Effective Rule Induction from Molecular Structures
Represented by Labeled Graphs

Susanne HocHe, Tamas Honath?1**, and Stefan Wrobé&P

L Fraunhofer AiS, Institute for Autonomous intelligent Systems, Schloss Birlinghoven,
D-53754 Sankt Augustin,Germany
2 University of Bonn, Department of Computer Science llrRerstrae 164, D-53117 Bonn,
Germany
{susanne.hoche,tamas.horvath,stefan.wrobel }@ais.fraunhofer.de

Abstract. Acyclic conjunctive queries form a polynomially evaluable fragment

of definite nonrecursive first-order Horn clauses. Labeled graphs, a special class
of relational structures, provide a natural way for representing chemical com-
pounds. We propose an algorithm specific to learning acyclic conjunctive queries
predicting certain properties of molecules represented by labeled graphs. To com-
pensate for the reduced expressive power of the hypothesis language and thus
the potential decrease in classification accuracy, we combine acyclic conjunctive
queries with constrained confidence-rated boosting. Preliminary experimental re-
sults indicate the potential of the method for problems involving labeled graphs.

1 Introduction

Machine Learning is traditionally concerned with the problem of approximating an un-
known target functiorf : X — Y, where the domain dnstance spac« is the Carte-

sian product of a fixed set dttributes Attributes are usually unordered or linearly
ordered sets. Despite the number of successful real-world applications using attribute-
value representation of the instances, the need of applying other representation lan-
guages in machine learning has long been recognized. One obvious argument has been
the problem that attribute-value representation is not appropriate for describing learn-
ing tasks involving instances with complex structures. Multi-relational learning, also
referred to as Inductive Logic Programming (ILP) [22, 30], is one of the most suc-
cessful directions among the approaches of considering more expressive representation
languages in learning.

In ILP, various classes of first-order languages are used to describe the input (i.e.,
examples and background knowledge) and output (i.e., hypotheses) components of the
learning algorithms. First-order languages, on the one hand, provide a natural way for
describing learning problems over structurally complex instance spaces. In addition,
hypotheses in this language are relatively easy to understand for users. On the other

* Partially supported by the DFG project (WR 40/1Ngchhaltige Informationsfusion: Aktives
Lernen
** Partially supported by the DFG project (WR 40/2Hybride Methoden und Systemarchitek-
turen fur heterogene Informationgume

hand, however, serious decidability and complexity problems may arise from their use
during the learning process. As an example, the membership problem, i.e., the problem
of deciding whether an instance belongs to the concept represented by an hypothesis,
becomes undecidable in first-order logic. To control such problems, different techniques
(e.g., hypothesis language and search biases) have been proposedl in ILP.

Labeled graphs are one of the most important tools describing objects and the way
they are connected. They are relational structures defined usually over vocabularies con-
sisting of a single binary and a finite set of unary predicate symbols. They provide, in
particular, a natural way for representing chemical compounds. Although ILP is con-
cerned with learning from relational structures, and many ILP applications have been
devoted to computational chemistry, surprisingly there are only few results (see, e.g.,
[12]) in the direction of restricting instances to labeled graphs. Such a structural as-
sumption could then be exploited in the learning process to control decidability and
complexity problems mentioned above.

In this work, we propose a boosted algorithm designed to learn acyclic conjunc-
tive queries predicting unknown properties of chemical compounds. Our algorithm as-
sumes that compounds are represented by relational structures corresponding to labeled
graphs. We consider learning problems of the following fo@ivendisjoint setsE+
and £~ of labeled graphs representing chemical compouinui$a set of definite first-
order Horn clauses consistent (within some error) with and £~. Since examples
are disjoint labeled graphs, we use the learning from interpretations ILP setting [7] as
the most plausible model for our purpose. In the algorithm presented, we apply top-
down induction, a popular technique based on refinement operators [23] for first-order
clauses. In our approach, refinement operators are defined by building blocks. In this
work, we assume that such building blocks are provided by an expert. We are work-
ing on automatic extraction of building blocks for labeled graphs. We will discuss this
problem later on.

In computational chemistry, pattern matching is usually defined by subgraph iso-
morphism. Since subgraph isomorphism generalizes the Hamiltonian path problem, it
is NP-complete. In planar graphs, however, it can be solved in linear time for any pat-
tern of constant size [9]. The importance of this result is that many molecules can be
represented by planar graphs. In contrast to this approach, we define pattern matching
by first-order logical implication, which in turn is equivalent to homomorphism [20] be-
tween relational structures in the problem setting considered. Since isomorphisms are
special homomorphisms, we thus apply a more general operator in pattern matching.
This may be important e.g. in those applications, where the length of paths connecting
substructures is not relevant. Homomorphism between finite relational structures gener-
alizes the graph vertei-coloring problem, and is thus NP-hard. It becomes, however,
polynomial for patterns of smattee-width[26]. Intuitively, tree-width measures the
degree of cyclicity of structures. In this paper, we restrict the search space to patterns
of tree-width one, also referred to as acyclic patterns. We note that homomorphism for
this fragment is LOGCFL-complete [14] and is therefore highly parallelizable.

1 We note that limitations regarding expressive power are not resolved completely by first-order
logic, as first-order sentences are only able to captaa propertiesof structures (see, e.g.,

[8)).

In [17], we have presented a greedy algorithm for learning acyclic patterns. By this
restriction, however, we reduce the expressive power of the hypothesis language. To
compensate for the reduced expressiveness and thus the decrease in classification ac-
curacy potentially resulting from it, in the proposed algorithm we combine acyclic pat-
terns with confidence-rated boosting [27]. Ensemble methods, in particular boosting,
are successful tools for increasing the prediction accuracy of classification learners by
combining a set of only moderately accurate base hypotheses into one highly accurate
strong hypothesis. Boosting works by repeatedly calling a base learner on reweighted
versions of the training data, and thereby constructing an ensemble of specialized rules,
or base hypotheses, which are finally combined into one prediction by weighted major-
ity vote. In the framework of confidence-rated boosting, each base hypothesis not only
predicts a classification but also generates a confidence score for this prediction.

The rest of the paper is organized as follows. In Section 2, we first review the nec-
essary notions and results related to acyclic conjunctive queries. Section 3 is devoted
to constrained confidence-rated boosting. In Section 4, we present our algorithm, and
in Section 5, we empirically evaluate it on the domain of mutagenicity [19]. Finally, in
Section 6 we conclude and discuss directions for future works.

2 Acyclic Conjunctive Queries

In this work, we restrict the hypothesis space to acyclic conjunctive queries, a practi-
cally relevant, efficiently evaluable fragment of first-order definite Horn-clauses. As an
advantage over other ILP approaches using standard PROLOG evaluation techniques,
we note that acyclic conjunctive queries allow evaluation of a set of instances in one
single step. In this section we repeat the necessary notions related to acyclic conjunc-
tive queries from our previous work [17]. In the Appendix, we give further details on
acyclic conjunctive queries. For a detailed introduction to acyclic conjunctive queries
the reader is referred to e.qg. [1].

Throughout this section, we consider vocabularies consisting of a set of constant
symbols, a distinguished predicate symbol called the target predicate, and a set of pred-
icates called the background predicates. Thus, (non-constant) function symbols are not
included in the vocabulary. Examples are ground atoms of the target predicate, and
the background knowledge is an extensional database consisting of ground atoms of
the background predicates. Furthermore, we assume that hypotheses are definite non-
recursive first-order clauses, or in the terminology of relational database theory, con-
junctive queries of the formky «— Lq,..., L;, whereLy is a target atom, and; is a
background atom for=1,...,1.

In order to define a special class of conjunctive queries, callgdlic conjunctive
queries, we first need the notion of acyclic hypergraphhypergraph(or set-systein
H = (V, E) consists of a finite sét” calledvertices and a familyE of subsets ol
calledhyperedgesA hypergraph isv-acyclic [10], or simplyacyclic, if one can remove
all of its vertices and edges by deleting repeatedly either a hyperedge that is empty or
is contained by another hyperedge, or a vertex contained by at most one hyperedge [15,
31]. Note that acyclicity as defined here is ndtexeditaryproperty, in contrast to e.g.
the standard notion of acyclicity in ordinary undirected graphs, as it may happen that

an acyclic hypergraph has a cyclic subhypergraph. For example, consider the hyper-
graphH = ({a,b,c}, {e1,e2,€e3,e4}) With ey = {a,b}, ea = {b,c}, es = {a,c}, and
es = {a,b,c}. This is an acyclic hypergraph, as one can remove step by step first the
hyperedges, es, e3 (as they are subsets @f), then the three vertices, and finally, the
empty hypergraph is obtained by removing the empty hyperedge that remained from
e4. On the other hand, the hypergrafti = ({a, b, c}, {e1, e2, e3}), which is a subhy-
pergraph off, is cyclic, as there is no vertex or edge that could be deleted by the above
definition. In [10], other degrees of acyclicity are also considered, and it is shown that
among themg-acyclic hypergraphs form the largest class properly containing the other
classes.

Using the above notion of acyclicity, now we are ready to define the class of acyclic
conjunctive queries. Le be a conjunctive query antl be a literal of@. We denote
by Var(Q) (resp. VaftL)) the set of variables occurring i@ (resp.L). We say that)
is acyclic if the hypergraptf (@) = (V, E) with V = Var(Q) andE = {Var(L) :
Lis aliteral inQ} is acyclic. For instance, from the conjunctive queries

P(X.Y,X) — R(X,Y),R(Y, Z),R(Z, X)
P(X,Y,Z) — R(X,Y),R(Y,Z),R(Z, X)

the first one is cyclic, while the second one is acyclic.

3 Constrained Confidence-Rated Boosting

Boosting has established itself as a successful method for improving the classification
accuracy of a learning system by combining the predictions of several base classifiers
learned in iterative calls to the underlying learner. Numerous algorithms have emerged
which demonstrate superior performance on a broad range of application problems (see,
e.g., [11, 25,5, 24, 16]).

The idea common to all boosting algorithms is to “boost” a weak learner performing
only slightly better than random guessing into an arbitrarily accurate learner by repeat-
edly calling it on reweighted versions of the training data, and thereby constructing an
ensemble of specialized rules, or base hypotheses. Predictions are based on all members
of the learned ensemble by combining the individual predictions by weighted majority
vote into one strong hypothesis.

The reweighted versions of the training gét= E+ U E~ on which the base
learner is repeatedly called are obtained by maintaining a probability distribl¥ion
over E modeling the weightD! associated with each training examplein the ¢-th
iteration of boostingD! indicates the influence of an instancewhen learning a base
classifierC;. Initially, the influence of all the instances is identical, i.e., the probability
distribution D' is uniform. In each iterative catlof the base learner, a base hypothesis
C,; with an associated weight is learned based ol weighted according to the current
distribution D?.

In the framework of confidence-rated boosting, the prediction of a base hypothesis
C, is confidence-rated. The sign &findicates the label predicted lay; to be assigned
to an instance, whereas the absolute valué @ interpreted ag’;'s prediction confi-
dence, or the reliability of’;'s prediction. A base hypothesis’ prediction confidence is,

on the one hand, used as its vote in the final, strong, hypotligsisd, on the other

hand, to update the distributidn® for the next iteration of the base learner. The distri-
bution is modified such that the weights of misclassified instances are increased while
the weights of correctly classified instances are decreased. This way, the learner has to
focus on those examples which are not correctly classified by the current ensemble.

Depending on the exact framework, a base hypothesis can apply distinct predic-
tion confidences to different examples. Here, we employ a form of confidence-rated
boosting in which a base hypothesis is restricted to make a prediction only for those
examples which are covered by it, and to abstain otherwise. We furthermore restrict,
following Cohen and Singer’s approach to constrained confidence-rated boosting [5],
the base hypotheses to either of two forms. A hypothesis either predicts, in the binary
case we deal with here, the positive class with a positive prediction confidence, or it is
the default hypothesis, just comprising the target predicate to be learned and satisfying
all examples, with an assigned negative confidence.

We note that hypotheses obtained by boosting algorithms are potentially more com-
plex than those generated by standard ILP learning systems. However, constraining the
base hypotheses to either of the above two forms improves comprehensibility of strong
hypotheses.

As suggested by [5], we aim at minimizing the ensemble’s training error by search-
ing in each round of boosting for a base hypothesis maximizing the objective function
Z which is, for a base hypothedi, defined based on the collective weight of all posi-
tive and negative instances covered®y(in what follows,x € C denotes that instance
x is covered by hypothesis):

Z(Cy) = > Di- > Dt 1)

z,€Et,2,€C, z,€E,x;€C

After the last iteration of the base learner, the strong hypothidsis formed on
the basis of all hypothes&s learned over the course of iterations, and their assigned
prediction confidences defined by

~ 1 <in€E+,xi€Ct Df + 2&77,)
Ct = iln ,

t . 1
Ywicb-miec, Vit 5m

(@)

wherem = |E| (see also [5]). To classify an instanzethe prediction confidences
of all base hypotheses coveringare summed up. If this sum is positive, the strong
hypothesis classifies as positive, otherwise is classified as negative:

mwﬂw42mm>, 3)
hi
whereh; : X — R is defined by

B Ct if z € Cy
hi(w) = {0 otherwise . 4)

Algorithm 1 BACQ

Require: setE of +/— labeled groundP-atoms and a labeled graph represented by ground
and B atoms
Ensure: a set of confidence-rated acyclic conjunctive queries

1: let Cyefauls be the unit claus® (X1, ..., Xmp) —
2:letD(z;)) =1/mfori=1,....m Il wherem = |E|
3:fort=1,...,Tdo
4: fork=1,...,Kdo
5 Cy = Caefauls B B B
6 while 3C € R(Cyx, N) such thatZ(C) > Z(Cy), /I see (1) for the definition of
whereR(Cyx, N) is a set containing (at most)
N randomly selected acyclic refinements(f do

7. Cr=C

8: end while

9: end for ~)

10: let Cy = Cj satisfyingZ (C;) = max Z(Cy)
11: letr, =1 if Z(Ct) > |Z(Cactautt)|

Caefaurt Otherwise
12: let Cov C E be the set of examples covered By
Il Cov is computed in a single step (see AlgorithmAEUATE in the Appendix)
13: fori=1,...,mdo
14: if z; € Cov then
15: let D(x;) = D(x;) - e ViR
I wherey; € {41, —1} according to the label aof;, andcg, is defined in (2)
16: end if

17: end for

18: let D(z;) = D(z;)/Zifori=1,...,m,whereZ, = > D(z;)
i=1,..., m

19: end for

20: return {(R1,¢R,),---,(Rr,Cry)}

4 Boosting Acyclic Conjunctive Queries

In this section, we present an algorithm designed to learn acyclic conjunctive queries
predicting unknown properties of chemical compounds. Our algorithm assumes that
compounds are represented by relational structures corresponding to labeled graphs.
More precisely, we assume without loss of generality that the vocabulary consists of a
target predicaté of arity mp, and predicated and B of aritiesm 4 andm g, respec-
tively. For each compound, we have a ground target atom of the f{am, . . . , a, .),
whereq; is the identifier of the compound, and, ..., a,,, are attribute values for
the whole compound (e.g:5lumo). Each (chemical) atom is described by a fact of the
form A(by, ..., b,), whereb, is the identifier of the compound containing the atom,
bs is the atom’s identifier, anéds, ..., b,,, are attribute values for the atom. Finally,
each bond is represented by a ground atom of the B(m, ..., ¢,), wherec; is
the compound identifier;, c3 are the identifiers of the atoms connected by the bond,
andcy, ..., cn, are attribute values for the bond. Thus, the grouhdnd B atoms

represent the (labeled) vertices and (labeled) edges of the labeled graphs. We note that
our approach assumes that molecules are represented in the learning from interpretation
setting [7].

The algorithm combining top-down induction of acyclic conjunctive queries with
constrained confidence-rated boosting is given in Algorithm 1. In Steps 1 and 2 of the
algorithm, we first initialize the target clause and the distribution over the set of training
examples. Then, we leaffi weak hypotheses (Steps 3—-19 of the Algorithm), wlére
is a user defined parameter.

To find a weak hypothesis, i.e., an acyclic conjunctive query, we apply top-down
induction using the following refinement operator. We first select at random a literal
with one of the predicate symbolB, A, or B from the clause to be refined. Then,
depending on its predicate symbol, we add a set of literals to the clause as follows.
If the selected literal is &-literal (i.e., it is the head of the clause), with the same
probability,

— either an atom or an acyclic building block (e.g., a benzene ring) is added to the
clause,

— or one of the attributes of thB-atom is selected at random, and the best special-
ization for this attribute with respect 0 defined in Eq. (1) is computed.

If an A-atom (i.e., a labeled vertex in the graph) has been selected, we add to the clause

— either literals representing a labeled edge ending in this vertex,

— or an acyclic building block containing the selected vertex,

— or constraints specializing one of the attributes of the vertex in a similar fashion as
described above.

Finally, for B-atoms, i.e., for labeled edges,

— we add either a set of literals defining an acyclic building block,
— or compute the best value for one of its attributes.

We note that none of the above refinements violates the acyclicity property. In particular,
building blocks are restricted to be acyclic, and thus, as they share at most one edge with
the labeled acyclic graph corresponding®pin Step 6, adding such a building block
always results in an acyclic clause.

At the same time of adding a set of literals (i.e., atom, bond, or acyclic building
block) to the clause, for each attribute of the literals we compute the best value with re-
spect taZ and specialize the attribute with the value for whi€ks maximal. In contrast
to the greedy search used in [5], in Steps 5-8 of the algorithm, we apply simple local
search for finding an acyclic conjunctive query. That is, we start the local search with
the default clause, and refine it as long as its randomly selected refinement improves
the quality measured h¥. We repeat the random local search algoritkntimes (see
Step 4 of the algorithm) and select the acyclic conjunctive query of the best quality
(Step 10). In Steps 12-18, we then update the distribution over the training set.

4.1 Building Blocks

In the work presented here, we assume that buildings blocks are provided by an expert.
However, we are working on the automatic extraction of acyclic building blocks. Since
structures are restricted to labeled chemical graphs, we are going to consider only cycle
and tree patterns. To extract cycle patterns, we are going to compute the set of cycles of
length/, for every? = 2,..., L. L is a user defined parameter bounding the length of
cycles. For a fixed, this can be done by evaluating first the acyclic conjunctive query

CyCle(Yh cee 7}/2) — B(X7 Y17Yv21 Zl,17 RS Zl,msff})v
B(X7 YQa}/Sa Z2,1a .. '7Z2,mB—3)7

B(X,Y,Y1,Z1,- - Zomp—3)

and then removing from the answer set the tuftes. . ., a,) satisfyinga; = a; for
somel < i < j < (. By this step we filter those closed walks that are not cycles. If
the remaining set is nonempty then for all possible subdéts. . . , V. } of the nominal
attributes ofA and B, and for all possible combinatioq®;, ..., v} of the values of
these attributes, we can check in a similar way, whether there is a cycle of lesgth
thatV; = v; in each atom and in each bond in the cycle for every 1, ..., k. This
method is exponential in the number of nominal attributeg afnd B. However, it is
effective if the number of nominal attributes is small. To extract tree patterns, we are
going to investigate the labeled graph obtained by removing all edges occurring in a
cycle.

5 Empirical Results on the Domain of Mutagenicity

We evaluated our approach on the ILP-benchmark problemMutégenicity[19]. The
learning task is to predict the mutagenicity of nitroaromatic compounds. Mutagenic
compounds are often known to be carcinogenic and to cause damage to the DNA. Not
all compounds can be empirically tested for mutagenicity, and the prediction of muta-
genicity is vital to understanding and predicting carcinogenesis.

Of the several relational descriptions that are available for the domain [29], we use
the strongly structured descriptid®y, which comprises a description of the atoms of
the molecules and the bonds between these atoms; global properties of the molecule as
e.g. their hydrophobicity; chemical structures present in the molecules as e.g. benzenic
or methylic groups.

Here, we consider the subsetl@B so called regression-friendly compounds$ of
which are classified as having positive levels of mutagenicity. The predictive accuracy
is estimated by 10-fold-cross-validation, where we use the same folds as [29] for their
experiments with Progol. The accuracy and standard deviation obtained in our exper-
iments with BACQ is displayed in Table 1 for various numbers of iterations ranging
from 50 to 400, together with reference results on the same dataset using background
knowledgeB,, and the sources from which these results are reported. ACQ is an ILP

Table 1. Accuracy+ standard deviation for the Mutagenicity domain for BACQ with different
numbers of iterations ranging from 50 to 400 (i.e., T in Algorithm 1), in comparison to other
systems

ACQ [C?RIB[FOIL [Fors [G-Net[Progo[STILL
(17] | [16] |[19] [[18] | [2] | [19] | [28]
87.0| 88.0 |82.0(89.0|92.0 | 88.0 | 90.0
nfa | £3.4 |+3.0|£6.0|£8.0 | £2.0| +5.0

BACQ|BACQ[BACQ|BACQ|BACQ|BACQ|BACQ|BACQ
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400
89.9] 89.9] 91.5] 90.4] 92.0] 92.0| 915] 915
+4.6|+4.6| +3.8| +4.9| £3.8| +£3.8| £3.8| £4.5

learner based on acyclic conjunctive queries which we previously introduced [17] and
which serves as a starting point for the work presented in this paper.

The classification accuracy obtained after only T=50 iterations with BACQ is lower
than, however in the range of the standard deviation of, the best result reported so far for
the Mutagenicity domain, accomplished with the system G-Net [2]. The result is also
on par with the second best result reported for the domain, achieved with the system
STILL [28]. For increasing T=250, and T=300, respectively, the classification accuracy
is identical to the best one reported for this domain, G-Net [2], however with only half
the standard deviation. Irrespective of the number of boosting iterations, our results with
BACQ lie well in the range of the standard deviations reported for the learning systems
most successful on the Mutagenicity domain. The classification accuracy of ACQ is
significantly outperformed by any result of BACQ.

In our experiments, carbdbaromaticring, carbon6_ring, carbon5_ring, het-
ero.aromatic6_ring, heteraaromatic5_ring, ring6, ring5 were used as cycle building
blocks, and nitro and methyl as tree building blocks (see also [19]). As an example, the
acyclic building block defining carbab_aromaticring is

carbon5_aromaticring(X, Y1,...,Ys) «
atom X, Y1, ¢, Uy, V1), ..., atom X, Ys, ¢, Us, Vs),
bon({X7§/1a Y2a 7)7 bOh((X, Y27Y37 7)a teey bon(‘{Xv 1/'5’ Yl? 7)

6 Conclusion

In this paper, we have presented an algorithm specific to learning acyclic conjunctive
queries predicting unknown properties of chemical compounds. Here, chemical com-
pounds have been represented by relational structures corresponding to labeled graphs.
In our work, building blocks have been used for top-down induction of acyclic con-
junctive queries. In the experiments, we have assumed that such buildings blocks were

provided by an expert. Although this seems to be a reasonable assumption when con-
sidering chemical graphs, we are working on the automatic extraction of cycle and tree
patterns as building blocks.

In ILP, examples are usually evaluated one by one (by some PROLOG system).
One of the major advantages of our approach is that acyclic conjunctive queries allow,
in contrast to the standard ILP evaluation approach, examples to be evaluated in one
step.

Restricting the search space to acyclic patterns implies, however, a reduced expres-
siveness and a potential decrease in classification accuracy. These shortcomings are
counteracted by applying constrained confidence-rated boosting. Our first experiments
indicate that combining acyclic conjunctive queries with constrained confidence-rated
boosting has indeed a potential for real-world problems involving labeled graphs. As
future work, we are going to evaluate the method on further such domains.

References

1. S. Abiteboul, R. Hull, and V. VianuFoundations of Database#\ddison-Wesley, Reading,
Mass., 1995.

2. C. Anglano, A. Giordana, G. Lo Bello, and L. Saitta. An experimental evaluation of coevo-
lutive concept learning?roc. of the 15th Int. Conf. on Machine Learnjrip98.

3. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database
schemesJournal of the ACM30(3):479-513, 1983.

4. P. A. Bernstein and N. Goodman. The power of natural semijc@h&M Journal on Com-
puting, 10(4):751-771, 1981.

5. W. Cohen and Y. Singer. A Simple, Fast, and Effective Rule LeaRmec. of 16th National
Conference on Atrtificial Intelligencd999.

6. T. H. Cormen, C. E. Leiserson, and R. L. Rivebttroduction to Algorithms MIT Press,
Cambridge, Mass., 1990.

7. L. De Raedt and S. Dzeroski. First-Order jk-Clausal Theories are PAC-Leardatfizial
Intelligence 70(1-2): 375-392, 1994.

8. H.-D. Ebbinghaus and J. FlurRinite Model TheorySpringer-Verlag,Berlin,1995.

9. D. Eppstein. Subgraph isomorphism in planar graphs and related prolde@mph Algo-
rithms & Applications 3(3):1-27,1999.

10. R. Fagin. Degrees of acyclicity for hypergraphs and relational database scliemesl of
the ACM 30(3):514-550, 1983.

11. Y. Freund, and R.E. Schapire. Experiments with a New Boosting Algoriat. of 13th
International Conference on Machine Learnjri96.

12. T. Gartner, P. A. Flach, and S. Wrobel. On Graph Kernels: Hardness Results and Efficient
Alternatives.The Sixteenth Annual Conference on Computational Learning Theory and The
Seventh Kernel Workshop (COLT-2008) Appear.

13. G. Gottlob. Subsumption and implicatioimformation Processing Letter24(2):109-111,
1987.

14. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. In
Proceedings of the 39th Annual Symposium on Foundations of Computer S@ages
706-715. IEEE Computer Society Press, 1998.

15. M. Graham. On the universal relation. Technical report, Univ. of Toronto, Toronto, Canada,
1979.

16. S. Hoche and S. Wrobel. Relational Learning Using Constrained Confidence-Rated Boost-
ing. Proc. 11th Int. Conf. on Inductive Logic Programming (IL.2DO1.

17. T. Horvath and S. Wrobel. Toward Discovery of Deep and Wide First-Order Structures: A
Case Study in the Domain of MutageniciBroc. Discovery Scien¢c@001.

18. A. Karalic.First Order RegressiorPhD thesis, University of Ljubljana, Faculty of Computer
Science, Ljubljana, Slovenia, 1995.

19. A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenicity:
A study in first-order and feature-based inductidrtificial Intelligence 85:277-299, 1996.

20. Kolaitis and Vardi. Conjunctive-query containment and constraint satisfadi@®sS: Jour-
nal of Computer and System Sciend&?2):302—-332, 2000.

21. S. Muggleton. Inverse entailment and Proghdkew Generation Computing.3(3-4):245—

286, 1995.

22. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and metHidus.
Journal of Logic Programmingl9/20:629-680, 1994.

23. S.-H. Nienhuys-Cheng and R. de Wdfundations of Inductive Logic Programmingpl-
ume 1228 ol NAI. Springer, Berlin, 1997.

24. D. Opitz, and R. Maclin. Popular Ensemble Method: An Empirical Stimlyrnal of Artifi-
cial Intelligence Research 11, pages 169-19899.

25. J.R. Quinlan. Bagging, boosting, and C&£¥8c. of 14th Nat. Conf. on AL996.

26. N. Robertson, and P.D. Seymour. Graph minors Il: algorithmic aspects of tree-width.
Algorithms 7:309-322,1986.

27. R. E. Schapire, and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Proceedings of COLT'9%ages 8091, 1998.

28. M. Sebag. Distance Induction in First Order Lodteoc. 7th Int. Workshop on Inductive
Logic Programming (ILP)1997.

29. A. Srinivasan, S. Muggleton, and R. King. Comparing the use of background knowledge
by inductive logic programming systen®roceedings of the 5th International Workshop on
Inductive Logic Programmindgl995.

30. S. Wrobel. Inductive logic programming. In G. Brewka, edifsdyances in Knowledge
Representation and Reasonjpgiges 153—-189. CSLI-Publishers, Stanford, CA, USA, 1996.
Studies in Logic, Language and Information.

31. C.T.YuandZ. M. Ozsoyoglu. On determining tree query membership of a distributed query.
INFOR, 22(3), 1984.

Appendix: Acyclic Conjunctive Queries

In this appendix we give an algorithm for acyclic conjunctive query evaluation. In [3]
it is shown that the class of acyclic conjunctive queries is identical to the class of con-
junctive queries that can be representeddiy forests[4]. Given a conjunctive query

@, the join forest/ F'(Q) representingy is an ordinary undirected forest such that its
vertices are the set of literals ¢f, and for each variable € Var(Q) it holds that the
subgraph of/ F(Q) consisting of the vertices that containis connected (i.e., it is a
tree).

Now we show how to use join forests for efficient acyclic query evaluation ALet
be a set of ground target atoni3,be a set of ground atoms, and @tbe an acyclic
conjunctive query with join foresi F'(Q). In order to find the subsdf’ C FE implied
by @ with respect taB, we can apply the following method. L&, 71, . .., Ty (kK > 0)

algorithm EVALUATE

input: extensional database D and join tree T with root
labeled by no

output: {nof: 0@ is a substitution mapping the nodes of T into D}
let R ={nof: 0 is a substitution mapping ng into D}
let the children of no be labeled by ni,...,nx (k>0)
for i =1t k

S = evaluate (D,T;) /Il T; is the subtree of T rooted at n;

R = the natural semijoin of R and S wrt. no and n;
return R

denote the set of connected components BfQ), whereT, denotes the tree contain-
ing the head of), and letQ; C @ denote the query representedfiyfori = 0, ..., k.
The definition of theR,’s implies that they form a partition of the set of literals @f
such that literals belonging to different blocks do not share common variables. There-
fore, the subquerieQy, . . . , @ can be evaluated separately; if there ig,an< i < k,
such that the Boolean conjunctive quéy (i.e., a conjunctive query with empty head)
is false with respect t& then @ implies noneof the elements ofZ with respect to
B, otherwise@ and (@), imply the same subset df with respect taB. By definition,
Qo implies an atorre € F if there is a substitution mapping the head@f to e and
the atoms in its body intd@, and@; (1 < i < k) is true with respect td3 if there

is a substitution mapping,’s atom intoB. That is, using algorithm ¥ALUATE given
below, @ implies E’ with respect taB if and only if

k
(E' C EVALUATE (BU E, Tp)) A (/\(EVALUATE (B, T;) # @))
i=1

It remains to discuss the problem of how to compute a join forest for an acyclic con-
junctive query. Using maximal weight spanning forests of ordinary graphs, in [4] Bern-
stein and Goodman give the following method to this problem.@die an acyclic
conjunctive query, and letZ(Q) = (V, E,w) be a weighted graph with vertex set

V = {L : Lisaliteral ofQ}, edge sett = {(u,v) : Var(u) N Var(v) # 0}, and

with weight functionw : E — IN defined byw : (u,v) — |Var(u) N Var(v)|. Let
MSF(Q) be a maximal weight spanning forest @{Q). Note that maximal weight
spanning forests can be computed in polynomial time (see, e.g., [6]). It holds at if
is acyclic thenM SF(Q) is a joint forest representin@. In addition, given a maximal
weight spanning forest/ S F'(Q) of a conjunctive query, instead of using the method
given in the definition of acyclic hypergraphs, in order to decide whetheracyclic,

one can check whether the equation

> wwv)= > (Clas§z)-1))
(u,w)EMSF(Q) zeVarQ)

holds, where Clags) denotes the number of literals @p that containe (see also [4]).

