
Probabilistic Approach

for Reduction of Irrelevant Tree-structured Data

Amaury Habrard, Marc Bernard, Marc Sebban

EURISE – Université Jean Monnet de Saint-Etienne
23, rue du Dr Paul Michelon – 42023 Saint-Etienne cedex 2 – France
{amaury.habrard,marc.bernard,marc.sebban}@univ-st-etienne.fr

Abstract. This article aims at pruning noisy or irrelevant subtrees in a
set of trees. The originality of this approach, in comparison with classic
techniques in prototype selection, comes not from the non-deletion of the
whole tree, but rather of some of its subtrees. Our method is based on the
computation of confidence intervals on a set of subtrees according to a
probability distribution. We propose an approach to assess these intervals
on this specific type of data and show experimentally its interest in the
context of learning from noisy data.
Keywords. data reduction, prototype selection, tree-structured data,
noisy data

1 Introduction

The use of structured or semi-structured data is increasing in research domains
such as knowledge discovery in databases or machine learning. For example,
a learning sample can be represented by a relational database. The increasing
interest for directly exploiting such data has lead to a new field of research
named multi-relational learning [1]. XML data are another example of structured
representation. They are easily available in huge quantity on the web, and have
stimulated the interest for tree-structured data.

The tree representation gives an interesting compromise between graphs and
linear representations. Actually, they allow the expression of hierarchical depen-
dences and are less costly for processing than graphs. A lot of recent works are
interested in knowledge discovery from tree-structured data. For example we
can cite the extraction of frequent trees [2, 3], or the detection of tree patterns,
either in the framework of relational databases or in the one of XML data [4, 5].
Trees are also studied in machine learning, particularly in the inference of tree
patterns [6, 7], or in tree automata induction [8, 9].

While trees are less complex data structures than graphs, they are never-
theless more difficult to process than linear representations. Consequently, in
domains where the amount of data is huge, and the level of noise very high (in
data mining for example), it seems interesting to select only relevant data to
work on. This way to proceed allows one to reduce not only the complexity of
data storage but also the generalization error of the induced models. These tasks

2 A. Habrard, M. Bernard, M. Sebban

are the matter of data reduction which can be achieved via two ways: prototype
selection (PS) [10] and feature selection (FS) [11]. It is important to note that
these methods are usually applied to non-structured data and aim at totally
deleting either an example (PS) or a feature (FS). However, in the context of
tree-structured data, we assume that only some particular subtrees of a given
tree are noisy or irrelevant. Then it is not necessary to completely delete this
tree. The suppression of a subtree can be seen as an hybrid approach of data
reduction. It looks like prototype selection when a tree is completely deleted,
and a local feature selection when only subtrees are removed.

In this paper, we propose a probabilistic approach based on confidence inter-
vals to prune irrelevant subtrees. In fact we study the probability of a subtree to
be in a class issued from a partitioning of the whole set of subtrees (Section 2).
In Section 3, we describe a partitioning method based on tree patterns. Section 4
deals with application of our method both on artificial and real data.

2 Pruning Subtrees

We consider the problem of inferring an estimation model in the presence of noisy
tree-structured data. We aim at pruning noisy and irrelevant subtrees before the
learning process. Our approach consists in estimating a probability distribution
on the set of all the subtrees of the learning sample. We construct a partition
of the learning subtrees, and for each element of this partition, we compute a
confidence interval containing (100 − α)% of the considered learning subtrees.
Those with a too small probability are pruned.

2.1 Definitions and Notations

A tree has a root node and a set, eventually empty, of children. A leaf is a node
without child. Trees, we are interested in, are constructed over a signature. Each
node is labeled by a functional symbol, and all the nodes labeled by the same
symbol have exactly the same number of children. Finally the symbols are typed
and the children ordered.

Definition 1 A signature Σ is a 4-tuple (S, V, arity, σ). S is a finite set whose
elements are called sorts. V is a finite set whose elements are called functional
symbols. arity is a mapping from V into IN , arity(f) is called the arity of f . σ

is a mapping from V into S, σ(s) will be called the sort of s. We denote ΣT the
set of trees defined relative to a signature Σ.

The data reduction method we propose is based on a probability distribution
defined on a set of subtrees. Thus we introduce some notations related to the
subtrees of a sample of trees.

Definition 2 Let T be a sample of trees. We denote Sub(T) the set of the
subtrees of T and MSub(T) the multi-set of subtrees of T .

Reduction of tree-structured data 3

For example, in the sample E = {h(f(a, b)), f(h(b), a)}, Sub(E) = {a, b, f(a, b),
h(b), h(f(a, b)), f(h(b), a)} and MSub(E) = {a, b, a, b, f(a, b), h(b), h(f(a, b)),
f(h(b), a)}

Definition 3 A position is a couple (f, p) (denoted f.p) where f ∈ V and p ∈ IN

such that 1 ≤ p ≤ arity(f). A position allows us to design the subtree correspond-
ing to the child number p of the symbol f (the children are ordered from left to
right).

For example, in the sample E = {h(f(a, b)), f(h(b), a)}, the subtree a is at
position f.2 of the tree f(h(b), a) and at position f.1 of the tree f(a, b).

2.2 Estimation of a Probability Distribution

In a first step, we estimate a probability distribution relatively to a sample
of trees T . This distribution then allows us to compute a probability for each
subtree in Sub(T). We use a similar approach to the “N-grams” often used
as a model of natural language modeling [12]. This approach assumes that the
probability of a given symbol in a string, can be computed using the n−1 previous
symbols. We use a similar principle, with n = 2, computing the probability of a
symbol relatively to its parent. Note that a different adaptation of this approach
in the context of trees has already been proposed in [9]. For each symbol a of
the sample, we assess via p̂c(a | f.i) its probability to be the child number i of
any symbol f . Formally:

∀a ∈ V , ∀f ∈ V , ∀1 ≤ i ≤ arity(f), p̂c(a | f.i) =
Number of occurrences of a in f.i

Number of occurrences of f
Moreover we estimate for each symbol its probability to be the root of a tree.

∀a ∈ V , p̂r(a) =
Number of examples with a for root

Number of examples
Finally the estimation of the probability of a tree t = f(t1, . . . , tn) is computed
as follows:

p̂a(f(t1, . . . , tn)) = p̂r(f)× ˆppos(t1 | f.1) × · · · × ˆppos(tn | f.n)

where ˆppos is recursively1 defined by:
ˆppos(g(u1, . . . , un) | f.n) = p̂c(g | f.n) × ˆppos(u1 | g.1)× · · · × ˆppos(un | g.n)

For example, the set E = {h(f(a, b)), f(h(b), a)} allows us to define the following
conditional probabilities:

p̂c(a | f.1) = 1

2
p̂c(a | f.2) = 1

2
p̂c(a | h.1) = 0 p̂r(a) = 0

p̂c(b | f.1) = 0 p̂c(h | f.2) = 0 p̂c(b | h.1) = 1

2
p̂r(h) = 1

2

p̂c(h | f.1) = 1

2
p̂c(b | f.2) = 1

2
p̂c(h | h.1) = 0 p̂r(b) = 0

p̂c(f | f.1) = 0 p̂c(f | f.2) = 0 p̂c(f | h.1) = 1

2
p̂r(f) = 1

2

and the probability of the tree t = h(f(a, b)) is computed as follows:

p̂a(t) = p̂r(h)× p̂c(f | h.1) × p̂c(a | f.1) × p̂c(b | f.2) =
(

1

2

)

4

= 1

16

If t is a subtree of a tree of the learning sample (t must be different from the
whole tree), then we compute its probability using ˆppos and taking into account

1 The base case of recursion corresponds to symbols of arity 0

4 A. Habrard, M. Bernard, M. Sebban

its position relatively to its parent. For example, the probability of the subtree
f(a, b) of the set E is computed as follows:

p̂a(f(a, b)) = p̂c(f | h.1) × p̂c(a | f.1) × p̂c(b | f.2) =
(

1

2

)3

= 1

8
.

2.3 Pruning with Confidence Intervals

In the previous section, we have proposed a way to construct a probability dis-
tribution from a set of trees E. We show here how we can use this distribu-
tion to a priori prune subtrees considered statistically irrelevant for the future
learning process. We consider a subset S of MSub(E) and we compute a confi-
dence interval, according to a risk α. We look for an interval [pmin; 1] such that
a proportion 1 − α of subtrees has a probability greater than or equal pmin:
p(pa(t) ≥ pmin) = 1 − α.

According to the Central Limit Theorem, the mean p̂a(tS) of the probabilities
of the elements of S follows a normal distribution with an expected value µ and
a standard deviation σ√

|S|
. Then the confidence interval around µ is defined as

follows: µ ∈ p̂a(tS) ± σ̂√
|S|

× uα, where σ̂ is the estimated standard deviation

and uα the (1− α)-percentile of the normal distribution. Let pmin be the lower
bound of this interval, such that pmin = p̂a(tS) − σ̂√

|S|
× uα.

Once this lower bound is computed, our decision rule is to delete all the
subtrees of S whose probability is lower than pmin. This leads us to define
formally the notion of relevance of a subtree. This definition is in relation with
the definition of irrelevant features proposed in [11].

Definition 4 Let a distribution D on a set of subtrees S, modeling the same
concept, and let α be a risk. A subtree t is (1 − α)-relevant in S if and only if
p̂a(t) ≥ p̂a(tS) − σ̂√

|S|
× uα.

To end this section introducing our pruning method, we synthesize the main
steps of our approach in Algorithm 12 .

3 Partitioning Subtrees with Regular Tree Patterns

In our method we need to compare the probabilities of subtrees of a sample.
We think that the comparison of the probabilities of two subtrees that never
appeared in the same places (positions) in the sample is irrelevant. Indeed they
a priori do not model the same concept and then we assume that they are not
comparable. We propose in this section a method of partitioning using regular
tree patterns, i.e. tree patterns with only one variable. This approach ensures
that two subtrees that appear in the same context (i.e. subtrees with the same
ancestors and siblings) will be in the same partition.

Definition 5 A regular tree pattern is a tree defined on a signature (S, V ∪
{X}, α, σ) where X is a variable and the tree has exactly one leaf labeled by X.

2 The probability distribution is adapted to delete subtrees with specific symbols

Reduction of tree-structured data 5

Data: E set of trees
α real

begin

Construct the probability distribution with E;
T ← partitioning MSub(E);
foreach S ∈ T do

Compute an interval [pmin; 1] for the probabilities of the subtrees of S

to the risk α;
foreach t ∈ S do

Adapt the probability distribution in deleting the instance of t;
Delete t if it is not (1 − α)-relevant or if pa(t) = 0;
Rebuild the probability distribution in adding the instance of t;

end

end

end

Algorithm 1: Pruning by confidence interval

Let t a regular tree pattern and t′ an ordinary tree. We denote t.#t′ the substi-
tution of the variable X of t by the tree t′.

To construct a partition of the multi-set of subtrees, our approach consists
in extracting all the regular tree patterns definable from a sample of trees. The
set of all regular tree patterns is given by {t | ∃t′ ∈ MSub(E) and t.#t′ ∈ E}.

Each pattern t allows us to define a class πt of the partition of the multi-set
of subtrees. All the subtrees which can be concatenated to t to obtain a tree of
the learning sample belong to this partition3: πt = {t′ ∈ MSub(E) | t.#t′ ∈ E}.

4 Evaluation in the Context of Learning Stochastic Tree

Automata

We now present experimental results which justify the interest of our method
as a pre-process of the learning task. Since we work on trees, we propose to
evaluate our data reduction approach in the framework of learning stochastic
tree automata from a sample of trees [8]. In such a context, we have a sample of
trees, supposed to be generated from a probability distribution. The objective
is to learn the probabilistic model which has generated the data. We propose
to compare the automata inferred with noisy data and those induced after the
pruning process. We achieved two series of experiments. The first one deals with
situations where the target automaton is a priori known. In this case, we can
use a measure of distance between the inferred model to the target automaton.
However, we do not always know this one. Then, we also evaluate our approach
in a second series of experiments, using a perplexity measure. This criterion
assesses the relevance of the model on a test sample.

3 The complexity of the approach, relative to the size of trees, depends on the parti-
tioning

6 A. Habrard, M. Bernard, M. Sebban

4.1 Stochastic Tree Automata

A tree automata [13, 14] defines a regular language on trees as a finite automaton
defines a regular language on strings. Stochastic tree automata are an extension
of tree automata, defining a probability distribution on the tree language defined
by the automaton. We use an extension of these automata taking into account
the notion of type: stochastic many-sorted tree automata (SMTA) defined on a
signature [15]. We do not detail here these automata and their learning method.
The interested reader can refer to [8, 4]. We only specify that a learned stochastic
tree automaton allows one to associate a probability to each tree of a sample.
Since we apply a pruning method on a set of sorted trees, we have to ensure that
pruned trees still respect a signature. Practically, we replace pruned subtree by
a unique symbol which does not appear in the sample and has a different type.

4.2 Evaluation Criteria

Distance from the Target Automaton: [16] defines distances between two
hidden Markov models introducing the co-emission probability, as the prob-
ability that two independent models generate the same string. [17] presents
an adaptation of the co-emission to stochastic tree automata. The co-emission
probability of two stochastic tree automata M1 and M2, constructed over the
same signature Σ, is denoted A(M1, M2) and defined as follows: A(M1, M2) =
∑

t∈ΣT PM1
(t)∗PM2

(t). Where PMi
(t) is the probability of t given the model Mi.

The co-emission probability allows us to define a distance Da which can be in-
terpreted as the measure of the angle between the vectors representing automata
in a space where the base is the set of trees of ΣT .

Definition 6 The distance Da between two automata M1 and M2 is defined by:

Da(M1, M2) = arccos

(

A(M1,M2)√
A(M1,M1)∗A(M2,M2)

)

Perplexity measure In the case of tree automata, the quality of a model
A can be evaluated by the average likelihood on a set of trees S relative to

the distribution defined by A: LL =
(

1
‖S‖

∑|S|
j=1 log PA(tj)

)

4. A perfect model

can predict each element of the sample with a probability equal to one, and so
LL = 0. In a general way we consider the perplexity of the test set which is
defined by PP = 2LL. A minimal perplexity (PP = 1) is reached when the
model can predict the probability of each element of the test sample. Therefore
we consider that a model is more predictive than another if its perplexity is
lower. A problem occurs when a tree of the test sample cannot be recognized
by the learned automaton A. Actually the probability of this example is 0 and
the perplexity cannot be computed. To avoid this problem a classical method
consists in smoothing the distribution of the learned model using an interpolation
approach [18] with an unigram model A0 recognizing all the examples. The
probability of a tree t, in our experiments, is then given by:

P̂ (t) = 0.9 ∗ p(t|A) + 0.1 ∗ p(t|A0)

4 ‖S‖ is the number of nodes in S and PA(tj) is the probability of tj according to A

Reduction of tree-structured data 7

4.3 Experimentations

Recall that our objective is to study the interest of our pruning method in the
context of learning tree automata from noisy data. Then we need to be able to
artificially corrupt the data. When we work with positive and negative instances,
a classic approach to noise data is to invert the labels of some examples. In our
framework, all examples are unlabeled (more exactly they are only positive)
and we need to introduce the noise in the structure of the examples. Our noise
protocol consists in changing a proportion γ of the leaves of the trees. In our
experiments we artificially corrupt the training samples with values of γ varying
from 1% to 50%, and we apply our pruning method with different values of α

from 0.01 to 0.25. We present, at first, the results on the experiments considering
a target automaton. Then we present those with a target automaton a priori
unknown. We use two criteria of performance to evaluate the results: the mean
of the quality measure (the distance Da or the perplexity measure) on all the
levels of noise and the standard deviation around this mean. We also test the
significance of our results using a Student paired t-test over the means with a
critical risk of 5%. Note that all the results presented correspond to the optimal
α value.

Experimentations Knowing the Target Automaton We suppose here that
the target automaton is a priori known. This automaton allows us to generate
a sample of trees according to the distribution defined by this automaton. We
first infer an automaton from a noisy sample (one for each level of noise). Then
we apply our pruning method on the noisy sample with different values of α. We
infer an automaton with each pruned sample. We finally measure the distance
Da between each of the inferred automata and the target one. We achieved
our experiments on five artificial datasets. One on a tree grammar representing
stacks of objects, one on a simple grammar representing conditional statements
(denoted Cond.), one on a grammar on boolean expressions (denoted Bool.)
and two other artificial datasets (Art1 and Art2). The results are synthesized on
Table 1. We give, for each dataset, the size of the initial sample (IS) in the number
of subtrees, and the percentage of reduction of our pruning method (Red). In the
same table we also give the average distance Da

5 observed between the target
automaton and the inferred automata ± the standard deviation. Da I represents
the distance relative to the automaton learned on the initial noisy sample, and
Da Pr the distance to the one learned from the pruned sample. In order to
assess the relevance of our approach, we decided to compare its performances
with those obtained by a simple Monte Carlo selection (denoted by MCS in the
table). To achieve this comparison, we randomly removed the same proportion
of subtrees (i.e. Red %) from the initial multi-set of subtrees (MSub(E)). Then,
the described results are obtained from learning sets with exactly the same size.
The last two columns concern the significance of the results (Sig1 for Pr vs I and
Sig2 for Pr vs MCS). The experiments have shown that, not only the pruning
of the noisy sample allows us to learn an automaton closer to the target one with

5 The means computed are the means of the distances on the different levels of noise

8 A. Habrard, M. Bernard, M. Sebban

Base IS Red Da I Da Pr Da MCS Sig1 Sig2

Stacks 35724 5% 0.721 ± 0.514 0.420 ± 0.332 0.869 ± 0.496 yes yes

Cond. 71863 5% 0.618 ± 0.187 0.590 ± 0.224 1.050 ± 0.316 no yes

Bool. 43185 26% 0.350 ± 0.240 0.242 ± 0.230 0.227 ± 0.142 yes no

Art1 33137 0.5% 1.230 ± 0.265 0.556 ± 0.237 1.374 ± 0.339 yes yes

Art2 30113 7.4% 0.846 ± 0.398 0.599 ± 0.247 1.011 ± 0.485 yes yes

Table 1. Distances Da to the target automaton

an average reduction of 8.8% of subtrees, but also our approach is highly better
than the Monte Carlo sampling. The obtained results are particularly interesting
on the databases Stacks, Bool., Art1 and Art2. On these databases, the standard
deviation of computed distances without pruning is significantly higher than the
one of computed distances with pruning.

Experimentations without Knowing the Target Automaton In this con-
text, we consider to have a characteristic sample of trees. We divide this sample
in two sets: a training set and a test set. As we want to evaluate our approach
in the context of noise, we corrupt the training set with the different levels of
noise. We learn an automaton for each of the noisy samples. Then we apply
our pruning method on each of these samples with the different values of α.
We learn a tree automaton for each of the pruned sample obtained. Then we
evaluate all the inferred automata on the test set with the perplexity measure.
Note that the test set is never noised. To make our experiments we use a 5-folds
cross-validation. We did our experiments on 8 datasets. We have used a sam-
ple of each of the five artificial databases presented in the previous section. We
also evaluate our method on real data with a sample of the PKDD’02 discov-
ery challenge6 database (dataset on hepatitis) obtained as described in [4]. We
also use the database Student Loan of the UCI Irvine [19] and a dataset on the
toxicity of the tacrine molecule presented in [20]. These two datasets correspond
to structured data in 1st order logic and were converted into trees according to
the principle presented in [15]. The results are presented on Table 2. We give
for each dataset the average percentage of sample reduction with the pruning
method (Red). The average perplexity measure with noisy data without pruning
(P I) and the average perplexity obtained after the pruning process (P Pr) ±
the standard deviation. The last column indicates if the results are significant.
The results have shown that the perplexity is reduced in most of the cases, ex-
cept for the Stacks and the Tacrine, with an average reduction of 10% of the
training sample. In most of the experiments, the standard deviation is lower
after a pruning phase than with no pruning. This remark tends to confirm that
our method is relatively robust.

We summarize our results in a concise way on Figure 1. Each dot represents
a database. A dot under the bisecting line expresses the fact that the pruning
approach is better than the one with no pruning.

6 http://lisp.vse.cz/challenge/ecmlpkdd2002/

Reduction of tree-structured data 9

Base Red P I P Pr Significant

Stacks 6% 2.23 ±0.274 2.24 ± 0.279 no

Cond. 4.6% 1.73 ± 0.241 1.70 ± 0.202 no

Bool. 13% 3.49 ± 0.302 3.47 ± 0.270 yes

Art1 17% 3.61 ± 0.219 3.26 ± 0.210 yes

Art2 3% 4.23 ± 1.456 3.96 ± 0.837 no

PKDD02 0.5% 14.84 ± 7.498 13.52 ± 7.235 yes

Tacrine 12% 5.78 ± 4.171 6.01 ± 4.111 no

Student Loan 17% 11.9 ± 1.871 11.43 ± 2.112 yes

Table 2. Results with the perplexity measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

D
a

w
ito

ut
 p

ru
ni

ng

Da with pruning

Bool.

Stacks

Cond.

Art1
Art2

 10

 10

P
er

pl
ex

ity
 w

ith
 p

ru
ni

ng

Perplexity without pruning

S. Loan

PKDD02

Tacrine

Stacks

Cond.

Bool.

Art1
Art2

Fig. 1. Results of the experimentations

5 Conclusion

In this paper we have presented an original approach allowing to prune subtrees
in a set of trees. This approach of data reduction can be considered as an hybrid
approach. It can actually delete whole trees and is related to prototype selection.
It also allows one to delete some parts of the examples and the method is close
to feature selection, with the difference that a subtree is deleted locally for one
example. Our pruning method is based on the utilization of confidence intervals
computed from a probability distribution on subtrees appearing in a same con-
text in the examples. Our experiments have shown that our approach is robust
and allows us to learn more efficient models closer to the target one in terms of
distance or with a smaller perplexity. Moreover, our method allows us to reduce
the size of the learning sample, this can be crucial in some applications.

Since we worked in the framework of the inference of probabilistic models
on trees, we have to avoid the deletion of too many subtrees. Indeed, in this
context, we aim at estimating correctly the distribution of the data. If we delete
too many subtrees, we modify considerably the distribution of the initial learning
sample and then it may be almost impossible to infer a correct distribution. A
simple solution can be to tune the parameter α. Another complementary point
of view consists in working on the method of partitioning. A larger partitioning
of the learning subtrees, i.e. with a high number of classes, may more often lead
to delete fewer subtrees than a smaller one. Our approach was experimentally
evaluated as pre-process of a learning task. Since its works on any database of
trees, and because a production rule can be seen as a tree, we are currently
working on the simplification of knowledge bases.

10 A. Habrard, M. Bernard, M. Sebban

References

1. De Raedt, L.: Data mining in multi-relational databases. In: 4th European Con-
ference on Principles and Practice of Knowledge. (2000) Invited talk.

2. Zaki, M.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th
International Conference on Knowledge Discovery and Data Mining (KDD). (2002)

3. Termier, A., Rousset, M., Sebag, M.: Treefinder: a first step towards xml data
mining. In: International Conference on Data Mining ICDM02. (2002)

4. Habrard, A., Bernard, M., Jacquenet, F.: Generalized stochastic tree automata for
multi-relational data mining. In: 6th International Colloquium on Grammatical
Inference. ICGI 2002. Volume 2484 of LNAI., Amsterdam, Springer (2002) 120–133

5. Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Dis-
covery of frequent tag tree patterns in semistructured web documents. In: PAKDD
2002, Taipei, Taiwan (2002)

6. Goldman, S.A., Kwek, S.S.: On learning unions of pattern languages and tree
patterns. In: 10th Algorithmic Learning Theory conference. Volume 1720 of LNAI.
(1999) 347–363

7. Amoth, T.R., Cull, P., Tadepalli, P.: On exact learning of unordered tree patterns.
Machine Learning 44 (2001) 211–243

8. Carrasco, R., Oncina, J., Calera-Rubio, J.: Stochastic Inference of Regular Tree
Languages. Machine Learning 44 (2001) 185–197

9. Rico-Juan, J., Calera-Rubio, J., Carrasco, R.: Stochastic k-testable tree languages
and applications. In: ICGI 2002. Volume 2484 of LNAI., Amsterdam (Nederland),
Springer-Verlag (2002) 199–212

10. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algo-
rithms. Machine Learning 38 (2000) 257–286

11. John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: 11th International Conference on Machine Learning. (1994) 121–129

12. Brown, P., Pietra, V.D., deSouza, P., Lai, J., Mercer, R.: Class-based n-gram
models of natural language. Computational Linguistics 18 (1992) 467–479

13. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
14. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree Automata Techniques and Applications . Available on:
http://www.grappa.univ-lille3.fr/tata (1997)

15. Bernard, M., Habrard, A.: Learning stochastic logic programs. In Rouveirol, C.,
Sebag, M., eds.: Work-in-Progress Track at the 11th International Conference on
Inductive Logic Programming. (2001) 19–26

16. Lyngsø, R., Pedersen, C., Nielsen, H.: Metrics and similarity measures for hid-
den Markov models. In: 7th International Conference on Intelligent Systems for
Molecular Biology, ISMB ’99 Proceedings, Heidelberg, Germany, AAAI Press USA
(1999) 178–186

17. Carrasco, R.C., Rico-Juan, J.R.: A similarity between probabilistic tree languages:
application to xml document families. Pattern Recognition, in press (2002)

18. Ney, H., Essen, U., Kneser, R.: On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech and Language 8 (1994) 1–38

19. Blake, C., Merz, C.: University of California Irvine repository of machine learning
databases. http://www.ics.uci.edu/∼mlearn/ (1998)

20. King, R., Srinivasan, A., Sternberg, M.: Relating chemical activity to structure:
An examination of ILP successes. New Generation Computing, Special issue on
Inductive Logic Programming 13 (1995) 411–434

