs [7] that will be discussed
from the point of view of learnability.



3.1 Simple logic programs

Throughout this paper we consider (relational)vocabulariesconsisting of atarget pred-
icateP of arity m, a binarybackground predicateR, and constantsa1, . . . , an. Thus,
a term is either a variable or a constant, and anatom is of the formP (t1, . . . , tm)
or R(t1, t2), where thet’s are terms. Depending on its predicate symbol, an atom is
said to be aP -atom or anR-atom. A literal is an atom or its negation. An atom is
ground if it contains no variables. Abasic clauseis a first-order Horn clause of the
form L0 ← L1, . . . , Ll whereL0 is aP -atom andLi is anR-atom fori = 1, . . . , l.
It is also viewed as the set of literals it contains. Asimple logic programconsists of a
basic clause and a setB of groundR-atoms. SinceR is binary, the groundR-atoms in
B form a directed graph with verticesa1, . . . , an.

A substitutionθ = {x1/t1, . . . , xs/ts} is a mapping of variables to terms such that
xi 6= ti for i = 1, . . . , s. Let W be a literal (respectively a clause). ThenWθ is the
literal (respectively clause) obtained fromW by rewriting simultaneously each variable
xi to ti in W for i = 1, . . . , s. A clauseC subsumesa clauseD, denotedC ≤θ D, if
there exists a substitutionθ such thatCθ ⊆ D.

To close this subsection, letC be a basic clause,B be a set of groundR-atoms,
andA be a groundP -atom. We say thatC subsumesA with respect toB, denoted
C ≤θ,B A, if C subsumes the basic clauseA ← B, i.e.,C ≤θ (A ← B). It holds that
C ≤θ,B A iff A is impliedby the simple logic program consisting ofC andB.

3.2 The learning problem

In this section we give a formal description of the family of learning problems consid-
ered in this paper. We assume that the reader is familiar with the basic notions of the
PAC-model of learning [9].

Let B be a set of groundR-atoms. In what follows,B is referred to asbackground
knowledge, and its elements are calledbackground atoms. As R is a binary predicate,
B can be viewed as a graph with verticesa1, . . . , an.

The instance spaceof the learning problem is the set of all groundP -atoms. LetC
be a basic clause. Then theconceptCB represented byC wrt. B is the set of ground
P -atoms implied by the simple logic program consisting ofC andB, i.e.,

CB = {A : A is a groundP -atom andC ≤θ,B A} .

Theconcept classCB,m, corresponding toB is the family of conceptsCB, whereC is
a basic clause. (For the next definition, we recall thatm is the arity of the target pred-
icateP .) Throughout this paper, we consider the familyFm,n (m,n > 0) of learning
problems defined by

Fm,n = {CB,m : B corresponds to a unary partial function graph overn vertices} .

That is, a concept classCB,m belongs toFm,n iff for every ai there is at most one
aj such thatR(ai, aj) ∈ B (1 ≤ i, j ≤ n). Theparametersmeasuring the size of a
learning problem inFm,n arem andn.1

1 In Section 5.4, we shall show that the size of the target basic clause as parameter can be omitted
by extending the standard representation language.



4 The product homomorphism method

In order to prove polynomial PAC-learnability forFm,n, we shall apply the following
basic result [1] from computational learning theory.

Theorem 1. A family of learning problems is polynomially PAC-learnable if

(i) the hypothesis finding task can be solved in time polynomial in the parameters,
(ii) the VC-dimension of the concept classes is bounded by a polynomial of the param-

eters.

According to the first step of the above theorem, we have to show that the hypothesis
finding problem for the concept classes inFm,n can be solved in time polynomial in
m andn. More precisely, we consider the followingsingle clause hypothesis finding
problem: GivenCB,m ∈ Fm,n and disjoint setsE+ andE− of groundP -atoms,find a
basic clauseC such thatE+ ⊆ CB andE− ∩CB = ∅, if such a basic clause exists, and
output“no”, otherwise.

In [4], we have shown thatCB,m is closed under nonempty intersectionfor every
CB,m ∈ Fm,n. That is, for every subsetC ⊆ CB,m satisfying

⋂
c∈C c 6= ∅ it holds that⋂

c∈C c ∈ CB,m. This implies that for a setS of groundP -atoms, the intersection of all
concepts containingS, denotedGB(S), is also a concept inCB,m, i.e.,GB(S) ∈ CB,m,
where

GB(S) =
⋂
{CB ∈ CB,m : S ⊆ CB} .

In other words,GB(S), also referred to as theconcept generated byS, is the smallest
concept inCB,m that containsS. But this means that a consistent clause for the above
defined single clause hypothesis finding problem exists iffGB(S) andE− are disjoint.
Thus, the single clause hypothesis finding problem can be solved by computing first
anefficiently evaluablebasic clause representing the conceptGB(E+) and then testing
whetherGB(E+) ∩ E− = ∅ holds.

The following theorem, a special case of the product homomorphism theorem in
[4], gives a combinatorial characterization of the concept generated by a set of ground
P -atoms.

Theorem 2. Let CB,m ∈ Fm,n, S = {P (b1,1, . . . , b1,m), . . . , P (bt,1, . . . , bt,m)} for
somet > 0, and let~bj denote(b1,j , . . . , bt,j) for j = 1, . . . ,m. Then

GB(S) =

{
P (b1, . . . , bm) : Bt −−−−−−−−−−−−−−−−−−−−−−→

{~b1/b1,...,~bm/bm,~a1/a1,...,~an/an}
B

}
,

where~ak denotes the (t-tuple) product constants(ak, . . . , ak) for k = 1, . . . , n.

Theorem 2 above provides the following method, called theproduct homomorphism
method[4], for obtaining a hypothesis finding algorithm forFm,n:

1. Find a combinatorial characterization for the existence of multiply rooted homo-
morphisms from products of unary partial function graphs to unary partial function
graphs.



2. Give an algorithm such that for everyCB,m ∈ Fm,n and for every setS of ground
P -atoms it translates the combinatorial characterization in time polynomial inm,
n, and|S| into a basic clauseC such that

– CB = GB(S) and
– C can be evaluated with respect toB in time polynomial inm andn.

5 Application of the product homomorphism method

Using the product homomorphism method, in this section we derive an efficient PAC
algorithm for learning simple logic programs with partial function graph background
knowledge.

5.1 Homomorphisms between unary partial function graphs

In order to apply the product homomorphism method to unary partial function graphs,
we first need to find necessary and sufficient conditions for the existence of multiply
rooted homomorphisms from products of unary partial function graphs into unary par-
tial function graphs. Since unary partial function graphs are closed under product by (i)
of Proposition 1, in the next theorems we study rooted homomorphisms between unary
partial function graphs. Furthermore, as a homomorphism always maps one connected
component into one connected component, it is sufficient to consider unary partial func-
tion graphs consisting of a single connected component.

Theorem 3. Let G1 and G2 be unary partial function graphs consisting of a single
connected component, letb1, . . . , bk ∈ V (G1) be distinct vertices for somek ≥ 1, and
c1, . . . , ck ∈ V (G2). ThenG1 −−−−−−−−−−→

{b1/c1,...,bk/ck}
G2 iff

(i) G1 −−−−→
{bi/ci}

G2 for everyi = 1, . . . , k,

(ii) f (d1)(cu) = f (d2)(cv) for every1 ≤ u < v ≤ k, where(d1, d2) = dpf (bu, bv).

Condition (i) of the above theorem indicates that one has to studysingly rooted
homomorphisms between unary partial function graphs. The following theorem gives a
necessary and sufficient condition for the existence of a singly rooted homomorphism
between unary partial function graphs. We denote byn1 | n2 thatn1 dividesn2.

Theorem 4. Let G1 and G2 be unary partial function graphs consisting of a single
connected component and letb ∈ V (G1), c ∈ V (G2). ThenG1 −−−→

{b/c}
G2 iff

(i) G2 is cyclic satisfyingLcycle(G2) | Lcycle(G1) wheneverG1 is cyclic,

(ii) h(f (k)(c)) ≥ h(f (k)(b)) for everyk ≥ 0 .



5.2 Products of unary partial function graphs

The product homomorphism method indicates that the learning algorithm must consider
the product oft copies of the graph representing the background knowledge, wheret
is the number of positive examples. However, that product is exponentially large; it
containsnt nodes, wheren is the number of constants mentioned in the background
knowledge. Therefore we cannot work with this graph explicitly. Instead, we must show
that the relevant parameters implied by Theorems 3 and 4, i.e., cycle lengths, heights,
and distances between vertices can be computed directly from those of the original
graph corresponding to the background knowledge.

For computing cycle lengths, we can directly apply (iii) of Proposition 1. We start
by giving a lemma that can be used for determining the height of a product vertex.

Lemma 1. Let Gi be unary partial function graphs fori = 1, . . . , t, G =
∏t

i=1 Gi,

and~b = (b1, . . . , bt) ∈ V (G). Thenh(f (k)(~b)) = mini=1,...,t h(f (k)(bi)) for every
k ≥ 0.

To state Lemma 4 below for computing the distance between two product vertices,
in the following lemma we first characterize the distance of a product vertex from its
root. Then, in Lemma 3, we give a necessary and sufficient condition for two vertices
of the product graph to be in the same connected component.

Lemma 2. Let Gi be unary partial function graphs,bi ∈ V (Gi) for i = 1, . . . , t, and
consider the product graphG =

∏t
i=1 Gi and product vertex~b = (b1, . . . , bt) ∈ V (G).

Let I denote the set of indices{i : 1 ≤ i ≤ t, r(bi) is noncyclic}. Then the distance of
~b from its rootr(~b) is given by

δ(~b) =

{
maxi=1,...,t δ(bi) if I = ∅
mini∈I δ(bi) otherwise .

Lemma 3. Let Gi be unary partial function graphs fori = 1, . . . , t, G =
∏t

i=1 Gi,

and~b = (b1, . . . , bt) ~c = (c1, . . . , ct) ∈ V (G). Then~b and~c are in the same connected

component ofG iff for everyi = 1, . . . , t it holds thatf (δ(~b)+d)(bi) = f (δ(~c))(ci), where
d = 0 if some of thebi’s belongs to a noncyclic connected component; otherwise,d is
a nonnegative integer satisfying

d ≡ σ(f (δ(~b))(bk), f (δ(~c))(ck)) (mod Lcycle(bk))

for everyk = 1, . . . , t.

The following lemma follows directly from Lemmas 2 and 3.

Lemma 4. Let Gi, G, bi, andci, 1 ≤ i ≤ t, be defined as in the previous lemma and
assume that the product vertices~b = (b1, . . . , bt) and~c = (c1, . . . , ct) belong to the
same connected component ofG. Then

dpf (~b,~c) =

{
(δ(~b)− d1, δ(~c)− d1) if r(~b) = r(~c)
(δ(~b) + d2, δ(~c)) otherwise ,



whered1 = max{d ≥ 0 : f (δ(~b)−d)(bi) = f (δ(~c)−d)(ci) for i = 1, . . . , t} andd2 is the
smallest nonnegative integer satisfying

d2 ≡ σ(f (δ(~b))(bi), f (δ(~c))(ci)) (mod li)

for everyi = 1, . . . , t.

Since the congruence system in Lemmas 3 and 4 can be solved efficiently (see, e.g.,
[6]), one can decide efficiently whether~b and~c are in the same connected component,
and if so, then their distancedpf (~b,~c) can be computed in polynomial time.

5.3 A combinatorial characterization of GB

Combining the results of Sections 5.1 and 5.2 with Theorem 2, in this section we give
a combinatorial characterization of the concept generated by a set of groundP -atoms
wrt. unary partial function graph background knowledge. LetS be the set of ground
atoms{P (b1), . . . , P (bt)}, wherebi = (bi,1, . . . , bi,m) for i = 1, . . . , t (t > 1). Let
~bj denote the product vertex(b1,j , . . . , bt,j) for j = 1, . . . ,m. Let

Iconst(S) = {(j, q) : 1 ≤ j ≤ m, 1 ≤ q ≤ n, and~bj = ~aq} ,

Ivar(S) = {j : 1 ≤ j ≤ m,~bj 6= ~aq for someq, 1 ≤ q ≤ n} ,

Icyclic(S) = {j ∈ Ivar(S) : r(~bj) is cyclic} ,

Hpairs(S) = {(u, v) : u, v ∈ Ivar(S), u < v, and~bu,~bv are in the same connected component} ,

Hconst(S) = {(j, q) : j ∈ Ivar(S), 1 ≤ q ≤ n, and~bj ,~aq are in the same connected component} .

Theorem 5. If B is a unary partial function graph then

GB(S) = {P (b1, . . . , bm) :
bj = aq for all (j, q) ∈ Iconst(S), (1)

f (Lcycle(
~bj))(r(bj)) = r(bj) for all j ∈ Icyclic(S), (2)

h(f (k)(bj)) ≥ h(f (k)(~bj)) for all k = 0, . . . , n andj ∈ Ivar(S), (3)

f (d1)(bu) = f (d2)(bv) for all (u, v) ∈ Hpairs(S), where(d1, d2) = dpf (~bu,~bv), (4)

f (d1)(bj) = f (d2)(aq) for all (j, q) ∈ Hconst(S), where(d1, d2) = dpf (~bj ,~aq)} (5)

Proof sketch.By Theorem 2,P (b1, . . . , bm) ∈ GB(S) iff

(B)t −−−−−−−−−−−−−−−−−−−−−−→
{~b1/b1,...,~bm/bm,~a1/a1,...,~an/an}

B . (6)

Thus, it is sufficient to show that (6) holds iff conditions (1) - (5) hold. For the “only
if” part, the proof of (1) is automatic, (2), (3) hold by Theorem 4, and (4), (5) by (ii) of
Theorem 3. To prove the “if” part, the connected components of(B)t can be considered
separately.



(i) For connected components not containing any non-constant product vertex from
~b1, . . . ,~bm, there are projections providing a homomorphism intoB and mapping
each occurring product constant~a to a.

(ii) By Theorems 3 and 4, (2)–(4) provide the required rooted homomorphisms for
connected components containing at least one non-constant vertex from~b1, . . . ,~bm.

(iii) Finally, for connected components containing at least one non-constant vertex from
~b1, . . . ,~bm and at least one constant product vertex, (2)–(3) and (5) provide the
required rooted homomorphisms by Theorems 3 and 4. ut

5.4 Concept representation and polynomial learnability

The last step of the product homomorphism method is to give an algorithm translating
the combinatorial characterization given by Theorem 5 into an efficiently evaluable
basic clause. From our previous results [4] on the length of product cycles it follows
that there are cases when the size of any consistent basic clause is exponential inn,
i.e., whenLcycle(~bj) in (2) is exponential inn. Thus, the standard representation using
only the predicatesP andR is not suitable for polynomial learnability if the size of the
target concept is not considered as a learning parameter. Therefore, we introduce new
predicates of the form PATHd(x, y), which hold if there is a path of lengthd from x to
y, for everyd. Note that PATHd(x, x) holds iff d = 0 or d > 0 andLcycle(x) | d. Using
the extended representation language, we are ready to give Algorithm 1 computing a
clause that representsGB(S) for a setS of groundP -atoms and unary partial function
graph background knowledgeB.

Algorithm 1 UNARYPARTIAL FUNCTIONGRAPH

Require: ground setS = {P (b1), . . . , P (bt)} and a unary partial function graphB
Ensure: clauseC such thatCB = GB(S)

1: let C = {P (t1, . . . , tm)}, wheretj = aq if (j, q) ∈ Iconst(S) for someq, otherwisetj is
the variablex~bj

for j = 1, . . . , m

2: for all j ∈ Icyclic(S) do

if δ(~bj) = 0 then C = C ∪ {¬PATHLcycle(
~bj)(tj , tj)}

elseC = C ∪ {¬PATHδ(~bj)(tj , yj),¬PATHLcycle(
~bj)(yj , yj)}

3: for all j ∈ Ivar(S) andk = 0, . . . , δ(~bj) do
if k < h(f (k)(δ(~bj))) < ∞ then C = C ∪{¬PATHk(tj , y

′
j),¬PATHh(f(k)(~bj))(y

′′
j , y′j)}

4: for all (u, v) ∈ Hpairs(S) do

C = C ∪ {¬PATHd1(tu, zu,v),¬PATHd2(tv, zu,v)} where(d1, d2) = dpf (~bu,~bv)
5: for all (j, q) ∈ Hconst(S) do

C = C ∪ {¬PATHd1(tj , z
′
j,q),¬PATHd2(aq, z

′
j,q)} where(d1, d2) = dpf (~bj ,~aq)

6: return C

Steps (1)–(5) of Algorithm 1 translate Conditions (1)–(5) of Theorem 5, respec-
tively. We have the following theorem.



Theorem 6. Algorithm 1 is correct, i.e.,CB = GB(S), and it is polynomial inm, n,
and |S|. The size ofC (in the extended representation language) isO

(
m2 + mn

)
. C

can be evaluated wrt.B in time polynomial inm andn.

Example 1.To illustrate Algorithm 1, consider the unary partial function graphG given
in Fig. 1. Using the binary background predicateR, let B be the corresponding back-
ground knowledge, i.e.,R(u, v) ∈ B iff (u, v) ∈ E(G) for everyu, v ∈ V (G).2

Let P be a ternary target predicate andS = {P (a6, a3, a12), P (a11, a9, a18)}.
Thus,~b1 = (a6, a11), ~b2 = (a3, a9), and~b3 = (a12, a18). By definition,Iconst(S) =
∅, Ivar(S) = {1, 2, 3}, and by (ii) of Proposition 1,Icyclic(S) = {3}. To compute
Hpairs(S), we apply Lemma 3 for every(u, v), u, v ∈ Ivar(S). For(1, 2) corresponding
to (~b1,~b2) = ((a6, a11), (a3, a9)), we have to check whether

f (δ(~b1)+d)(a6) = f (δ(~b2))(a3) and f (δ(~b1)+d)(a11) = f (δ(~b2))(a9) (7)

hold ford = 0. By Lemma 2, we have

δ(~b1) = δ((a6, a11))= min
i∈{1}

δ(bi) = δ(a6) = 1

δ(~b2) = δ((a3, a9)) = min
i∈{1}

δ(bi) = δ(a3)= 2 .

In both equations,I = {1}, asr(a11) andr(a9) are cyclic. The equations in (7) thus
hold by

f (1)(a6) = a5 = f (2)(a3) and f (1)(a11) = a12 = f (2)(a9)

respectively. Hence,(1, 2) ∈ Hpairs(S). It can be shown in the same way thatHpairs(S) =
{(1, 2)} andHconst(S) = ∅.

Now we are ready to illustrate Algorithm 1 step by step on inputsS andB.

Step 1: C = {P (x~b1
, x~b2

, x~b3
)} becauseIconst = ∅.

Step 2: SinceIcyclic(S) = {3}, we have to computeδ(~b3) andLcycle(~b3). By Lemma 2,
δ(~b3) = 0, and from (iii) of Proposition 1 we haveLcycle(~b3) = lcm{3, 4} = 12.
Thus, in this step we add the literal¬PATH12(x~b3

, x~b3
) to C.

Step 3: For j = 1 andk = 0 we first have to computeh(f (0)(~b1)). By Lemma 1, we
haveh(f (0)(~b1)) = min{h(f (0)(a6)), h(f (0)(a11))} = min{0, 1} = 0. Forj = 1
andk = δ(~b1) = 1, h(f (1)(~b1)) = 1 by Lemma 1. Sinceh(f (1)(~b1)) ≯ 1, we add
no literals toC. For similar reasons, we add no new literals toC for j = 2, 3.

Step 4: As Hpairs = {(1, 2)}, we havedpf (~b1,~b2) = (1, 2) by Lemma 4, and add
therefore¬PATH1(x~b1

, z1,2),¬PATH2(x~b2
, z1,2) to C.

Step 5: Hconst(S) = ∅ and thus, no literals will be added toC in this step.
Step 6: The algorithm finally returns the clause

P (x~b1
, x~b2

, x~b3
)← PATH12(x~b3

, x~b3
), PATH1(x~b1

, z1,2), PATH2(x~b2
, z1,2) .

2 We note that B is obtained from the background knowledge in the running example of [3] by
removing edge(a5, a4).



Since the VC-dimension of a concept classC is at mostlog(C), from the bound on
the size of the target concept in Theorem 6 it follows that the VC-dimension ofCB,m is
polynomial inm andn if B is a unary partial function graph. Thus, by Theorems 1 and
6 we have the following main result of this paper.

Theorem 7. Using the extended representation language, simple logic programs with
B being a unary partial function graph are efficiently PAC-learnable.

6 Remarks and open problems

Using the product homomorphism method, we have shown that simple logic programs
with unary partial function graph background knowledge are polynomially PAC-learnable
in an extended representation language. The importance of this result is that we have not
assumed any bound on the size of the target clause, the target clause is not necessarily
determinate, and its size may be exponential in the standard representation language.

Finally, we list some interesting open problems for further research. In practical
applications, usually there is no consistent hypothesis consisting of a single clause.
Since unary partial function graphs generalize forests, from our previous results in [4]
it follows that the problem of deciding whether there exists a consistent hypothesis con-
sisting ofk clauses is NP-complete for any fixedk ≥ 3 for unary partial function graph
background knowledge. It would be interesting to see whether the optimal solution can
be approximated in polynomial time. A further research topic would be to investigate
whether the positive PAC result of this paper holds for colored unary partial function
graphs, i.e., when the vocabulary is extended by a set of unary background predicates.
Finally, it would be interesting to apply the product homomorphism method to other
classes of directed graphs, in particular to classes generalizing unary partial function
graphs.
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