Automated User Modeling for Intelligent Interface
Kenichi Yoshida and Hiroshi Motoda

Advanced Research Laboratory, Hitachi Ltd.
Hatoyama, Saitama, 350-03 Japan

The analysis of the user behavior is one important function of the intelligent user
interface because, by analyzing the user behavior, it becomes possible to understand the
user intention and release the user from tedious tasks which are often required to use a fast
but low-level interface. The acquisition of the user behavior model is crucial. Most studies
meant to realize an intelligent interface system only analyze superficial user behaviors,
from which to automate the repetitions. Their user models tend to be simple and do
not reproduce the behavior well enough. This paper presents a new framework that
analyzes the computational processes activated by the user commands to build the user
behavior model. An important feature of the proposed framework is the analysis of data
dependency between the user commands. A user-adaptive interface system, ClipBoard,
was developed to show the adequacy of this framework. It analyzes the I/O relationship
between applications in the past task history, selects the next application, and creates
scripts which enable complex task execution by a single command.

1. Introduction

As a task becomes more complex, the number of applications needed to perform the
task increases and the process to use the computer system becomes more complex and
difficult. A single data file may be processed by multiple applications. Correspondingly,
a single task may be performed by a combination of multiple applications. The analysis
of the user behavior is one important function of the intelligent user interface because, by
analyzing the user behavior, it becomes possible to understand or at least conjecture the
user intention and release the user from tedious tasks which are often required to use a
fast but low-level interface.

Most mouse-based interface systems, such as Microsoft Windows and Apple Macintosh,
have the drag and drop function to explicitly specify applications. These systems also have
a function that specifies a default application for each file. While the users do not need to
specify application programs during normal operation, they have to select an appropriate
application to use the drag and drop function when the same file is used for more than one
application. For example, later is a well-known document formatter. Since its function
is only to format a document, the latex user employs a separate editing system, such
as emacs, to modify the document contents. The document processing task with latez,
therefore, involves an interchangeable use of emacs and latex, and the use of the default
does not help in this situation because both systems process the same file interchangeably.

Conventional interface systems also have a function that permits use of script language
to program a complex task by a combination of simpler applications. However, the user
needs some programming skills, which reduces user friendliness of the interface.

ClipBoard is a user-adaptive interface system for UNIX operating system that auto-
matically selects an appropriate application to support complex tasks. It analyzes the
I/O relationship between applications in the past task history, selects the next applica-
tion, and creates scripts which enable complex task execution by a single command. The
knowledge base to select an appropriate application is automatically generated by analysis
of the I/0 relationship between applications, and thus, no pre-specified knowledge base
is necessary. The information necessary to generate scripts is also acquired during the
operation of applications.

The use of the 1/0 relationship between applications increases the selection accuracy
and facilitates the automatic script creation. Information on the data dependency between
commands facilitates induction by providing an additional source of information. Exper-
iment shows the evidence that this additional information gives a better user behavior
model, and improves the selection accuracy.

2. Related work

The intelligent user interface is an important area of investigation. EAGER [2] is a
HyperText system that observes user operations, finds repetitions, and offers to automate
repetitive operations. It has a special mechanism to generalize loop counts and makes
macro operations that perform repeated operations. The knowledge which automates the
repetitive operations is automatically acquired. [4] analyzes the pattern of repetitions in
the UNIX command histories and observes some regularities. [7] discusses a version of the
emacs editor that also extracts repetitions from user operations to make the editing task
more efficient. There are some work that used machine learning techniques. [3,5] used
a decision tree learning method and [6] examined a K-nearest neighbor method. These
efforts resulted in various applications: e.g., a meeting scheduling agent, an electronic
mail agent, and a form filling system.

These studies analyze only user operation sequences, and extract repetitions from
therein. The applications were carefully selected and no other source of knowledge was re-
quired. However, this success can’t be generalized to other types of interface systems such
as command prediction and script generation. We need to use other source of knowledge as
well as sequence information. The most typical approach would be a knowledge-based ap-
proach. Both APU [1] which is the UNIX shell-scripts programming system, and Gold [8]
which is a business charts editor, take this approach. The knowledge must be carefully
hand-coded in these systems.

The aim of this study is to build a user-adaptive intelligent interface by using, in
addition to the sequence information, other source of knowledge which can be automati-
cally collected during the user operation, i.e. the I/O relationship between applications.
Since this information has rather complicated structure, most of the conventional induc-
tive learning techniques is not adequate to be applied. We use graph-based induction
method [10] to generate the user behavior model.

3. Overview

Figure 1 shows the system configuration of ClipBoard. It has three main components: a
mouse-based application controller, a subgraph extraction program, and an 1/O recorder.
The I/0 recorder is part of the operating system and records all the I/O operations of
each application program. Suppose a user is making a document using a latex document
formatter according to the following process:

Make a document source by an emacs editor.

Use the lalex document formatter to check the document’s bibliography.

Use the bibliography processor bibtex to make a bibliography data base paper.bbl.
Use the lalex document formatter to access the bibliography data base.

Use the latex document formatter to make a final copy.

Preview the final copy by the xzdvi previewer.

S O | W N —

Figure 2 shows the information recorded by the I/O recorder in a simplified form.

|

Mouse based
Command Application . Process

Controller
System

Related References
N\

TeX Internal Data Base

| latex | | latex | l bibtexl | latex |

Typical /1O
Relation

Operating
System

ClipBoard

».D

Subgraph
Extraction
Program

TeX Internal Data Base Reference Data Base

in 1/0 Recorder File
Task History — System paper.dvi paper.bib
(Graph Format) Info. of Application I/O
[T xdvi

Figure 1. Overview of system configuration Figure 2. 1/O relationship between appli-
cations

We use a directed graph as the representation language of this information. In Figure 2,
the leftmost latex node takes paper.tex, paper.bbl and paper.auzx as inputs. The edges are
linked via these inputs to other nodes: emacs (creator of paper.tex), bibtex (creator of
paper.bbl), and latex (creator of paper.auz). We also record the application sequence,
which is the main source of the information that the conventional induction programs can
use. One edge has a role of recording the preceding applications (sequence information).
This can be used to learn the user preference of the independent application sequence such
as “first check mail, then read news” when the sequence information does not represent
dependency. However, this edge has been omitted from Figure 2 to improve readability.

The information acquired by the I/O recorder is analyzed by the subgraph extraction
program. Using graph-based induction method, this program extracts typical subgraphs
from the input graph so that the extracted subgraphs represent typically used application
patterns. The mouse-based application controller uses these extracted patterns to guide
the selection of the next applications.

Figure 3 displays a simple document processing task with ClipBoard. When ClipBoard

fig.obj paper.tex

Select Command |

/mnt/hdbl/GRI/SRC/Tel/bin

. I™ Fast
emacs

ghostview

sl e
tg:f § Cancel é
xdvi i

o

Current Directory |/mt/hdb1/GRI/SRC/Tcl/Fig

(a) Start

File: emacd

(b) Select an application by hand

fig.obj paper.tex
oA

e

fig.eps fig.obj paper, aux

Ca

paper,dvi paper.,log paper.,tex
A
W
L)

b

Current Directory |/mnt/hdbl/GBI/SRC/Tel/Fig Current Directory |/mt/hdb1/GBI/SRC/Tel/Fig

(c¢) ClipBoard suggests emacs for paper.tex (d) ClipBoard suggests latex for paper.tex

Figure 3. A simple document processing task

starts without any information about applications, the screen only lists file names (Fig-
ure 3 (a)). At this stage, after selecting (i.e., clicking the left mouse) the file to be
processed, the dialogue box appears so that the user can specify the application (Figure 3
(b)). If the user specifies emacs, ClipBoard treats emacs as the default for the file with
suffix tex (Figure 3 (¢)). The user can override the ClipBoard’s suggestion by means of
the dialogue box (Figure 3 (b)) which can be invoked by the right mouse button.

During the task, ClipBoard analyzes the I/O relationship between applications and ex-
tracts typical relationships. Which application to suggest changes over the time according
to changes in extracted relationships. If the result of induction over the past task his-
tory suggests another appropriate application, ClipBoard changes the icon on the screen
for a new application as the default. For example, ClipBoard changed its suggestion for
paper.tex to latex in Figure 3 (d). Note the change of icons from a paper sheet (Figure 3
(c)) to a printer (Figure 3 (d)).

In a typical document processing task with latex, ClipBoard suggests emacs and latex
interchangeably as the applications for the file paper.tex to use next. As shown in Fig-
ure 4, the additional information, i.e., information on the data dependency between the

user commands, can induce a better user behavior model, and improves the prediction
accuracy. The results shown here is the average of about 100 commands over three months
history of a single user. If we limit to the major commands, such as latex and xdvi, the
accuracy goes up to 80 to 100%.

ClipBoard also makes scripts which enable the execution of complex task by a single
command. Figure 5 shows an example of the generated scripts when a user repeatedly
calls up emacs, latex and zdvi. Note that we also use graph-based induction method to
create scripts. In other words, we use the notion of typically used application patterns to
both command prediction and script generation. Thus, the typical application pattern is
used as a model of user’s behavior.

Method LD 1-NN CART CLiP #! /bin/csh —-f # Document Processing Script.
Accuracy (%) | 22.6 20.8 34.6 57.8

emacs $1 # Edit Document.
. # Suffix is assumed to be "tex".

LD: Linear discrimination method
1-NN: 1 nearest neighbor method latex $1 # Format Document.
CART: Decision tree learning method
CLiP: Proposed method # Preview Result on Screen.

’ xdvi $1:r.dvi # Suffix is assumed to be "dvi".

Figure 4. Selection accuracies Figure 5. Example of the generated script

4. Discussion

Although the graph-based induction method considers only the syntactical/statistical
nature of the application patterns in the history, we could show that it can extract pat-
terns which seem to have some important meaning (semantics) of the user task. The
most important factor here is the criterion used to select the pattern. The graph-based
induction method uses various techniques developed by the statisticians (e.g. gini index,
cross validation etc.). Both the improvement of the selection accuracy and the adequacy
of the generated scripts in the experiments suggest the usefulness of our approach.

We note that the techniques developed by the statisticians are one important factor
which extracts semantics from syntactical information. However, the I/O information
used by the analysis is also another important factor. In particular, we use file suffix
information. In UNIX and similar operating systems, the file suffix tends to represent
the contents of the file. For example, a file with suffix tex is a tex (or latex) document
file, and a file with suffix ¢ is a C program source file. Thus, file suffix information also
contributes to the extraction of the promising patterns.

[9] notes the importance of the context for the interface system. They use high level in-
formation such as word or line to express the context in the word processor. The file suffix
information used in our study also provides the context information in a similar manner.
However, we have not yet made a thorough investigation of the available information to
capture the context, which remains to be an important future research issue.

5. Conclusion

The typical approach to building an intelligent interface observes the user’s behaviors
and tries to imitate them. We limited the scope of the user behavior to a sequence of task
(e.g. editing, formating, viewing, etc.) execution using plural application programs, and
assumed that if a model can predict what the user is supposed to do in the same situation,
the model represents the user model. Most conventional studies analyze only superficial
repetitive user behavior, from which to automate the repetition and completion. However,
these methods lack a framework for using the information about the relationships between
the applications which is important both to improve the accuracy and to create command
scripts. In this paper, a new framework that is based on graph-based induction has been
introduced to overcome this limitation.

The 1/0 relationship between applications is the main information source of the anal-
ysis. Although the proposed method considers only the statistical/syntactical nature of
the user behaviors, it can extract patterns which seems to have some important meaning
(semantics) for the user task. The generalized idea is the use of data dependency be-
tween sub-tasks to analyze the relationship between them. This idea seems to be useful
in designing an interface system for more complex applications such as data base systems.
However, evaluation of such systems remains to be a future research issue.

REFERENCES

1. S. Bhansali and M. T. Harandi. Synthesis of unix programs using derivational analogy.
Machine Learning, 10:7-55, 1993.

2. A. Cypher. EAGER: Programming Repetitive Tasks by Example. In CHI'91, pages
33-39, 1991.

3. L. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski. A Personal
Learning Apprentice. In AAAI-92, pages 96-103, 1992.

4. S. Greenberg and 1. H. Witten. How Users Repeat Their Actions on Computers:
Principles for Design of HISTORY Mechanisms. In CHI'88, pages 171-178, 1988.

5. L. A. Hermens and J. C. Schlimmer. A Machine-learning Apprentice for the Com-
pletion of Repetitive Forms. In Proc of the Ninth Conf. on Artificial Intelligence for
Applications, pages 164-170, 1993.

6. P. Maes and R. Kozierok. Learning Interface Agents. In AAAI-93, pages 459-465,
1993.

7. T. Masui and K. Nakayama. Repeat and Predict - Two Keys to Efficient Text Editing.
In CHI'94, pages 1178123, 1994.

8. B. Myers, J. Goldstein, and M. Goldberg. Creating Charts by Demonstration. In
CHI’94, pages 106-111, 1994.

9. P. P. Piernot. The AIDE Project: An Application-Independent Demonstrational En-
vironment. In A. Cypher, editor, Watch What I Do: Programming By Demonstration,
pages 387-405. MIT Press, 1993.

10. K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based Induction as a Unified
Learning Framework. Applied Intelligence, 4:297-328, 1994.

