Learning Logic Programs with Unary Partial Function
Graph Background Knowledge
(extended abstract)

Tamas Honath'*, Robert H. Sloaf, and Gyrgy Tuar?

! Institute of Computer Science Ill, University of Bonn and Fraunhofer Institute for
Autonomous intelligent Systemsmmas.horvath@ais.thg.de
2 Department of Computer Science, University of lllinois at Chicagman@uic.edu
3 Department of Mathematics, Statistics, and Computer Science, University of lllinois at
Chicago and Research Group on Artificial Intelligence, Hungarian Academy of Sciences,
Szegedgyt@uic.edu

Abstract. The product homomorphism method is a combinatorial tool that can
be used to develop polynomial PAC-learning algorithms in predicate logic. Using
the product homomorphism method, we show that a single nonrecursive definite
Horn clause is polynomially PAC-learnable if the background knowledge is a
function-free extensional database over a single binary predicate and the ground
atoms in the background knowledge form a unary partial function. That is, the
background knowledge corresponds to a directed graph, where each node has
outdegree at most 1. The proof is based on a detailed analysis of products and
homomorphisms of the class of digraphs corresponding to unary partial functions.

1 Introduction

Attribute-value languages are often not suitable for representing complex real-world
machine learning problems. Therefore, one of the research challenges in machine learn-
ing is to study learning in other representation languages. Among such approaches, in-
ductive logic programming (ILP) [8] is concerned with learning in predicate logic, in
particular, with learning logic programs.

The general ILP learning problem is computationally intractable. Therefore, one
of the challenging problems in ILP is to show positive and negative theoretical results
about the efficient learnability of different fragments of predicate logic in the formal
models of computational learning theory. Most of such positive results have been ob-
tained by restricting the hypothesis language. In particular, the most frequently used
restrictions areleterminatenesand learning wittconstant depth bouni].

In contrast to these approaches, in this work we present a positive learnability re-
sult by restricting the background knowledge. We assume that there is a single binary
background predicat&, and that the groun@-atoms in the background knowledge
represent a unary partial function. This structural assumption implies that the back-
ground knowledge corresponds to a digraph where each vertex has outdegree at most

* Partially supported by the DFG project (WR 40/2Hybride Methoden und Systemarchitek-
turen fur heterogene Informationgume

1. To prove polynomial learnability for such family of learning problems in the PAC
model of learning [9], we use the product homomorphism method [4], a general combi-
natorial method specific to deriving polynomial learning algorithms in predicate logic.
The method is based on finding a combinatorial characterization for the existence of a
certain homomorphism from products of relational structures. From the structural as-
sumption on the background knowledge it follows that we have to study products and
homomorphisms related to unary partial function graphs.

Using the product homomorphism method, we obtained positive PAC result for the
cases when the ground atoms in the background knowledge form a forest [4] or a unary
function graph [3] (i.e., when each vertex has outdegje€he result of this paper gen-
eralizes these results, as unary partial function graphs include both cases; a connected
component of a unary partial function graph is always either a tree or a function graph
consisting of a single connected component. Though the structural difference between
unary function and unary partial function graphs may seem to be insignificant, it turns
out that the presence of both types of components requires a careful revision of the
results in [3].

The paper is organized as follows. In Section 2, we first give the necessary concepts
related to unary partial function graphs, and in Section 3 we then formulate our learning
problem. In Section 4, we briefly describe the product homomorphism method, and
in Section 5, we derive a polynomial PAC-learning algorithm by using the product
homomorphism method. Finally, in Section 6, we give some concluding remarks along
with some open problems. Due to space limitation, we omit the proofs in this extended
abstract.

2 Graphs and unary partial function graphs

We assume the reader is familiar with the basic concepts of graph theory (see, e.g., [2]).
Throughout this paper, by graphs we always mean directed graphs. For algrajgh
denote by (G) (resp.E(G)) the set of vertices (resp. edges)of

Let G; be a graph forl < i < t¢. The productG = Hle G, is a graph with
V(G) = TI'_, V(G;) such that for alii = (uy,...,u;), T = (v1,...,v:) € V(G) it
holds that(@, v) € E(G) iff (u;,v;) € E(G;) foreveryi = 1,...,t. Thet-th power of
G, denoted5", is the product of copies ofG.

A homomorphisnirom a graphG; to a graphG, is a mapy : V(G1) — V(Gs)
such that{p(u), p(v)) € E(G2) whenever(u,v) € E(G1). We call a homomorphism
singly rootedif we specify the image of one vertex (G) in advance, and we call a
homomorphismmultiply rootedif we specify images of multiple vertices Wi(G1) in
advance. A homomorphism fro64, to G, mappingu; tov; fori = 1,..., kis denoted
by

h {u1/v1,...;ux /oK } G -

We note that a homomorphism always maps one connected component into one con-
nected component.

2.1 Unary partial function graphs

A graphG is aunary partial function graphf every vertex ofG has outdegree at most

1. The name is justified by viewin§' as a graph representinguaary partial function

f: V(G) — V(G) such thatf(u) = v iff (u,v) € E(G) for everyu,v € V(G).

As an example, the graph given in Fig. 1 is a unary partial function graph consisting of
three connected components. Excepteach vertex has outdegree 1.

Fig. 1. The directed graph representing the unary funcfion

For the rest of this section, €t denote a unary partial function graph consisting of
a single connected component. Then it holds ¢hats at most one vertex of outdegree
0. If G has such a vertex theris acyclic as in this case it is a directed tree such that the
edges are directed towards the root (which is the vertex of outdégré¢herwise (i.e.,
when each of the vertices of the connected component has outdedrde dyclic and
it may be viewed as a directed cycle with directed trees “hanging” from some vertices
of the cycle. The edges of the trees are directed towards the cycle. We note that the
directed cycle may belaop (i.e., a cycle may have length Lyclic vertices are those
on the cycle (e.gg15 on Fig. 1). The other vertices are calledncyclic

For a vertexs € V(G), we denote byf (v) the successor af. We definef () (v) =
v and f¥) (v) denotesf (f*~1 (v)) for everyk > 0. Note thatf*)(v) may be unde-
fined. For instance, for the graph on Fig. 1 it holds tfi&t (a3) = a5 and f(*)(a3) is
undefined.

Letk > 0 be an integer. We defing(f(*)(v)), theheightof £*) (v), by

h(f® (v)) =
max{d : f(¥)(v) = f(4)(u) for someu € V(G)} if f*)(v)is noncyclic
00 if £()(v) is cyclic

0 otherwise .

For the graph on Fig. 1, we have /) (a3)) = h(as) = 4, h(f®(a3)) = 0, and
h(a15) = OQ.

If G is cyclic thend(v) denotes the length of the unique directed path connecting
to the cycle, otherwise (i.e., & is a tree) it denotes the length of the unique directed
path connecting to the root. In both cases, the other endpgitit?)) (v) of the path is
denoted by-(v) and is referred to as theot of v. In our example on Fig. B(a3) = 2,
aS’I“(Clg) = as, andé(au) =2, aST'(ClH) = a13.

If G is cyclic then we denote b¥,ce(G) the length of its cycle; if7 is a tree then
Leyeie(G) = 0. If v is a vertex of a general unary partial function graph (i.e., one which
may consist of more than one connected component)gnr(v) denotesLeycie(G),
whereG’ is the connected component containindn Fig. 1, Leycie(a11) = 3.

Letu,v € V(G) such thatu = r(u) andv = r(v). Theno(u,v) is the smallest
nonnegative integed satisfying f(¥)(u) = v. Note that by the definition of andv,
both of them are either cyclic or noncyclic. In the first casg, v) denotes the length
of the (smallest) directed path leading framo v on the cycle of=. In the second case,
bothu andv must be roots of a tree. Sincéconsists of a single connected component,
u = v and henceg (u, v) = 0 always holds for this case.

Now let u,v € V(G) such thatr(u) = r(v). Then there is a unique maximal
integerd, 0 < d < min{d(u), 5(v)}, such thatf®(=d) () = @)= (y), This node
is called thdeast common ancestof v andv, and is denoted bi¢a(u, v).

We are ready to define thdistancebetween two vertices. Let,v € V(G). Then
their distance is an ordered pair of nonnegative integers defined by

dpf (uv 'U) =
(dv, dy) such thatf) (u) = Ica(u,v) = () (v) i r(u) = r(v)
(6(uw) +o(r(u),r(v)),0(v)) otherwise .

On Flg 1,dpf(a3,a8) = (1, 2), aslca(ag,ag) = Qy4, anddpf(an, 6116) = (2 + 1, 1)
In the following proposition we formulate some properties of products of unary
partial function graphs, that will be used many times in what follows.

Proposition 1. Let G; be unary partial function graphs anb, € V(G;) for i =
1,...,t. LetG = HEZI G; be the product of th&,;'s andb = (by,...,b;) be the
product vertex obtained from ttbg's. Then forG andb the following properties hold.

(7) G is a unary partial function graph.
(#¢) bis cyclic iff all theb;’s are cyclic.
(i23) If bis cyclic thenLeycie(b) = lem(Leycie(b1), - - - , Leycie(bt)), Wherelem(ny, .. ., ny)
denotes the least common multiplengf. . ., n,.

3 Learning simple logic programs

In this section we define a special class of logic programs [7] that will be discussed
from the point of view of learnability.

3.1 Simple logic programs

Throughout this paper we consider (relationadfabulariesonsisting of darget pred-
icate P of arity m, a binarybackground predicatéz, and constanta, ..., a,. Thus,
atermis either a variable or a constant, and @omis of the form P(¢q,...,t)
or R(t1,t2), where thet's are terms. Depending on its predicate symbol, an atom is
said to be aP-atomor an R-atom A literal is an atom or its negation. An atom is
groundif it contains no variables. Aasic clauses a first-order Horn clause of the
form Ly < L4,...,L; whereLg is a P-atom andL; is an R-atom fori = 1,...,1.
It is also viewed as the set of literals it containssitnple logic progranconsists of a
basic clause and a sBtof ground R-atoms. SinceR is binary, the groundz-atoms in
BB form a directed graph with vertices, .. ., a,.

A substitutiord = {x;/t1,...,2/ts} IS a mapping of variables to terms such that
x; £ t; fori = 1,...,s. Let W be a literal (respectively a clause). ThBrY is the
literal (respectively clause) obtained frdi by rewriting simultaneously each variable
ritot; inWfori=1,...,s. AclauseC subsumes clauseD, denoted” <, D, if
there exists a substitutighsuch thatC6 C D.

To close this subsection, |€f be a basic clausd? be a set of groundz-atoms,
and A be a groundP-atom. We say tha€ subsumesA with respect tos, denoted
C <p A, if C subsumes the basic claude— B, i.e.,C <y (A «— B). It holds that
C <y Aiff Aisimpliedby the simple logic program consisting 6fand5.

3.2 The learning problem

In this section we give a formal description of the family of learning problems consid-
ered in this paper. We assume that the reader is familiar with the basic notions of the
PAC-model of learning [9].

Let B be a set of ground®-atoms. In what follows}3 is referred to avackground
knowledgeand its elements are call&dckground atomsAs R is a binary predicate,
B can be viewed as a graph with vertieas. . ., a,,.

Theinstance spacef the learning problem is the set of all groufdatoms. LetC'
be a basic clause. Then thenceptCj represented by’ wrt. 5 is the set of ground
P-atoms implied by the simple logic program consisting’o&nds5, i.e.,

Cp={A: AisagroundP-atomandC' <y 5 A} .

Theconcept clas€z ,,,, corresponding td is the family of concept€’s, whereC'is
a basic clause. (For the next definition, we recall thas the arity of the target pred-
icate P.) Throughout this paper, we consider the fanly, ,, (m,n > 0) of learning
problems defined by

Fmn ={Cn,m : B corresponds to a unary partial function graph aveerticeg .

That is, a concept classs ,,, belongs toF,, , iff for every a; there is at most one
a; such thatR(a;,a;) € B (1 < ¢,5 < n). Theparametersmeasuring the size of a
learning problem inF,,, ,, arem andn.!

1 In Section 5.4, we shall show that the size of the target basic clause as parameter can be omitted
by extending the standard representation language.

4 The product homomorphism method

In order to prove polynomial PAC-learnability fd¥,,, ,,, we shall apply the following
basic result [1] from computational learning theory.

Theorem 1. A family of learning problems is polynomially PAC-learnable if

(7) the hypothesis finding task can be solved in time polynomial in the parameters,
(74) the VC-dimension of the concept classes is bounded by a polynomial of the param-
eters.

According to the first step of the above theorem, we have to show that the hypothesis
finding problem for the concept classes#p, ,, can be solved in time polynomial in

m andn. More precisely, we consider the followirgingle clause hypothesis finding
problem GivenCs ., € Fin ., and disjoint set&* and E~ of ground P-atoms find a

basic claus€ such thattt C Cz andE~ NCg = 0, if such a basic clause exists, and
output“no”, otherwise.

In [4], we have shown thaiz ,, is closed under nonempty intersectitor every
CB.m € Fmn- Thatis, for every subset C Cp,,,, satisfying(, .. ¢ # 0 it holds that
Necc € € Cs,m- This implies that for a sef of groundP-atoms, the intersection of all
concepts containing, denoted7;(S), is also a concept i3 ,, i.€.,Gg(S) € Ca.m,
where

Gs(S) =({Cs €Cpm: S CC} -

In other wordsGz(.5), also referred to as theoncept generated by, is the smallest
concept inCs ., that containsS. But this means that a consistent clause for the above
defined single clause hypothesis finding problem exist§ ifS) and E— are disjoint.
Thus, the single clause hypothesis finding problem can be solved by computing first
anefficiently evaluabléasic clause representing the cona@g{ £+) and then testing
whetherGz(E™) N E~ = () holds.

The following theorem, a special case of the product homomorphism theorem in
[4], gives a combinatorial characterization of the concept generated by a set of ground
P-atoms.

Theorem 2. LetCp € Finny S = {P(b11,...,b1,m),-.., P(bea,...,bym)} for
somel > 0, and letb; denote(b; ;, ..., b; ;) for j = 1,...,m. Then

GB(S)Z P(bl,...,bm)ZBt = » B 5
{bl/bl~,~~~ab7n./b7n.;El/alvaan/an}

whered;, denotes thetftuple) product constant@uy, ..., a;) fork =1,...,n.

Theorem 2 above provides the following method, calledgreduct homomorphism
method4], for obtaining a hypothesis finding algorithm f&t,, .

1. Find a combinatorial characterization for the existence of multiply rooted homo-
morphisms from products of unary partial function graphs to unary partial function
graphs.

2. Give an algorithm such that for eve®y ,,, € F.,, , and for every sef of ground
P-atoms it translates the combinatorial characterization in time polynomial in
n, and|S| into a basic claus€' such that
- Cp= GB(S) and
— C can be evaluated with respectfdn time polynomial inm andn.

5 Application of the product homomorphism method

Using the product homomorphism method, in this section we derive an efficient PAC
algorithm for learning simple logic programs with partial function graph background
knowledge.

5.1 Homomorphisms between unary partial function graphs

In order to apply the product homomorphism method to unary partial function graphs,
we first need to find necessary and sufficient conditions for the existence of multiply
rooted homomorphisms from products of unary partial function graphs into unary par-
tial function graphs. Since unary partial function graphs are closed under product by (i)
of Proposition 1, in the next theorems we study rooted homomorphisms between unary
partial function graphs. Furthermore, as a homomorphism always maps one connected
component into one connected component, it is sufficient to consider unary partial func-
tion graphs consisting of a single connected component.

Theorem 3. Let G; and G2 be unary partial function graphs consisting of a single
connected component, let, . .., b, € V(G1) be distinct vertices for some> 1, and
c1,. .., € V(Ge). ThenG, G, iff

{b1/c1,e.sbr /ex}

(i) G, —}> G, foreveryi =1,... k,

(i) U9 (c,) = fl92)(c,) foreveryl <u < v < k, where(dy, ds) = dyps(by, by).

Condition (i) of the above theorem indicates that one has to ssirthly rooted
homomorphisms between unary partial function graphs. The following theorem gives a
necessary and sufficient condition for the existence of a singly rooted homomorphism
between unary partial function graphs. We denotebyn, thatn, dividesns.

Theorem 4. Let G; and G2 be unary partial function graphs consisting of a single
connected component and le€ V(G1), ¢ € V(G2). ThenG, m G, iff

(?) G, is cyclic satisfyingLeycie(G2) | Leyele(G1) WhenevelG, is cyclic,

(i7) h(f®)(c)) > h(f*) (b)) for everyk >0 .

5.2 Products of unary partial function graphs

The product homomorphism method indicates that the learning algorithm must consider
the product oft copies of the graph representing the background knowledge, where
is the number of positive examples. However, that product is exponentially large; it
containsn? nodes, where: is the number of constants mentioned in the background
knowledge. Therefore we cannot work with this graph explicitly. Instead, we must show
that the relevant parameters implied by Theorems 3 and 4, i.e., cycle lengths, heights,
and distances between vertices can be computed directly from those of the original
graph corresponding to the background knowledge.

For computing cycle lengths, we can directly apply (iii) of Proposition 1. We start
by giving a lemma that can be used for determining the height of a product vertex.

Lemma 1. Let G; be unary partial function graphs for=1,...,¢t, G = Hle G,
andb = (by,...,b)) € V(G). Thenh(f® (b)) = min;—y_, h(f*)(b;)) for every
k>0.

.....

To state Lemma 4 below for computing the distance between two product vertices,
in the following lemma we first characterize the distance of a product vertex from its
root. Then, in Lemma 3, we give a necessary and sufficient condition for two vertices
of the product graph to be in the same connected component.

Lemma 2. LetG; be unary partial function graphs,; € V(G;) fori =1,...,t, and
consider the product grap&i = []'_, G; and product vertek = (by,...,b;) € V(G).
Let I denote the set of indicgs : 1 < ¢ < t, r(b;) is noncyclig. Then the distance of
b from its rootr(b) is given by

X max;—1,. 4 0(b;) ifI =10
min;es 0(b;) otherwise .

Lemma 3. Let G; be unary partial function graphs for=1,...,¢t,G = Hle G,
andb = (by,...,b;) @= (c1,...,¢:) € V(G). Thenb andé are in the same connected
component of iff for everyi = 1, .. ., t it holds thatf C®+d (p,) = FO@)(¢;), where
d = 0 if some of theé);’s belongs to a noncyclic connected component; otherwise,
a nonnegative integer satisfying

d=o(FOP)(by), FO@ (cr)) (mod Leyerdb))
foreveryk =1,...,t.

The following lemma follows directly from Lemmas 2 and 3.

Lemmad. LetG;, G, b;, and ¢, 1 <i <t be defined as in the previous lemma and
assume that the product vertices= (b1,...,b;) and¢ = (cq,...,c) belong to the
same connected componentafThen

3(b) = dy,6(6) —dy) i r(b) = ()

N I
dpy(b,0) = {(5(5‘) + da, 6(3)) otherwise ,

whered; = max{d > 0: fOO=D(p,) = fE@=d(c,)fori = 1,...,t} andds is the
smallest nonnegative integer satisfying

= U(f(5(b))(bi),f(‘;(g))(ci)) (mod 1;)
foreveryi=1,...,t

Since the congruence system in Lemmas 3 and 4 can be solved efficiently (see, e.g.,
[6]), one can decide efficiently whetheandc are in the same connected component,
and if so, then their distaneg, (b, ¢) can be computed in polynomial time.

5.3 A combinatorial characterization of G

Combining the results of Sections 5.1 and 5.2 with Theorem 2, in this section we give
a combinatorial characterization of the concept generated by a set of gitatains

wrt. unary partial function graph background knowledge. Edte the set of ground
atoms{P(b,),...,P(b,)}, whereb; = (b;1,...,b;,m) fori=1,...,¢t(> 1). Let

b; denote the product vertek, ;,...,b; ;) forj =1,...,m. Let

Ieons(S) = {(j,q) : 1 < j <m,1 < q<n, andb; =} ,
La(S) ={j : 1< j <m,b; #d, forsomeg, 1 < q <n} ,
Leyeic(S) = {j € Lar(S) : 7(b;) is cyclic}
Hpairs(S) = {(u,v) : u,v € Lya(S),u < v, andl;u, b, are in the same connected component
Heons(S) = {(4,q) : j € La(5),1 < g <n, andgj, d, are in the same connected component

Theorem 5. If B is a unary partial function graph then

Gy(S) = {P(br,...,bm) :

b; = a, forall (,q) € Icons(S), @)
F eyl (1 (b)) = r(b;) for all j € Teyeic(S), @)
h(F®) (b;)) > h(f® (b)) forall k = 0,...,nandj € Lal(S), (3)
£ (b,) = £192)(b,) for all (u,v) € HpairS(S) where(dy, dy) = dps(bu, by), (4)
£ (by) = 4 (ay) for all (j, q) € Heons(S), where(ds, dz) = dy s (b, @)} (5)

Proof sketch.By Theorem 2P (b1, ...,b,) € Gg(S) iff

(B)" — , B . (6)
{bl/bl;4--7bm,/b7n7dl/a17~~-7a'rz/a7l}

Thus, it is sufficient to show that (6) holds iff conditions (1) - (5) hold. For the “only
if” part, the proof of (1) is automatic, (2), (3) hold by Theorem 4, and (4), (5) by (ii) of
Theorem 3. To prove the “if” part, the connected component#yfcan be considered
separately.

(i) For connected components not containing any non-constant product vertex from
51, ..., bm, there are projections providing a homomorphism iitand mapping
each occurring product constanto a.

(i) By Theorems 3 and 4, (2)—(4) provide the required rooted homomorphisms for
connected components containing at least one non-constant verte<rom Em.

(iii) Finally, for connected components containing at least one non-constant vertex from
bi,...,bn and at least one constant product vertex, (2)—-(3) and (5) provide the
required rooted homomorphisms by Theorems 3 and 4. O

5.4 Concept representation and polynomial learnability

The last step of the product homomorphism method is to give an algorithm translating
the combinatorial characterization given by Theorem 5 into an efficiently evaluable
basic clause. From our previous results [4] on the length of product cycles it follows
that there are cases when the size of any consistent basic clause is exponential in
ie., whenLCyde(Ej) in (2) is exponential im. Thus, the standard representation using
only the predicate® andR is not suitable for polynomial learnability if the size of the
target concept is not considered as a learning parameter. Therefore, we introduce new
predicates of the formA¥H,(z, y), which hold if there is a path of lengthfrom z to

y, for everyd. Note that BRTH;(z, z) holds iffd = 0 or d > 0 and L¢yce(z) | d. Using

the extended representation language, we are ready to give Algorithm 1 computing a
clause that representss (.S) for a setS of groundP-atoms and unary partial function
graph background knowleddg®

Algorithm 1 UNARY PARTIAL FUNCTIONGRAPH

Require: ground setS = {P(b:), ..., P(b,)} and a unary partial function gragh
Ensure: clauseC such thaCs = G5(S)

1: let C = {P(t1,...,tm)}, Wheret; = aq if (j,9) € Icons(S) for someq, otherwiset; is
the variablergj forj=1,...,m
2: forall j € Igyeic(S) do
if 5(b;) =0thenC =CU {ﬁPATHLCyCIe(Z;j)(tj, ti)}
elseC' = C'U {~PATH;; (t;, y;), ~PATH (y5,95)}

3: forall j € Ivar(S) andk = 0,....,6(b;) do
if £ < h(f*™(5(b;))) < cothenC = CU{=PATH(t;, ;) “PATH,, i 5, (4 95))
4: forall (u,v) € Hpairg(S) doO

Leycle(®s)

C = C U {-PaTH, (tu, Zu.v), "PATHa, (to, Zu)} where(d, dz) = dpj (bu, by)
5: for all (], q) S Hconsl(s) do

C = C U {=PATHq, (t;, 2 4), "PATHa, (aq, 25.4)} where(d:, dz) = dps(bj, @q)
6: return C'

Steps (1)—(5) of Algorithm 1 translate Conditions (1)—(5) of Theorem 5, respec-
tively. We have the following theorem.

Theorem 6. Algorithm 1 is correct, i.e.Cs = Gp(5), and it is polynomial inm, n,
and|S|. The size of” (in the extended representation Ianguage()?iém2 + mn). C
can be evaluated wrf3 in time polynomial inm andn.

Example 1.Toillustrate Algorithm 1, consider the unary partial function grépgiven
in Fig. 1. Using the binary background predicd&telet B be the corresponding back-
ground knowledge, i.eR(u,v) € Biff (u,v) € E(G) for everyu,v € V(G).2

Let P be a ternary target predicate asd= {P(ag, a3, ai2), P(ai1,a9,a1s)}.
ThUS,gl = (aﬁ,an), 52 = (ag,ag), andgg = (au,alg). By definition,fconst(S) =
0, Lar(S) = {1,2,3}, and by (ii) of Proposition 1/¢ecic(S) = {3}. To compute
Hpairs(S), we apply Lemma 3 for everf, v), u,v € Iya(S). For(1,2) corresponding
to (by, bs) = ((as, a11), (a3, ay)), we have to check whether

f(5(51)+d,)(a6) _ f(é(zh))(a?)) and f(5(51)+d)(a11) _ f(a(z?z))(ag))

hold ford = 0. By Lemma 2, we have

8(b1) = 6((as, a11))= min 8(b;) = d(ag) =1
ie{1}
8(ba) = 6((as, ag)) = min §(b;) = &(az)=2 .
i€{1}
In both equations] = {1}, asr(a11) andr(ag) are cyclic. The equations in (7) thus
hold by
f(l)(%) =a5 = f(Q)(ag) and f(l)(an) =a2 = f(Q)(GQ)
respectively. Hencél, 2) € Hpairs(.S). It can be shown in the same way ti&irs(S) =
{(1, 2)} andHconsl(S) == @.
Now we are ready to illustrate Algorithm 1 step by step on inguénd5.

Step1: C = {P(a:gl,a:EQ, xg3)} becausd onst= 0.

Step 2: Sincelycic(S) = {3}, we have to computé(bs) and Leycie(bs). By Lemma 2,
8(bs) = 0, and from (iii) of Proposition 1 we havBeye(bs) = lcm{3,4} = 12.
Thus, in this step we add the literaPATH 15 (27 , 25) to C.

Step 3: Forj = 1 andk = 0 we first have to computg(f(® (b,)). By Lemma 1, we
haveh(f© (b)) = min{h(f© (ag)), (f© (a11))} = min{0,1} = 0. Forj = 1
andk = 6(by) = 1, h(f®(by)) = 1 by Lemma 1. Sincé, (£ (b)) # 1, we add
no literals toC'. For similar reasons, we add no new literal€tdor j = 2, 3.

Step 4: As Hpars = {(1,2)}, we haved,(b;,bs) = (1,2) by Lemma 4, and add
thereforeﬁPATHl(xgl,z172), ﬁPATHg(Jcl;Q, z1,2)t0C.

Step 5: Heons((:S) = 0 and thus, no literals will be added €bin this step.

Step 6: The algorithm finally returns the clause

P(xgl,xgz,xag) — PATng(xES,xES), PATHl(a:EI,ng), PATHQ(Z‘E2721,2) .

2 We note that B is obtained from the background knowledge in the running example of [3] by
removing edg€as, a).

Since the VC-dimension of a concept cl&sis at mostlog(C), from the bound on
the size of the target concept in Theorem 6 it follows that the VC-dimensiop gfis
polynomial inm andn if B is a unary partial function graph. Thus, by Theorems 1 and
6 we have the following main result of this paper.

Theorem 7. Using the extended representation language, simple logic programs with
B being a unary partial function graph are efficiently PAC-learnable.

6 Remarks and open problems

Using the product homomorphism method, we have shown that simple logic programs
with unary partial function graph background knowledge are polynomially PAC-learnable
in an extended representation language. The importance of this result is that we have not
assumed any bound on the size of the target clause, the target clause is not necessarily
determinate, and its size may be exponential in the standard representation language.

Finally, we list some interesting open problems for further research. In practical
applications, usually there is no consistent hypothesis consisting of a single clause.
Since unary partial function graphs generalize forests, from our previous results in [4]
it follows that the problem of deciding whether there exists a consistent hypothesis con-
sisting ofk clauses is NP-complete for any fixed> 3 for unary partial function graph
background knowledge. It would be interesting to see whether the optimal solution can
be approximated in polynomial time. A further research topic would be to investigate
whether the positive PAC result of this paper holds for colored unary partial function
graphs, i.e., when the vocabulary is extended by a set of unary background predicates.
Finally, it would be interesting to apply the product homomorphism method to other
classes of directed graphs, in particular to classes generalizing unary partial function
graphs.

References

1. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimensiorournal of the ACM36(4):929-965, 1989.

2. R. Diestel.Graph theory Springer-Verlag, New York, 2nd edition, 2000.

3. T.Honath, R. Sloan, and G. Tan. Learning logic programs by using the product homomor-
phism method. IrProc. of the 10th Annual Conference on Computational Learning Theory
(COLT-97) pages 10-20, New York, 1997. ACM Press.

4. T. Honath and G. Tuan. Learning logic programs with structured background knowledge.
Artificial Intelligence 128(1-2):31-97, May 2001.

5. J.-U.Kietzand S. Reroski. Inductive logic programming and learnabilByGART Bulletin
5(1):22-32, 1994.

6. D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms
Second Edition, Addison-Wesley, Reading, 1981.

7. J. W. Lloyd. Foundations of Logic Programming, Second Editi@pringer-Verlag, 1987.

8. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methoaisal
of Logic Programming19/20:629-679, 1994.

9. L. G. Valiant. A theory of the learnableCommunications of the ACN27(11):1134-1142,
1985.

