Constructing a Decision Tree for Graph
Structured Data

Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida,
Hiroshi Motoda and Takashi Washio

Institute of Scientific and Industrial Research,
Osaka University
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, JAPAN
{warodom,matsuda,yoshida,motoda,washio }@ar.sanken.osaka-u.ac.jp

Abstract. Decision tree Graph-Based Induction (DT-GBI) is proposed
that constructs a decision tree for graph structured data. Substructures
(patterns) are extracted at each node of a decision tree by stepwise pair
expansion (pairwise chunking) in GBI to be used as attributes for testing.
Since attributes (features) are constructed while a classifier is being con-
structed, DT-GBI can be conceived as a method for feature construction.
The predictive accuracy of a decision tree is affected by which attributes
(patterns) are used and how they are constructed. A beam search is em-
ployed to extract good enough discriminative patterns within the greedy
search framework. Pessimistic pruning is incorporated to avoid overfit-
ting to the training data. Experiments using a DNA dataset were con-
ducted to see the effect of the beam width, the number of chunking at
each node of a decision tree, and the pruning. The results indicate that
DT-GBI that does not use any prior domain knowledge can construct
a decision tree that is comparable to other classifiers constructed using
the domain knowledge.

1 Introduction

Since structure is represented by proper relations and a graph can easily rep-
resent relations, knowledge discovery from graph structured data poses a gen-
eral problem for mining from structured data. Examples amenable to graph
mining problems are finding typical web browsing patterns, identifying typical
substructures of chemical compounds, finding typical subsequences of DNA and
discovering diagnostic rules from patient history records.

Graph-Based Induction (GBI) [9,3], on which DT-GBI is based, discovers
typical patterns in general graph structured data by recursively chunking two
adjoining nodes. It can handle a graph data having loops with colored /uncolored
nodes and links. GBI is very efficient because it employs greedy search. GBI
does not lose any information of graph structure after chunking, and it can use
various evaluation functions in so far as they are based on frequency. It is not,
however, suitable for graph structured data where many nodes share the same
label because of its greedy recursive chunking without backtracking, but it is

still effective in extracting patterns from data where each node has a distinct
label (e.g., World Wide Web browsing data) or where some typical structures
exist even if some nodes share the same labels (e.g., chemical structure data
containing benzene rings etc). The decision tree construction method [5,6] is a
widely used technique for data classification and prediction, but the data must
be represented by or transformed into attribute-value pairs. However, it is not
trivial to define proper attributes for graph-structured data beforehand.

We have proposed a method called Decision Tree Graph-Based Induction
(DT-GBI), which constructs a classifier (decision tree) for graph-structured data
while constructing the attributes during the course of tree building using GBI
recursively and did preliminary performance evaluation [8].

A pair extracted by GBI, consisting of nodes and links among them! that is
treated as an attribute and the existence/non-existence of the pair in a graph
is treated as its value for the graph. Thus, attributes (pairs) that split the data
effectively are extracted by GBI while a decision tree is being constructed. To
classify unseen graph-structured data by the constructed decision tree, attributes
that appear in the nodes of the tree are produced from data before the classifi-
cation.

In this paper we first report an improvement made on DT-GBI after the
preliminary analysis [8] to increase its predictive accuracy. After that, we report
on the performance evaluation of the improved DT-GBI through experiments
using a DNA dataset from the UCI repository and show that the results are
comparable to the results that are obtained by using the domain knowledge [7].

Section 2 briefly describes the framework of DT-GBI and Section 3 describes
the improvement made on DT-GBI. Evaluation of the improved DT-GBI is re-
ported in Section 4. Section 5 concludes the paper with a summary of the results
and the planned future work.

2 Decision Tree Graph-Based Induction

2.1 Graph-Based Induction Revisited

GBI employs the idea of extracting typical patterns by stepwise pair expansion.
In the original GBI an assumption was made that typical patterns represent
some concepts/substructure and “typicality” is characterized by the pattern’s
frequency or the value of some evaluation function of its frequency. Repeated
chunking enables to extract typical patterns of various sizes. The search is greedy
and no backtracking is made. Because of this, all the ”typical patterns” that ex-
ist in the input graph are not necessarily extracted. The problem of subgraph
isomorphism is known to be NP-complete. GBI aims at extracting only mean-
ingful typical patterns of certain sizes. Its objective is not finding all the typical
patterns nor finding all the frequent patterns.

For finding a pattern that is of interest any of its subpatterns must be of in-
terest because of the nature of repeated chunking, i.e., a larger pattern can only

! Repeated chunking of pairs results in subgraph structure

be constructed by pairing two smaller subpatterns, which must have been con-
structed at earlier steps. Frequency measure satisfies this monotonicity. However,
if the criterion chosen does not satisfy this monotonicity, repeated chunking may
not find good patterns even though the best pair based on the criterion is selected
at each iteration. To resolve this issue GBI was improved to use two criteria, one
for frequency measure for chunking and the other for finding discriminative pat-
terns after chunking. The latter criterion does not necessarily hold monotonicity
property. Any function that is discriminative can be used, such as Information
Gain [5], Gain Ratio [6] and Gini Index [2], and some others.
The improved step- GBI(G)

wise pair expansion
algorithm is sum-
marized in Fig. 1.
The output of the
improved GBI is a
set of ranked typical
patterns. These pat-
terns are typical in
the sense that they
are more discrimina-
tive than non-selected

Enumerate all the pairs P,y in G

Select a subset P of pairs from P,; (all the pairs
in G) based on typicality criterion

Select a pair from P,;; based on chunking criterion

Chunk the selected pair into one node ¢

G. := contracted graph of G

while termination condition not reached
P := P UGBI(G.)

return P

Fig. 1. Algorithm of GBI

patterns in terms of the criterion used.

2.2 Feature Construction by GBI

We regard a subgraph in a graph as an attribute so that graph-structured data
can be represented with attribute-value pairs according to the existence of par-

ticular subgraphs.
However, it is dif-

ficult to identify and

extract those sub-

graphs selectively which

are effective for clas-
sification task before-
hand. If pairs are ex-
tended in a step-wise
fashion by GBI and
discriminative ones are
selected and further
extended while con-
structing a decision
tree, discriminative
patterns (subgraphs)
can be constructed si-
multaneously during
the construction of a

DT-GBI(D)

Create a node DT for D
if termination condition reached
return DT
else
P := GBI(D) (with the number of chunking
specified)
Select a pair p from P
Divide D into D, (with p) and D, (without p)
Chunk the pair p into one node ¢
Dy, := contracted data of D,
for D; := Dy, D,
DT; := DT-GBI(D;)
Augment DT by attaching DT; as its child
along yes(no) branch
return DT

Fig. 2. Algorithm of DT-GBI

decision tree. The algorithm of DT-GBI is summarized in Fig. 2. Since the
value for an attribute is yes (contains pair) and no (does not contain pair), the
constructed decision tree is represented as a binary tree. Each time when an at-
tribute (pair) is selected to split the data, the pair is chunked into a larger node
in size. Thus, although initial pairs consist of two nodes and the link between
them, attributes useful for classification task are gradually grown up into larger
pair (subgraphs) by applying chunking recursively. In this sense the proposed
DT-GBI method can be conceived as a method for feature construction.

3 Enhancement of DT-GBI

3.1 Beam Search for Expanding Search Space

Since the search in GBI is greedy and

no backtracking is made, which patterns @

are extracted by GBI depends on which

pair is selected for chunking in Fig. 2.

To increase the search space and extract

good enough patterns still keeping the @ @ @ @ @
computational complexity within a toler-

ant level, a beam search is incorporated @ @ @ @
to GBI within the framework of greedy

search [4]. A certain fixed number of pairs

ranked from the top are allowed to be @ @ /@P @ @P
chunked individually in parallel. To pre- :

vent each branch from growing exponen-

tially, the total number of pairs to chunk,
thus the beam width, is fixed at each level
of branch. Thus, at any iteration step,

there is always a fixed number of chunking
that is performed in parallel.

Fig.3. An Example of state tran-
sition with beam search when the
beam width = 5

An example of state transition with beam search is shown in Fig.3 in the case
where the beam width is 5. The search starts with a single state cs. All pairs
in c¢s are enumerated and ranked according to both the frequency measure and
the typicality measure (e.g., discriminatory measure). The top 5 pairs according
to the frequency measure are selected, and each of them is used as a pattern to
chunk, branching into 5 children c11, c19, ..., 15, each rewritten by the chunked
pair. All pairs within these 5 states are enumerated and ranked according to
the two measures, and again the top 5 ranked pairs according to the frequency
measure are selected. The state c1; is split into two states co1 and cos because two
pairs are selected, but the state c15 is deleted because no pair is selected. This
is repeated until the stopping condition is satisfied. Increase in the search space
improves the pattern extraction capability of GBI and thus that of DT-GBI.

3.2 Pruning Decision Tree

Recursive partitioning of data until each subset in the partition contains data
of a single class results in overfitting to the training data and thus degrades
the predictive accuracy of decision trees. Our previous approach [8] used a very
naive prepruning method by limiting the threshold number of graphs in leaves
to 10. To improve the predictive accuracy, a pessimistic pruning used in C4.5 [6]
is implemented by growing an overfitted tree first and then pruning it based on
the confidence interval for binomial distribution. The current algorithm has a
step for postpruning in Fig. 2.

4 Performance Evaluation of DT-GBI

The proposed method is tested against the promoter dataset in UCI Machine
Learning Repository[1]. This dataset consists of strings that represent nucleotides
(one of A, G, T, or C). The input features are 57 sequential DNA nucleotides
and the total number of instances is 106 including 53 positive instances (sample
promoter sequence) and 53 negative instances (non-promoter sequence). This
dataset was explained and analyzed in [7]. In their analysis, they first config-
ured a neural network using the domain knowledge and refined it to best fit the
results. The rules were then extracted from the converged network. Thus, their
method needs the domain knowledge to guide the search.
One important

thing is that the e ey
data is so prepared laacgtcgattageeg .
tccatggtcaagtc Original data 16.0%
that each sequence ccagotgcagtcagt
of nucleotides is Shift randomly by
aligned at a refer- ~ < 1element 16.0%
ence point, which tegattagecgall < 2elements 21.7%
makes it possi- ccal g%tcaactg C <3dements 26.4%
cecagytgeagicagic . sgements 44.3%

ble to assign the
n-th attribute to
the n-th nucleotide
in the attribute-
attribute value representation (thus applicable to a neural network). In a sense,
this dataset is encoded using the domain knowledge. This is confirmed by the
following experiment. Running C4.5 gives a predictive error of 16.0% by leaving
one out cross validation. Randomly shifting the sequence by 3 elements gives
21.7% and by 5 elements 44.3% (Fig. 4). If the data is not properly aligned,
standard classifiers such as C4.5 that use attribute-attribute value representa-
tion does not solve this problem. One of the advantages of graph representation
is that it does not require the data to be aligned around a reference point. In
this paper, each sequence is converted to a graph representation assuming that
an element interacts up to 10 elements on both sides (See Fig. 5). Each sequence
thus results in a graph with 57 nodes and 515 lines.

Fig. 4. Change of error rate by shifting the sequence in the
promoter dataset

In the experiment, frequency
(chunking measure) was used to select
a pair to chunk in GBI and informa-
tion gain [5] (typicality measure) was
used in DT-GBI to select a pair from
the pairs that are returned by GBI
A decision tree was constructed in ei-
ther of the following two ways: 1) ap-
ply chunking n,. times only at the root
node and only once at other nodes of
a decision tree, and 2) apply chunking
ne times at every node of a decision
tree. Note that n, and n. are defined
along the depth in Fig. 3. Thus, there
is more chunking taking place during
the search when the beam width is
larger. The pair (subgraph) that is selected for each node of the decision tree is
the one which maximizes the informaion gain among all the pairs that are enu-
merated. Pruning of decision tree was conducted either by a) prepruning: set the
termination condition in DT-GBI in Fig. 2 to whether the number of graphs in
D is equal to or less than 10 or b) postpruning: conduct the pessimistic pruning
in Subsection 3.2 by setting the confidence level to 25%. The beam width was
changed from 1 to 15. The prediction error rate of a decision tree constructed
by DT-GBI was evaluated by the average of 10 runs of 10 fold cross validation.

Fig.5. Conversion of DNA Sequence
Data to a graph

14
Y_ — —+ -root node only
10 S —e—every node

\ S
~
s | — - —- — e— -~ - —

The first experi-
ment focused on the
effect of the number
of chunking at each
node of a decision
tree and thus beam
width was set to 1
and the prepruning 2 |
was used. The pa-

rameters n, and n. 0 2 4 6 8
were change d from Number of chunking at a node

Error rate (%)

10

1 to 10 in accor- | . . .
dance with 1) and Fig. 6. Result of experiment (beam width=1, without pes-

2) explained in the simistic pruning)

previous paragraph, respectively. Fig. 6 shows the result of experiments. In this
figure the dotted line indicates the error rate for 1) and the solid line for 2). The
best error rate was 8.49% when n, = 5 for 1) and 7.55% when n. = 3 for 2).
The corresonding induced decision trees are shown shown in Fig. 7 (n, = 5) and
Fig. 8 (ne = 3). The decrease of error rate levels off when the the number of
chunking increases for both 1) and 2). The result shows that repeated applica-

tion of chunking at every node results in constructing a decision tree with better
predictive accuracy.

The second experiment focused on the effect of beam width, changing its
value from 1 to 15 using pessimistic pruning. The number of chunking was fixed
at the best number which was determined by the first experiment in Fig. 6,
namely, n, = 5 for 1) and n. = 3 for 2).

bt Salia }

n=9, p=14
N
on-promotel
n=9, p=6

Fig. 7. Example of constructed decision tree (chunking applied 5 times only at
the root node, beam width = 1, with prepruning)

Promoter
n=0, p=8

Promoter
n=0, p=22

Promoter
n=0, p=10

Y N
b absabsc c&gla
n=34, p=4 n=19, p=10

N
RPN
n=9, p=10

Promoter
n=0, p=3

Promoter
n=4, p=10

on-promote
n=5, p=0

Fig. 8. Example of constructed decision tree (chunking applied 3 times at every
node, beam width = 1, with prepruning)

The result is summarized in Fig. 11. The best error rate was 4.06% when the
beam width = 12 for 1) (n, = 5) and 3.77% when the beam width = 8 for 1) (n.

= 3). Examples of decision tree are shown in Fig. 9 and Fig. 10. Fig. 12 shows
yet another result when prepruning was used.

on-promoter
n=21, p=0

Promoter
n=0, p=22

Promoter
n=0, p=18

tl»a2—>ai>a

n=14, p=10

on-p romoter
n=14, p=4

Fig. 9. Example of constructed decision tree (chunking applied 5 times only at the root
node, beam width = 12, with pessimistic pruning)

1113 gLcdilg
n=9, p=2 n=11, p=33
N
Promoter
n=4, p=30

on-promoter
n=7, p=0

Promoter
n=0, p=3

Fig. 10. Example of constructed decision tree (chunking applied 3 times at every node,
beam width = 8, with pessimistic pruning)

The result reported in [7] is 3.8 % (they also used 10-fold cross validation)
which is obtained by the M-of-N expression rules extracted from KBANN

(Knowledge Based 1
Artificial Neural |
Network). The ob- —+ -root node only (up to 5)
tained M-of-N rules ° = evors mde fp to 3
are too much com-
plicated and not
easy to interprete.
Since KBANN uses Y
domain knowledge 2t
to configure the . ‘ ‘
initial artificial neu- 0 5 4BIboam width 15
ral network, it is

worth mentioning

Error rate (%)

Fig. 11. Result of experiment (with pessimistic pruning)

that DT-GBI that 14

does not use any 2 |

domain knowledge - — -root node only (up to 5)
10 LR —e—every node (up to 3)

induced a decision
tree with com-
parable predictive
accuracy. Compar-
ing the decision
trees in Figs. 9 and

~
T

Error rate (%)
ﬂ’
/
l
4

S
T

10, the trees are 0

not stable. Both ’ ? GBI beam width v
gives a similar pre-

dictive accuracy Fig. 12. Result of experiment (with prepruning)

but the patterns in

the decision nodes are not the same. According to [7], there are many pieces of
domain knowledge and the rule conditions are expressed by the various combi-
nations of these pieces. Among these many pieces of knowledge, the pattern (a
— a — a — a) in the second node in Fig. 9 and the one (a — a — t —
t) in the root node in Fig. 10 match their domain knowledge, but the others do
not match. We have assumed that two nucleotides that are apart more than 10
nodes are not directly correlated. Thus, the extracted patterns have no direct
links longer than 9. It is interesting to note that the first node in Fig. 9 relates
two pairs (g — a) that are 7 nodes apart as a discriminatory pattern. Indeed,
All the sequence having this pattern are concluded to be non-promoter from the
data. It is not clear at this stage whether the DT-GBI can extract the domain
knowledge or not. The data size is too small to make any strong claims.

5 Conclusion

This paper reports the current status of DT-GBI, which constructs a classi-
fier (decision tree) for graph-structured data by GBI. Substructures useful for
classification task, are constructed on the fly by applying repeated chunking in

GBI during the construction process of a decision tree. Newly introduced beam
search is very effective in increasing the predictive accuracy. The performance of
DT-GBI is evaluated through experiments on a classification problem of DNA
promoter sequences from the UCI repository and the results show that DT-GBI
is comparable to other method that uses domain knowledge in modeling the
classifier.

Immediate future work includes to incorporate more sophisticated method
for determining the number of cycles to call GBI at each node to improve pre-
diction accuracy. Utilizing the rate of change of information gain by successive
chunking is a possible way to automatically determine the number. Another im-
portant direction is to explore how the partial domain knowledge is effectively
incorporated to constrain the search space. DT-GBI is currently being applied
to much larger medical dataset.

Acknowledgment

This work was partially supported by the grant-in-aid for scientific research
on priority area “Active Mining” (No. 13131101, No. 13131206) funded by the
Japanese Ministry of Education, Culture, Sport, Science and Technology.

References

1. C. L. Blake, E. Keogh, and C.J. Merz. Uci repository of machine leaning database,
1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

2. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

3. T. Matsuda, T. Horiuchi, H. Motoda, and T. Washio. Extension of graph-based
induction for general graph structured data. In Knowledge Discovery and Data
Mining: Current Issues and New Applications, Springer Verlag, LNAI 1805, pages
420-431, 2000.

4. T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Knowledge discovery from
structured data by beam-wise graph-based induction. In Proc. of the 7th Pacific Rim
International Conference on Artificial Intelligence, Springer Verlag, LNAI 2417,
pages 255-264, 2002.

5. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

6. J. R. Quinlan. C4.5:Programs For Machine Learning. Morgan Kaufmann Publish-
ers, 1993.

7. G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based
neural networks. Machine Learning, 13:71-101, 1993.

8. G. Warodom, T. Matsuda, T. Yoshida, H. Motoda, and T. Washio. Classifier
construction by graph-based induction for graph-structured data. In Advances in
Knowledge Discovery and Data Mining, Springer Verlag, LNAI 2637, pages 52—62,
2003.

9. K. Yoshida and H. Motoda. Clip : Concept learning from inference pattern. Journal
of Artificial Intelligence, 75(1):63-92, 1995.

