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Abstract— We consider the problem of finding influential
nodes for information diffusion on a social network under
the independent cascade model. It is known that the greedy
algorithm can give a good approximate solution for the prob-
lem. Aiming to obtain efficient methods for finding better
approximate solutions, we explore what structual feature of
the underlying network is relevant to the greedy solution that is
the approximate solution by the greedy algorithm. We focus on
the SR-community strucutre, and analyze the greedy solution
in terms of the SR-community structure. Using real large
social networks, we experimentally demonstrate that the SR-
community structure can be more strongly correlated with the
greedy solution than the community structure introduced by
Newman and Leicht.

I. I NTRODUCTION

Recently, considerable attention has been devoted to social
network analysis [9], [14], [1], [2], [8], [13], [7], since the
rise of the Internet and the World Wide Web has enabled us
to collect real large social networks. Here, a social network
is the network of relationships and interactions among social
entities such as individuals, organizations and groups. Ex-
amples include blog networks, collaboration networks, and
email networks.

A social network plays an important role for the spread of
information since a piece of information can propagate from
one node to another node through a link on the network
in the form of “word-of-mouth” communication [3]. Thus,
it is an important research issue to find influential nodes
for information diffusion on a social network in terms of
sociology and “viral marketing”. In fact, researchers [5],[6]
have recently studied a combinatorial optimization problem
called theinfluence maximization problemon a network un-
der theindependent cascade (IC) modelthat is a widely-used
fundamental probabilistic model of information diffusion.
Here, the influence maximization problem of sizek is the
problem of extracting a set ofk nodes to target for initial
activation such that it yields the largest expected spread of
information, wherek is a given positive integer. Kempeet
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al. [5] experimentally showed on large collaboration net-
works that the greedy algorithm can give a good approximate
solution for the influence maximization problem under the
IC model. We refer to the approximate solution obtained
by the greedy algorithm as thegreedy solution. Using an
analysis framework based on submodular functions, Kempe
et al. [5] mathematically proved a performance guarantee of
the greedy solution. Moreover, Kimuraet al. [6] presented
a method of efficiently estimating the greedy solution on
the basis of bond percolation and graph theory. However,
it is desirable to construct efficient methods of obtaining
better approximate solutions for the influence maximization
problem on a network under the IC model. Towards this aim,
it is important to understand what structural feature of the
underlying network is correlated with the greedy solution.

As a structual feature of a given network, we focus on the
SR-community structureU = 〈Um; m = 1, 2, 3, · · · 〉 [15]
that is a sequence of densely connected sets of nodes in
the network. Here, themth SR-communityUm is defined as
the set of nodes in the network that maximizes the average
number of links within it after removing all the links within
Uj , (j = 0, · · · , m − 1), whereU0 is the empty set∅. In
this paper, we analyze the greedy solution for the influence
maximization problem under the IC model in terms of the
SR-community structureU . For the influence maximization
problem of sizek, we extract the minimal sequence of SR-
communities inU , Uk = 〈Um; m = 1, · · · , Mk〉, such that
it covers the greedy solution, and investigate the similar-
ity between the set of nodes influenced by each nodevi

in the greedy solution and the SR-community inUk that
corresponds to the nodevi. On the basis of this manner, we
quantify the strength of the correlation between the greedy
solution and the SR-community struture. Using real large
social networks, we experimentally demonstrate that unlike
the community structure introduced by Newman and Leicht
[12], the SR-community structure can be strongly correlated
wirh the greedy solution.

II. I NFLUENTIAL NODES FORINFORMATION DIFFUSION

Throughout this paper, we consider a social network
represented by an undirected graph, and discuss the spread of
a certain information through the network under the IC model
by regarding those undirected links as bidirectional ones.We
call nodesactive if they have accepted the information.

A. Independent Cascade Model

We define the IC model. In this model, the diffusion
process unfolds in discrete time-stepst ≥ 0, and it is



assumed that nodes can switch from being inactive to being
active, but cannot switch from being active to being inactive.
Given an initial setX of active nodes, we assume that the
nodes inX have first become active at step0, and all the
other nodes are inactive at step0. We specify a real value
βu,v ∈ [0, 1] for each directed link(u, v) in advance. Here,
βu,v is referred to as thepropagation probabilitythrough
link (u, v).

When an initial setX of active nodes is given, the
diffusion process proceeds in the following way. When node
u first becomes active at stept, it is given a single chance
to activate each currently inactive neighborv, and succeeds
with probability βu,v. If u succeeds, thenv will become
active at stept + 1. If multiple parents ofv first become
active at stept, then their activation attempts are sequenced
in an arbitrary order, but performed at stept. Whether or not
u succeeds, it cannot make any further attempts to activate
v in subsequent rounds. The process terminates if no more
activations are possible.

For an initial active setX , let σ(X) denote the expected
number of active nodes at the end of the random process in
the IC model. We callσ(X) the influence degreeof initial
active setX .

B. Influence Maximization Problem

We consider the influence maximization problem of size
k under the IC mode. LetS be the set of all the nodes
in the network. The problem is defined as follows: Given
a positive integerk, find a setX∗

k of k nodes to target for
initial activation such thatσ(X∗

k ) ≥ σ(Y ) for any setY of
k nodes. To approximately solve this optimization problem,
we consider the following greedy algorithm:

1) SetX ← ∅.
2) for i = 1 to k do
3) Choose a nodevi ∈ V maximizingσ(X ∪ {v}),

(v ∈ S \X).
4) SetX ← X ∪ {vi}.
5) end for

Let Sk denote the set ofk nodes obtained by this algorithm.
We callSk thegreedy solutionof the influence maximization
problem of sizek.

Using large collaboration networks, Kempeet al. [5]
experimetally demonstrated that the greedy solutionSk out-
performs the approximate solutios obtained by the high-
degree and centrality heuristics that are commonly used in
the sociology literature. It is also known that

σ(Sk) ≥

(
1−

1

e

)
σ(X∗

k ),

that is, a performance guarantee of the greedy solutionSk

is obtained [5]. For any initial active setX , a good estimate
of σ(X) was conventionally obtained by simulating the
random process of the IC model many times. Thus, any
straightforward method to estimate the greedy solutionSk

needed a large amount of computation on a large network.
However, Kimuraet al. [6] gave an efficient method for

estimatingSk on the basis of bond percolation and graph
theory. In this paper, using their method, we estimate the
greedy solutionSk.

III. SR-COMMUNITY STRUCTURE

In this section, we define the SR-community structure, and
describe a method for efficiently estimating it according to
the work of Saitoet al. [15].

A. Definition

Let A be the adjacency matrix of a network, and let

S = {1, · · · , N}

be the set of all the nodes in the network. Namely, each
(i, j)-element of the adjacency matrix, denoted byA(i, j),
is set to1 if there exists a link (edge) between nodesi and
j; otherwise0. In this paper, we focus on undirected graphs
without self-connections, i.e.,A(i, j) = A(j, i), A(i, i) = 0,
(i, j = 1, · · · , N). For any subset of nodes,T ⊂ S, we can
definethe average number of links withinT as follows:

G(T ) =
1

2

∑

i∈T

∑

j∈T

A(i, j)

|T |
, (1)

where|T | stands for the number of elements inT . First, let
U1 denote the subset ofS that maximizes the average number
of links within it (see, (1)). Next, for the network constructed
through removing all the links withinU1 from the original
network, letU2 denote the subset ofS that maximizes the
average number of links within it (see, (1)). Next, for the
network constructed thorugh removing all the links withinU1

andU2 from the original network, letU3 denote the subset of
S that maximizes the average number of links within it (see,
(1)). By repeatedly performing these procedures, we define
the sequence of subsets ofS,

U = 〈Um; m = 1, 2, 3, · · · 〉.

Here,U is called theSR-community structureof the orig-
inal network, and eachUm is referred to as themth SR-
community. Note that the SR-community structureU repre-
sents a structual feature of the network.

In the case of a large network, any straightforward method
for detecting the SR-community structure is likely to suffer
from combinatorial explosion. To cope with such a large
network, we employ the method presented by Saitoet
al. [15].

B. Relaxation problem

For a subsetT of S , we define anN dimensional indicator
vectorq by settingq(i) = 1 if i ∈ T ; otherwiseq(i) = 0.
Then we can rewrite (1) as follows:

G(q) =
1

2

qTAq

qT q
, (2)

where qT stands for a transposed vector ofq. Now we
consider a relaxation problem by lettingq take continuous
values. Then, according to the Rayleigh-Ritz theorem [4],



the solution of maximizingG(q) is given by the principal
eigenvectorq∗ of the adjacency matrixA.

In order to obtain the eigenvectorq∗, we employ the
following procedure based on the power iteration [4].

E1. Initialize q(0) = (1, · · · , 1)T , and setτ ← 1;
E2. Calculateq̃ = Aq(τ−1) andq(t) = q̃/ maxi q̃i;
E3. Terminate ifmaxi |q(τ)(i)− q(τ−1)(i)| < ε;
E4. Setτ ← τ + 1, and return toE2..

Here a small positive parameterε controls the termination
condition, and we can obtain the final solution asq∗ = q(τ)

after its termination. Since all the elements ofA and q(0)

have non-negative values, we can guarantee that all the
elements of̃q also have non-negative values after any number
of iterations. Moreover, due to the scaling operation inE2,
we can guarantee that0 ≤ q(τ)(i) ≤ 1 for anyτ andi. Thus
we consider that the above formulation gives one of desirable
relaxation solutions to the original problem.

C. Quantization problem

By ranking nodes according to the values of eigenvector el-
ements, we can obtain a list of nodes,R = [r(1), · · · , r(N)],
wherer(i) stands for a mapping from ranks to nodes. Note
that q∗(r(i)) ≥ q∗(r(i + 1)) for any i. By considering a set
of the toph nodes,

T (h) = {r(i) : i = 1, · · · , h}, (3)

we can calculate the average number of links withinT (h)
as follows:

G(h) =
h−1∑

i=1

h∑

j=i+1

A(r(i), r(j))

h
. (4)

In our method, instead of directly solving (1), we compute
a node setT (h∗), whereh∗ maximizes (4).

In order to efficiently calculateh∗, we utilize the following
update formula:

G(h + 1) = G(h) +
∆(h + 1)−G(h)

h + 1
, (5)

where∆(h + 1) stands for the increment by adding node
r(h + 1), calculated by

∆(h + 1) =

h∑

j=1

A(r(j), r(h + 1)). (6)

Note thatG(1) = 0. The above procedure can be summarized
as follows.

F1. Computer(i) by sorting elements ofq∗;
F2. CalculateG(2), · · · , G(N) by using (5) and (6);
F3. OutputT (h∗) such thath∗ = argmaxh G(h);

D. Detection algorithm

By repeatedly performing the above procedures,M times,
we can detectM densely connected portions for a given
network as follows.

G1. Repeat the following steps form = 1 to M ;
G2. Calculateq∗

m usingE1 to E4;

G3. CalculateT ∗
m usingF1 to F3;

G4. SetA(i, j) = 0 if i, j ∈ T ∗
m.

Here, the numberM of communities is determined by a
user. We estimate themth SR-communityUm asT ∗

m for any
integerm with 1 ≤ m ≤M .

IV. COMMUNITY ANALYSIS OF INFLUENTIAL NODES

For a given network, we consider the influence maximiza-
tion problem of sizek under the IC model. LetSk = {vi; i =
1, · · · , k} be the greedy solution, and letU = 〈Um; m =
1, 2, 3, · · · 〉 be the SR-community structure of the network.
We analyze the greedy solutionSk in terms of the SR-
community structureU .

First, we extract the minimal sequence of SR-communities
in U such that it covers the greedy solutionSk,

Uk = 〈Um; m = 1, · · · , Mk〉,

that is,Mk is the minimal integerM satisfying

M⋃

m=1

Um ⊃ Sk.

Note thatUk can be regarded as a rough approximation to
the greedy solutionSk. We callMk theSR-covering number
of the greedy solutionSk. For anyvi ∈ Sk, let α(vi) denote
the minimal integerm satisfyingUm ∋ vi. Uα(vi) is reffered
to as the SR-community that corresponds to the nodevi.

Next, for anyvi ∈ Sk and a real valuep ∈ [0, 1], we
consider theinfluence setH(vi, p) of vi with probability p.
Here, H(vi, p) is the set of nodesv in the network such
that when{vi} is the initial active set, the probability that
v is active at the end of the diffusion process under the IC
model is more thanp. Note thatvi ∈ H(vi, p) ⊂ H(vi, p

′)
if 0 ≤ p′ ≤ p ≤ 1.

We investigate the correlation between the greedy solution
Sk and the SR-community structureU . In terms of F -
measure, we quantify the similarity between an influence
setH(vi, p) of each nodevi in the greedy solutionSk and
the SR-communityUα(vi) that correspond tovi, that is, we
measure how close the setsH(vi, p) andUα(vi) are by

F0(p; vi) = 200

∣∣H(vi, p) ∩ Uα(vi)

∣∣
|H(vi, p)|+

∣∣Uα(vi)

∣∣ . (7)

Moreover, we quantify the strength of the correlation be-
tween the greedy solutionSk and the SR-community struc-
tureU as follows:

F (k) =
1

k

k∑

i=1

F1(vi), (8)

where

F1(vi) = max
0≤p≤1

F0(p; vi), (i = 1, · · · , k).



V. EXPERIMENTAL EVALUATION

Using real large networks, we experimentally evaluate the
strength of the correlation between the greedy solution of
the influence maximization problem under the IC model and
the SR-community structure. LetSk = {v1, · · · , vk} be the
greedy solution for the influence maximization problem of
sizek.

A. Network Datasets

In the evaluation experiments, we should desirably use
large networks that exhibit many of the key features of real
social networks. Here, we report on the experimental results
for two different datasets of such real networks.

First, we employed a trackback network of blogs, since
a piece of information can propagate from one blog author
to another blog author through a trackback. Since bloggers
discuss various topics and establish mutual communications
by putting trackbacks on each other’s blogs, we regarded a
link created by a trackback as a biderectional link for simplic-
ity. By tracing ten steps ahead the trackbacks from the blog
of the theme “JR Fukuchiyama Line Derailment Collision”
in the site “goo”1, we collected a large connected trackback
network in May, 2005. This network was an undirected graph
of 12, 047 nodes and39, 960 links. This network showed
the so-called “power-law” degree distribution that most real
large networks exhibit. Here, the degree distribution is the
distribution of the number of links for every node. We refer
to this network data asthe blog network dataset.

Next, we employed a network of people that was derived
from the “list of people” within Japanese Wikipedia. Specif-
ically, we extracted the maximal connected component of
the undirected graph obtained by linking two people in the
“list of people” if they co-occur in six or more Wikipedia
pages. We refer to this network data asthe Wikipedia network
dataset. Here, the total numbers of nodes and links were
9, 481 and122, 522, respectively.

Newman and Park [11] observed that social networks
represented as undirected graphs generally have the following
two statistical properties unlike non-social networks. First,
they show positive correlations between the degrees of ad-
jacent nodes. Second, they have much higer values of the
clustering coefficientthan the correspondingconfiguration
models(i.e., random network models). Here, the clustering
coefficientC for an undirected graph is defined by

C =
3× number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which
is connected to each of the others, and a “connected triple”
means a node connected directly to an unordered pair of
others. Note that in terms of sociology,C measures the
probability that two of your friends will also be friends of
one another. Given a degree distribution, the corresponding
configuration model of random network is defined as the

1http://blog.goo.ne.jp/usertheme/

ensemble of all possible graphs that possess the degree dis-
tribution, with each having equal weight. The value ofC for
the configuration model can be exactly calculated [10]. For
the Wikipedia network, the value ofC of the corresponding
configuration model was0.046, while the actual measured
value ofC was0.39. Moreover, the degrees of adjacent nodes
were positively correlated for the Wikipedia network dataset.
Therefore, we consider that the Wikipedia network dataset
can be used as an example of social network.

B. A Comparison Method

In order to quantitatively evaluate the strength of the
correlation between the greedy solution for the influence
maximization problem under the IC model and the SR-
community structure, we employ the community structure
obtined by the method of Newman and Leicht [12] as a
baseline.

Given an integerk, the method of Newman and Leicht [12]
divides the setS = {1, · · · , N} of nodes in the network into
k communities, that is,k disjoint subsets ofS, according
to some probabilistic mixture model that is a probabilistic
mixture of multinomial distributions. More specifically, their
method is as follows: First, a probabilistic generative model
for network is given. Namely, the probability that a network
with adjacency matirixA appears is defiend by

P (A |λ, θ) =

N∏

n=1

P (A(n, :) |λ, θ),

whereA(n, :) denotes thenth row vector ofA,

λ = {λℓ; ℓ = 1, · · · , k},

θ = {θℓ,j; ℓ = 1, · · · , k, j = 1, · · · , N}

are sets of parameters, and

P (A(n, :) |λ, θ) =

k∑

ℓ=1

λℓP (A(n, :) | ℓ, θ),

P (A(n, :) | ℓ, θ) ∝
N∏

j=1

(θℓ,j)
A(n,j)

,

for ℓ = 1, · · · , k andn, j = 1, · · · , N . Here, eachλℓ is the
mixture weight (prior probability) of theℓth community, and

λℓ > 0, (ℓ = 1, · · · , k),

k∑

ℓ=1

λℓ = 1.

Also, eachθℓ,j is the probability that thejth node connects
with a node beloging to theℓth community, and

θℓ,j > 0,
N∑

j=1

θℓ,j = 1,

for ℓ = 1, · · · , k and j = 1, · · · , N . By performing the
maximal likelihood estimation using the EM algorithm, we
estimate the values ofλ andθ. Then, applying Bayes’ rule,
we define the community labelℓ∗(n) for each noden as

ℓ∗(n) = arg max
1≤ℓ≤k

P (ℓ |A(n, :), λ, θ).



For the greedy solutionSk = {v1, · · · , vk}, we detect the
set ofk communities,

Zk = {Z1, · · · , Zk},

by using the method of Newman and Leicht. For everyvi, we
defineγ(vi) by the conditionZγ(vi) ∋ vi. In the same way
as the SR-community structure, we quantify the strength of
the correlation betweenSk andZk by F (k) (see, (8)). Here,
we modify the definition ofF (k) through changing each
F0(p; vi) (see, (7)) to

F0(p; vi) = 200

∣∣H(vi, p) ∩ Zγ(vi)

∣∣
|H(vi, p)|+

∣∣Zγ(vi)

∣∣ .

C. Experimental Settings

In our experiments, we assigned a uniform probabilityβ to
the propagation probabilityβu,v for any directed link(u, v)
of the network. As investigate by Leskovecet al. [7], it seems
that large cascades of information diffusion happen rarely.
Thus, we examined the IC model with relatively smallβ
according to Kempeat al. [5].

We estimated the greedy solutionSk = {v1, · · · , vk} using
the method of Kimuraet al. [6] with the parameter value
10, 000. Here, the parameter represents the number of bond
percolation processes for estimating the influence degree
σ(X) of a given initial active setX . Also, we estimated the
influence setH(vi, p) of nodevi with probabilityp through
300, 000 simulations of the IC model.

D. Experimental Results

We describe the results for the experiments using the blog
network dataset and the Wikipedia network dataset.
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Fig. 1. SR-covering numberMk of greedy solutionSk on the blog network
dataset.

Figures 1 and 2 plot the SR-covering numberMk of the
greedy solutionSk with respect tok on the blog network
dataset and the Wikipedia network dataset, respectively. For
almost allk, we observe that the larger the value of prop-
agation probabilityβ is, the larger the SR-covering number
Mk of Sk is.
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Fig. 2. SR-covering numberMk of greedy solutionSk on the Wikipedia
network dataset.
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Fig. 3. StrengthF (k) of correlation with greedy solutionSk on the blog
network dataset (β = 5%).
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Fig. 4. StrengthF (k) of correlation with greedy solutionSk on the blog
network dataset (β = 10%).
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Fig. 5. StrengthF (k) of correlation with greedy solutionSk on the
Wikipedia network dataset (β = 1%).
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Fig. 6. StrengthF (k) of correlation with greedy solutionSk on the
Wikipedia network dataset (β = 5%).

Figures 3, 4, 5, and 6 plot the strengthF (k) of correlation
with the greedy solutionSk with respect tok, (2 ≤ k ≤ 30).
In Figures 3, 4, 5, and 6, the circles indicate the strength
of the correlation between the greedy solution and the SR-
community structure (SR), and the squares indicate the
strength of the correlation between the greedy solution and
the community structure obtained by the method of Newman
and Leicht (NL). Figures 3 and 4 show the results for the
blog network dataset, and Figures 5 and 6 show the results
for the Wikipedia network dataset. These results imply that
for the IC model with relatively small propagation probability
β, the SR-community structure can be more strongly corre-
lated with the greedy solution than the community structure
introduced by Newman and Leicht.

VI. CONCLUDING REMARKS

Aiming to obtain efficient methods for finding better ap-
proximate solutions for the influence maximization problem
on a social network under the IC model, we have explored

what structual feature of the undelying network is correlated
with the greedy solution. We have focused on the SR-
community structure of the network, and analyzed the greedy
solution in terms of the SR-community structure. Using real
large social networks including a blog network, we have
experimentally demonstrated that in comparison with the
community structure introduced by Newman and Leicht, the
SR-community structure can be strongly correlated with the
greedy solution.

On the other hand, extensive verification of this proposi-
tion with various real social networks remains an important
task. However, we have already made substantial progress,
and we are encouraged by our initial results.
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