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ABSTRACT

We address the problem of visualizing structure of undi-
rected graphs that have a value associated with each node
into a K-dimensional Euclidean space in such a way that 1)
the length of the point vector in this space is equal to the
value assigned to the node and 2) nodes that are connected
are placed as close as possible to each other in the space
and nodes not connected are placed as far apart as possible
from each other. The problem is reduced to K-dimensional
spherical embedding with a proper objective function. The
existing spherical embedding method can handle only a bi-
partite graph and cannot be used for this purpose. The other
graph embedding methods, e.g., multi-dimensional scaling,
spring force embedding methods, etc., cannot handle the
value constraint and thus are not applicable, either. We
propose a very efficient algorithm based on a power iteration
that employs the double-centering operations. We apply the
method to visualize the information diffusion process over a
social network by assigning the node activation time to the
node value, and compare the results with the other visu-
alization methods. The results applied to four real world
networks indicate that the proposed method can visualize
the diffusion dynamics which the other methods cannot and
the role of important nodes, e.g. mediator, more naturally
than the other methods.

Categories and Subject Descriptors

I.2.6 [Learning]: Parameter learning
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1. INTRODUCTION
Complex network is hard to understand. Visualization

can help, but in reality it is not self-evident whether there
exists a good general visualization scheme that satisfies most
of our needs. Especially if we want to visualize the dynamics
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taking place over a network, the only solution seems to use
animation over time, which is not what we are aiming at.

We consider the following problem: Visualize the struc-
ture of an undirected graph that has a value assigned to
each node in a K-dimensional Euclidean space in such a way
that 1) the length of the point vector in this space is equal to
the node value and 2) nodes that are connected are placed
as close as possible to each other in the space and nodes not
connected are placed as far apart as possible from each other.
The constraint 1) is unique to this method and brings more
flexibility in visualization. In fact, this enables to visualize
a dynamics mentioned in the beginning.

The need for visualization is so high that various graph
embedding methods have already been proposed and are
widely used. These include multi-dimensional scaling [15],
spectral embedding [2], spring force embedding [4] and cross-
entropy embedding [16]. All of them are applicable to undi-
rected graphs. Spherical embedding [11, 3] that came a little
later is designed to visualize bipartite graphs. Among these
five, the first four cannot handle the constraint 1). The last
one cannot apply to a general undirected graph. To our
knowledge, there is no method that can directly handle our
problem. Further, apart from the above problem, those that
solve non-linear optimization problem by a power iteration,
except [3], are extremely slow.

We show that the above visualization problem is reduced
to spherical embedding that is formulated as a non-linear
optimization problem which maximizes a certain objective
function that involves an operation called“double-centering”.
The problem can be solved by a simple power iteration as is
done in the above existing methods, but this is very ineffi-
cient. We propose a much more efficient algorithm making
effective use of the sparsity of the adjacency matrix, which
is true for most complex networks. We verify that the algo-
rithm works as intended by applying it to the visualization of
information diffusion process over a large social network by
assigning the node activation time to the node value (detail
in Section 4.2). The results obtained by four real world so-
cial networks confirm our conjecture. Time evolution of the
diffusion process is easily visualized by the proposed method
and in this process such nodes that have a role of mediating
the diffusion are more easily identifiable than the other ex-
isting methods which cannot handle the diffusion dynamics.

This paper is organized as follows. We first describe the



problem framework of embedding undirected graphs into
a low dimensional Euclidean space (2.1.), show a simple
update method for solving the optimal solution (2.1), fol-
lowed by the proposed efficient update method (2.3). Next
we briefly compare the proposed method with four existing
methods (3). We then explain how we apply the method to
the visualization of information diffusion (4), and report the
results (5). We conclude the paper by summarizing what
has been achieved (7).

2. SPHERICAL GRAPH EMBEDDING
We describe the framework of embedding an undirectded

graph G = (V, E) without self-loops into a K-dimensional
Euclidean space, where V and E (⊂ V × V ) stand for the
sets of all the nodes and links, respectively. For the sake of
technical convenience, we identify the set of the nodes, V ,
by a series of positive integers, i.e., V = {1, · · · , m, · · · , M}.
Here M is the number of the nodes in V , i.e., |V | = M .
Then, we can define the M × M adjacency matrix A =
{am,n} by setting am,n = 1 if {m, n} ∈ E; am,n = 0 oth-
erwise. Note taht am,n = an,m and am,m = 0. We denote
the K-dimensional embedding position vectors by xm for
the node m ∈ V . Then we can construct the K ×M matrix
consisting of these position vectors, i.e., X = (x1, · · · ,xM ).

2.1 Problem Formulation
We first state the framework of our embedding problem

intuitively: For a given undirectded graph G = (V, E) and
a set of values assigned to each node, denoted by (r1, · · · ,
rm, · · · , rM ), we attempt to visualize the graph so that each
pair of nodes with similar connection patterns is embedded
as a pair of position vectors with similar directions, and each
length of the embedded position vectors is set to the above
value assigned to the node, i.e., ‖xm‖ = rm for each m,
where ‖xm‖ stands for the norm of the vector xm.

In order to more closely explain our embedding problem,
we introduce the centering (Young-Householder transforma-
tion) matrix,

HM = IM −
1

M
1M1

T
M , (1)

where IM stands for the M × M identity matrix, 1M is an
M -dimensional vector whose elements are all one, and 1T

means the transposition of the vector 1. Clearly, the mean
vector of the resulting position vectors becomes 0 by the
operations XHM . Then, we consider the following double-
centered matrix B = {bm,n} that is calculated from the
adjacency matrix A.

B = HMAHM . (2)

Note that the mean vectors of both the row and the column
vectors of the matrix B become 0. On the other hand, for
position vectors {x1, · · · ,xM}, we can consider the similar-
ity matrix C = {cm,n}, each element of which is defined by
the following cosine similarity.

cm,n =
xT

m

‖xm‖

xn

‖xn‖
. (3)

As the basic strategy of our graph embedding, we maxi-
mize the correlation between the the double-centered matrix
B and the cosine similarity matrix C by adequately locat-
ing each position vector under the constraints ‖xm‖ = rm.
Namely, we can consider the following objective function

with respect to the matrix X constructed from the position
vectors.

J(X) =

M−1
X

m=1

M
X

n=m+1

bm,ncm,n +
1

2

M
X

m=1

λm(r2
m − x

T
mxm)

=

M−1
X

m=1

M
X

n=m+1

bm,n

xT
m

rm

xn

rn

+
1

2

M
X

m=1

λm(r2
m − x

T
mxm)

(4)

where {λm | m = 1, · · · , M} correspond to Lagrange multi-
pliers for the constraints, i.e., xT

mxm = r2
m for 1 ≤ m ≤ M .

Intuitively, maximizing J(X) pushes the pairs xm and xn to
the same direction if they are connected and pushes them to
the opposite direction if they are unconnected, and realizes
the intended visualization.

Now, we consider a reparameterization of each position
vector xm by x̃m = xm/rm, and set X̃ = (x̃1, · · · , x̃M )T .
Then, we can equivalently transform our objective function
defined in Equation (4) as follows,

J(X̃) =

M−1
X

m=1

M
X

n=m+1

bm,nx̃
T
mx̃n +

1

2

M
X

m=1

µm(1− x̃
T
mx̃m), (5)

where µm = λm/r2
m for each m. Thus, maximizing Equa-

tion (4) is implemented by the following two steps: First, we
calculate the position vector x̃m for each node on the unit
sphere (circle), so as to maximize Equation (5); Then, we
can obtain the final position vectors just by rescaling them
with respect to (r1, · · · , rM ), i.e., xm = rmx̃m for each m.
Thus we can regard our problem as a shperical graph em-
bedding problem on the unit sphere. Hereafter, we simply
denote x̃m as xm in order to avoid notational complication.
Here we should emphasize that in our problem formaliza-
tion, the directions of the embedded position vectors are
determined independently from the values assigned to each
node.

2.2 Simple Update Method
Now we consider maximizing J(X) defined in Equation (5)

by use of a coordinate strategy: We maximize J(X) with re-
spect to each position vector xm, by fixing the other position
vectors. In order to optimally update each position vector
xm, we consider the following gradient vector of the objec-
tive function J(X) with respect to xm.

∂J(X)

∂xm

=
M

X

n=1,n6=m

bm,nxn − µmxm. (6)

Thus, for the fixed vectors {x1, · · ·xM} \ xm, we obtain the
optimal position vector xm which maximizes the objective
function J(X) as follow:

xm =
1

‖fm‖
fm, (7)

where

fm =
M

X

n=1,n6=m

bm,nxn = (X − xme
T
m)Bem. (8)

Here em is an M -dimensional unit vector whose m-th ele-
ment is 1, and the other elements are 0.

However, this simple iteration method requires the com-
putational complexity of O(MK) for updating each optimal



position vector according to Equation (8). In order to make
better use of the sparsity of adjacency matrix which is fre-
quently observed in most complex networks, we derive an
efficient way of calculating Equation (8) in the succeeding
subsection.

2.3 Efficient Update Method
We first focus on the following equivalent formula for cal-

culating fm in Equation (8).

fm = XBem − (eT
mBem)xm. (9)

Here we consider a degree vector defined by

d = (d1, · · · , dM )T = A1M , (10)

and their average,

D =
1

M
1

T
Md =

1

M
1

T
MA1M . (11)

Then, from the definition of double-centered matrix B given
in Equation (2), we can calculate Bem as follows.

Bem = (IM −
1

M
1M1

T
M )A(IM −

1

M
1M1

T
M )em

= Aem +
D − dm

M
1M −

1

M
d. (12)

By noting that eT
mAem = 0 because of no self-loops, we

obtain eT
mBem as follows.

e
T
mBem =

D − 2dm

M
(13)

Now we define the average position vector φ and the
degree-weighted average position vector ψ by

φ =
1

M
X1M , ψ =

1

M
Xd, (14)

respectively. Then by substituting Equations (12) and (13)
into Equation (9), we can obtain the following.

fm =
X

n∈Γ(m)

xn + (D − dm)φ − ψ −
D − 2dm

M
xm, (15)

where, Γ(m) denotes a set of neighbour nodes of v, i.e., those
nodes that are connected to v. Thus by noting that both φ
and ψ are K-dimensional vectors, and the average number of
elements in Γ(m) is D, i.e., D =< |Γ(m)| >, we can see that
the average computational complexity of calculating fm is
reduced to O(DK) from O(MK) in average. As mentioned
earlier, we can naturally assume M ≫ D for a wide variety
of complex networks.

On the other hand, after updating the position vector xm,
we need to update vectors φ and ψ according to this change
as well. For this purpose, after setting the updated vector
ym and the modification vector ∆xm by,

ym =
1

‖fm‖
fm, ∆xm = ym − xm, (16)

we update the vectors φ, ψ, and xm as follows.

φ = φ +
1

M
∆xm, ψ = ψ +

dm

M
∆xm, xm = ym. (17)

Clearly, these updates can be done within the computational
complexity of O(K). Thus, we can see that the computa-
tional complexity of updating xm is equal to O(DK).

Below we summarize our spherical embedding algorithm
proposed in this paper.

1. Initialize position vectors {x1, · · · ,xM} adequately; and
calculate vectors φ and ψ by Equation (14);

2. For each m ∈ {1, · · · , M}, calculate fm by Equation (15),
set vectors ym and ∆xm by Equation (16), and update
vectors φ, ψ, and xm by Equation (17);

3. If maxm{‖∂J(X)/∂xm‖} < ǫ, output {x1, · · · ,xM} and
terminate;

4. Return to the step 2.

Our proposed algorithm employs a power iteration as the
basic framework, just like the HITS algorithm [8], which
utilizes A and AT , does. However, the main differences
are use of the double-centering operation by HM , and the
constraints described by ‖xm‖ = rm. Here note that the
double-centering operation is also employed in the standard
multidimensional scaling method [15].

Now we briefly mention the computational complexity of
our algorithm. Clearly, the main computational complexity
of one-iteration comes from the multiplication by the ma-
trix A with position vectors xm, which is the most compu-
tationally intensive part and is proportional to the number
of links in the undirected graph. Thus, the proposed algo-
rithm is expected to work much faster especially for a sparse
undirected graph. In fact, it has been well known that the
PageRank algorithm [1] based on a power iteration works
very fast for a large and sparse network [10] even without
parallel distributed processing.

3. ALGORITHMIC COMPARISON WITH

CONVENTIONAL METHODS
We compare the proposed method from algorithmic as-

pect with the four well known embedding methods: multi-
dimensional scaling [15], spectral embedding [2], spring force
embedding [4], and cross-entropy embedding [16]. Here the
former two perform a power iteration with respect to either
a double-centered distance matrix or a graph Laplacian ma-
trix which is calculated from a given graph, while the latter
two repeatedly move each position vector by using the New-
ton method in a framework of nonlinear optimization. Here
note that the basic strategy of our method is a combina-
tion of the above basic strategy, i.e., our method performs
a power iteration with respect to a double-centered adja-
cency matrix while repeatedly moving each position vector.
However, recall that these existing methods cannot directly
utilize the values associated with nodes. In what follows,
we compare our method more closely with these existing
methods.

Multi-dimensional scaling method [15] first calculates the
distance matrix G, and performs the double centering opera-
tion to the distance matrix. Mathematically it is formulated
as minimizing Equation (18).

M(X) =
1

2

K
X

k=1

z
T
k (HMGHM )zk, (18)

where zk = (x1,k, · · · , xM,k)T , and {z1, · · · , zK} need to be
orthonormal vectors, i.e., zT

k zk = 1 and zT
k zk′ = 0 if k 6= k′.

Spectral embedding method [2] tries to directly minimize
distances between position vectors of connecting nodes. Math-



ematically it is formulated as minimizing Equation (19).

S(X) =
1

2

K
X

k=1

M
X

m=1

N
X

n=1

am,n(zk,m − zk,n)2

=
K

X

k=1

z
T
k (D − A)zk, (19)

where D is a diagonal matrix each element of which is the
degree of node (number of links). Note that (D − A) is
referred to as a graph Laplacian matrix. Again, we set zk =
(x1,k, · · · , xM,k)T , and {z1, · · · , zK} need to be orthonormal
vectors, which excludes the trivial vector expressed as z ∝
1M .

Spring force embedding method [4] assumes that there is a
hypothetical spring between each connected node pair and
locates nodes such that the distance of each node pair is
closest to its minimum path length at equilibrium. Mathe-
matically it is formulated as minimizing Equation (20).

K(X) =

M−1
X

m=1

M
X

n=m+1

αm,n(gm,n − ‖xm − xn‖)
2, (20)

where αm,n is a spring constant which is normally set to
1/(2g2

u,v).
Cross-entropy embedding method [16] first defines a sim-

ilarity ρ(xm,xn) between the embedding positions xm and
xn and uses the corresponding element am,n of the adja-
cency matrix as a measure of distance between the node
pair, and tries to minimize the total cross entropy between
these two. Mathematically it is formulated as minimizing
Equation (21).

C(X) = −

M−1
X

m=1

M
X

n=m+1

(am,n log ρ(xm,xn)

+(1 − am,n) log(1 − ρ(xu,xv))) . (21)

Here, note that we used the function ρ(xu,xv) = exp(− 1
2
||xu−

xv||
2) in our experiments.

The spectral embedding method is expected to work com-
parable to our method because these methods perform a
power iteration on a sparse adjacency matrix. The multi-
dimensional scaling method requires a substantially large
computation time because it needs to perform a power it-
eration on a full distance matrix. Spring force embedding
method and Cross-entropy embedding method both of which
repeatedly move each position vector by using the Newton
method, require an extremely large computation time before
the final results are obtained.

4. APPLICATION TO VISUALIZATION OF

INFORMATION DIFFUSION DATA
Our primary application of the proposed method is visual-

ization of information diffusion process over a social network.
We start with a brief description of the diffusion models we
used and then describe how we visualize the diffusion data.

4.1 Information diffusion models
We focus on the IC (Independent Cascade) and the LT

(Linear Threshold) models [5] as the representative mod-
els of information diffusion, and utilize their extended ver-
sion that can cope with asynchronous time activation, AsIC

(Asynchronous IC) and AsLT (Asynchronous LT) models
[13, 14] in our experiments.

4.1.1 Asynchronous Independent Cascade Model

We first recall the definition of the IC model according to
the work of [5], and then introduce the AsIC model. In the
IC model, we specify a real value pm,n with 0 < pm,n < 1
for each link (m, n) in advance. Here pm,n is referred to as
the diffusion probability through link (m, n). The diffusion
process unfolds in discrete time-steps t ≥ 0, and proceeds
from a given initial active set S in the following way. When
a node m becomes active at time-step t, it is given a sin-
gle chance to activate each currently inactive child node n,
and succeeds with probability pm,n. If m succeeds, then n
will become active at time-step t + 1. If multiple parent
nodes of n become active at time-step t, then their acti-
vation attempts are sequenced in an arbitrary order, but
all performed at time-step t. Whether or not m succeeds,
it cannot make any further attempts to activate n in subse-
quent rounds. The process terminates if no more activations
are possible.

In the AsIC model, we specify real values rm,n with rm,n >
0 in advance for each link (m, n) ∈ E in addition to pm,n,
where rm,n is referred to as the time-delay parameter through
link (m, n). The diffusion process unfolds in continuous-time
t, and proceeds from a given initial active set S in the follow-
ing way. Suppose that a node m becomes active at time t.
Then, m is given a single chance to activate each currently
inactive child node n. We choose a delay-time δ from the
exponential distribution1 with parameter rm,n. If n has not
been activated before time t+δ, then m attempts to activate
n, and succeeds with probability pm,n. If m succeeds, then n
will become active at time t + δ. Said differently, whichever
parent m that succeeds in satisfying the activation condition
and for which the activation time is the earliest considering
the time delay associated with each link can actually acti-
vate the node. Under the continuous time framework, it is
unlikely that n is activated simultaneously by its multiple
parent nodes exactly at time t + δ. So we ignore this pos-
sibility. Whether or not m succeeds, it cannot make any
further attempts to activate n in subsequent rounds. The
process terminates if no more activations are possible.

4.1.2 Asynchronous Linear Threshold Model

Same as the above, we first recall the LT model. In this
model, for every node n ∈ V , we specify a weight (qm,n > 0)
from its parent node m in advance such that

X

m∈B(n)

qm,n ≤ 1.

The diffusion process from a given initial active set S pro-
ceeds according to the following randomized rule. First, for
any node n ∈ V , a threshold θn is chosen uniformly at ran-
dom from the interval [0, 1]. At time-step t, an inactive node
n is influenced by each of its active parent nodes, m, accord-
ing to weight qm,n. If the total weight from active parent
nodes of n is no less than θn, that is,

X

m∈Bt(n)

qm,n ≥ θn,

1Similar formulation can be derived for other distributions
such as power-law and Weibull.



then n will become active at time-step t + 1. Here, Bt(n)
stands for the set of all the parent nodes of n that are active
at time-step t. The process terminates if no more activations
are possible.

The AsLT model is defined in a similar way to the AsIC.
In the AsLT model, in addition to the weight set {qm,n},
we specify real values rm,n with rm,n > 0 in advance for
each link (m, n). Same as for AsIC, we refer to rm,n as
the time-delay parameter through link (m, n). The diffusion
process unfolds in continuous-time t, and proceeds from a
given initial active set S in the following way. Each active
parent m of the node n exerts its effect on n with the time
delay δ drawn from the exponential distribution with the
delay parameter rm,n. Suppose that the accumulated weight
from the active parents of node n has become no less than θn

at time t for the first time. Then, the node n becomes active
at t without any delay and exerts its effect on its child with
a delay associated with its link. This process is repeated
until no more activations are possible.

4.2 Visualization Method
Let R = {(m, tm), (n, tn), · · · } be an information diffusion

result over an undirected G = (V, E), where (n, tn) is a pair
of an activated node and its activation time. We set the ini-
tial activation time to 0. From the set of nodes that appear
in R, i.e., V ′ = {n | (n, tn) ∈ R}, we obtain an induced
subgraph G′ = (V ′, E′). Here, we regard tn as n’s associ-
ated value for n ∈ V ′. If m ∈ V ′, n ∈ V ′, (m, n) ∈ E′, and
tm < tn, the direction of information diffusion is limited to
from node m to n. Namely, a directed acyclic graph (DAG)
is constructed from the information diffusion result R. Al-
though our embedding method is designed for undirected
graph, we can interpret that the diffusion of information
takes over from the origin to the periphery by setting the
radius of node n to tn. The major reason why we restricted
the graph we handle to undirected graph is to maintain clear
meaning of the objective function we are trying to maximize.
Alternatively, we can start with a directed graph and obtain
a directed induced subgraph. Then we reinterpret it as an
undirected subgraph, and apply the above discussion.

5. EXPERIMENTAL EVALUATION

5.1 Datasets
We generated diffusion results using both the AsIC and

the AsLT models for four large real social networks. They
are all bidirectionally connected networks. The first one is
a trackback network of Japanese blogs used in [7]. It has
12, 047 nodes and 79, 920 directed links (the blog network).
The second one is a coauthorship network used in [12], which
has 12, 357 nodes and 38, 896 directed links (the coauthor-
ship network). The third one is a network derived from
the Enron Email Dataset [9] by extracting the senders and
the recipients and linking those that had bidirectional com-
munications. It has 4, 254 nodes and 44, 314 directed links
(the Enron network). The fourth one is a network of people
that was derived from the “list of people” within Japanese
Wikipedia, used in [6], and has 9, 481 nodes and 245, 044
directed links (the Wikipedia network).

5.2 Experimental Results
We visualized the information diffusion result in 2-dimensional

Euclidean space, i.e., K = 2, and compared the results of the

proposed method with the other four existing methods. The
initial active node was chosen to be the most influential node
for each diffusion model. The location of this node is the
origin of the visualization plane for the proposed method,
but the location of the same node for the other methods is
not controllable and determined by the algorithm of each
method. The proposed method has the time information.
A family of blue dotted circles of different radii centered at
the origin indicates the activation times, where the radius
t of each blue dotted circle corresponds to the actual time
t. For all the visualization methods, red points and green
lines are used to display the activated nodes and their links,
respectively. It is noted that we are visualizing from the ob-
served data, meaning that we don’t know the parent which
activated its child if there is more than one active parent.
Thus, all the links between the activate parents and their
active children are displayed.

Due to the space limitation, we only show parts of the re-
sults. Figure 1 shows the visualization result of information
diffusion for the AsIC model over the Blog network using
the proposed method, where the thick black circle indicate
the initial active node. It is clear that the proposed method
have the following properties:

1. Given two active nodes, we can easily see which one
became active earlier.

2. Given an active node, we can easily identify its parents
that could activate it (but we cannot identify it if there
are multiple active parents by the reason mentioned
above).
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Figure 1: Visualization result of proposed method for the
Blog network (AsIC model).

We can observe that in general super-mediators, i.e., those
nodes that play an important role in passing the informa-
tion to other nodes, are easily identified by the proposed
method. In Figure 1, the thick black diamond node can nat-
urally be interpreted as a super-mediator. The same node
is also displayed as thick black diamonds in Figures 2, 3, 4
and 5. We notice that the multi-dimensional scaling and the
spring force embedding methods are also good to find super-
mediators, while it is more difficult to find them for the spec-
tral embedding and the cross-entropy embedding methods.
Note that the multi-dimensional scaling and the spring force
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Figure 2: Visualization result of multi-dimensional scaling
for the Blog network (AsIC model).
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Figure 3: Visualization result of spectral embedding for the
Blog network (AsIC model).

embedding methods are based on graph distance matrix G,
and the spectral embedding and the cross-entropy embed-
ding methods are based on graph adjacency matrix A. For
the G-based methods, the distance from the initial active
node (thick black circle) to an active node v in the visual-
ization plane can be correlated with the time if the node v
is an active node. Thus, we can consider that such meth-
ods have a possibility of finding super-mediators. However,
we see from Figures 1 to 5 that the proposed method bet-
ter identifies a super-mediator than the multi-dimensional
scaling and the spring force embedding methods.

Figure 6 shows the visualization result of information dif-
fusion for the AsLT model over the Blog network. Compared
with the visualization result for the AsIC model, we observe
that links are mostly outward directed and only small links
are in circumferential direction. We consider that this ob-
servation comes from a characteristic difference between the
AsIC and AsLT models. Especially, in case of the AsLT
model, when a parent node becomes active, only its low
degree child nodes are likely to be activated. Our proposed
method will locate these child nodes to similar directions be-
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Figure 4: Visualization result of spring force embedding for
the Blog network (AsIC model).
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Figure 5: Visualization result of cross-entropy embedding
for the Blog network (AsIC model).

cause their connectivity patterns are necessarily close. We
consider that this fact partly explains the difference between
the visualization results of Figure 1 and 6.

Figures 7 and 8 respectively show the visualization results
of information diffusion for the AsIC and AsLT models over
the Wikipedia network. We can also see from these figures
that the proposed method is promising for identifying influ-
ential super-mediators and exploring the characteristic dif-
ferences between the two information diffusion models. As
mentioned earlier, the visualization results over the coau-
thorship and Enron networks are omitted due to the space
limitation, but it is confirmed that we obtained similar re-
sults.

Last but not least, we evaluated our proposed method only
in the case of two-dimensional embedding for our visualiza-
tion purpose, but this does not mean that it is limited to
two-dimensional embedding. It is quite easy to extend it to
the general K-dimension embedding. We plan to evaluate
our method as a powerful technique for both dimensional
reduction and clustering as a future work.
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Figure 6: Visualization result of proposed method for the
Blog network (AsLT model).
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Figure 7: Visualization result of proposed method for the
Wikipedia network (AsIC model).

6. DISCUSSION
One of the unique features of the proposed method is that

we deal with the graph that has a value to each node, and
the visualization takes account of the node value. The appli-
cation to information diffusion involves time evolution and
assigning the time the node gets activated to the node value
works nicely to allow the diffusion starts at the origin always.
On the contrary, all the other existing methods, when ap-
plied to the same visualization problem, generates a graph
where the starting point of the diffusion is determined by
the algorithm. Thus, if we want to visualize multiple results
of diffusion sequences each starting from the same node, the
starting node in each visualization is placed in a different
location. Thus, the above feature is one of the advantages
of the proposed method.

7. CONCLUSION
We addressed the problem of visualizing structure of a

undirected graph that has a value associated with each node
into a K-dimensional Euclidean space in such a way that 1)
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Figure 8: Visualization result of proposed method for the
Wikipedia network (AsLT model).

the length of the point vector in this space is equal to the
value assigned to the node and 2) nodes that are connected
are placed as close as possible to each other in the space
and nodes not connected are placed as far apart as possible
from each other. We showed that this visualization prob-
lem is reduced to spherical embedding that is formulated as
a non-linear optimization problem for which a certain ob-
jective function to be maximized is defined. We proposed
a very efficient algorithm based on a power iteration that
employs double-centering operations. To validate the effec-
tiveness of the proposed method, we applied it to visualize
the information diffusion process over a social network by as-
signing the node activation time to the node value. We used
the result of information diffusion obtained by two differ-
ent diffusion models (AsIC and AsLT models) for four real
world networks, and compared the proposed method with
the multi-dimensional scaling, the spring force embedding,
the spectral embedding and the cross-entropy embedding
methods. We first confirmed that the proposed method can
visualize time evolution of the diffusion process in an more
intuitively understandable manner. We also confirmed that
the proposed method have the following properties: 1) given
two active nodes, we can easily see which one became active
earlier, and 2) given an active node, we can easily identify
its parents that could activate it (note that we are visualiz-
ing from the observed diffusion data, meaning that we don’t
know the parent which activated its child if there is more
than one active parent.) Furthermore, we experimentally
showed that the proposed method can better identify super-
mediators, i.e., those nodes that play an important role in
passing the information to other nodes, than the other four
methods.

8. ACKNOWLEDGMENTS
This work was partly supported by Asian Office of Aerospace

Research and Development, Air Force Office of Scientific Re-
search under Grant No. AOARD-11-4111, JSPS Grant-in-
Aid for Scientific Research (C) (No. 23500312), and Toyota
Central R&D Labs., Inc. (No. E11114).



9. REFERENCES
[1] S. Brin and L.Page. The anatomy of a large-scale

hypertextual web search engine. Computer Networks
and ISDN Systems, 30:107–117, 1998.

[2] F. R. K. Chung. Spectral Graph Theory. American
Mathematical Society, New York, 1997.

[3] T. Fushimi, Y. Kubota, K. Saito, M. Kimura,
K. Ohara, and H. Motoda. Speeding up bipartite
graph visualization method. In Proceedings of the 24th
Australasian Joint Conference on Artificial
Intelligence, pages 697–706. LNAI 7106, 2011.

[4] K. Kamada and S. Kawai. An algorithm for drawing
general undirected graph. Information Processing
Letters, 31:7–15, 1989.

[5] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD-2003), pages 137–146, 2003.

[6] M. Kimura, K. Saito, and H. Motoda. Minimizing the
spread of contamination by blocking links in a
network. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI-08), pages 1175–1180,
2008.

[7] M. Kimura, K. Saito, and H. Motoda. Blocking links
to minimize contamination spread in a social network.
ACM Transactions on Knowledge Discovery from
Data, 3:9:1–9:23, 2009.

[8] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM),
46:604–632, 1999.

[9] B. Klimt and Y. Yang. The enron corpus: A new
dataset for email classification research. In Proceedings
of the 2004 European Conference on Machine
Learning (ECML’04), pages 217–226, 2004.

[10] A. N. Langville and C. D. Meyer. Deeper inside
pagerank. Internet Mathematics, 1:335–380, 2005.

[11] A. Naud, S. Usui, N. Ueda, and T. Taniguchi.
Visualization of documents and concepts in
neuroinformatics with the 3d-se viewer. Frontiers in
Neuroinformatics, 1:Article 7, 2007.
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