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ABSTRACT
When a person seeks another person’s attention, it is of prime
importance to assess how interruptible the other person is.
Since smartphones are ubiquitously used as communication
media these days, interruptibility prediction on smartphones
has started to attract great interest from both academia and
industry. Previous studies, in general, attempted to model
interruptibility using the behaviors at the current moment and
in the immediate past (e.g., 5 minutes before). However, a
person’s interruptibility at a certain moment is indeed affected
by his/her preceding behaviors for several reasons. Motivated
by this long-term effect, in this paper we propose a novel
methodology of extracting features based on past behaviors
from smartphone sensor data. The primary difference from
previous studies is that we systematically consider a longer
history of up to a day in addition to the current point and the
immediate past. To represent behaviors in a day accurately
and compactly, our methodology divides a day into multiple
timeslots and then, for each timeslot, derives relevant features
such as the temporal shapes of the time series of the sensor
data. In order to verify the advantage of our methodology,
we collected a data set of smartphone usage from 25 partic-
ipants for four weeks and obtained a license to a large-scale
public data set constructed from 907 users over approximately
nine months. The experimental results on the two data sets
show that looking back to the beginning of the current day im-
proves prediction accuracy by up to 16% and 7%, respectively,
compared with the baseline and state-of-the-art methods.
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INTRODUCTION
Human interruptibility, simply interruptibility, in general is
defined by the degree of how opportune it is to interrupt a
person [15]. The probability of replying to an instant message
or checking a notification at a particular moment is a typical
example of interruptibility. Then, interruptibility prediction
is to assess another person’s interruptibility prior to interac-
tion with him/her [8, 14]. With accurate prediction, we can
expect a quick and high-quality response to an interruption,
and the cognitive burden of the person interrupted is reduced
significantly [11, 18] . Thus, the importance of interruptibility
prediction is being widely recognized since it is beneficial for
both those who interrupt and those who are interrupted [30].

Interruptibility prediction has been extensively studied in var-
ious scenarios: office environments [8, 14], desktop comput-
ers [12, 13], and mobile devices [19, 21, 22, 23, 24, 25, 28].
In particular, owing to the prevalence of mobile devices [4,
26, 28], huge amounts of research effort are currently be-
ing devoted to interruptibility prediction on mobile devices—
smartphones. Previous studies have demonstrated that inter-
ruptibility can be predicted fairly well (with an accuracy of
over 70%) using various types of context information.

One of the active topics in this direction is to determine what
data to capture to represent the current context [20, 30], be-
cause the advances in ubiquitous sensing technology provide
us with abundant contextual data. Regardless of data sources,
one dominating assumption is that the current context can best
be modeled by the observations obtained at that exact point
in time. That is, previous studies attempted to represent inter-
ruptibility mostly using the “present-time” features captured
at the specific moment. Examples of these features include
the current ringer mode and the current screen on/off status.
In addition to these features, more recent studies have started
considering users’ past behaviors, such as events occurring
in the previous one or five minutes [8, 14, 25] and the time
elapsed since the last event [21, 22, 23]. This is reasonable
because the consequences of past behaviors and history are
part of the current context [9]. Nonetheless, these studies still
do not consider past behaviors extensively since they reflect
only the immediate past.

Methodology
In this paper, we tackle the problem of systematically incorpo-
rating past behaviors into interruptibility prediction. Differing
from existing research that considers only the present time
and the immediate past, our methodology considers a longer
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history of up to one day. Here, we contend that proper consid-
eration of past behaviors plays a key role in accurate prediction.
The intuition behind our methodology is two-fold as shown
below (see “Study Design" for the details).

• Self-regulation or conservation of energy: People con-
sciously manage or guide their own thoughts and behav-
iors [16]. In addition, the amount of human activity per day
is in fact limited and conserved [33]. Thus, for example,
if a person did not concentrate on work in the morning,
the person would probably work harder in the afternoon to
finish a planned task within the day.

• Prolongation: The effect of an event could last for a long
time [1]. Hence, for example, if a phone call to someone
makes a caller feel relieved, the caller is more willing to do
a favor after the phone call during the entire day.

Improving interruptibility prediction based on past behaviors is
challenging. First, it is important to determine how far back we
need to look. We empirically verify that looking back on the
current day is sufficient to achieve the best result. Furthermore,
since a temporal window is relatively long (i.e., from several
hours to a day), a novel approach to feature extraction from
smartphone usage data is needed for effective prediction. We
carefully derive relevant features that include the statistical
measures, value distributions, and temporal shapes of the time
series of smartphone sensor data.

Figure 1 shows the concept of our methodology. In addition to
the features extracted from the present time and the immedi-
ate past, those extracted from the current moment back to the
beginning of a day are provided to the feature selection mod-
ule. Many more features are derived from the today window
than from the current point and the immediate-past window
because of its longer duration. Finally, only the discriminative
features resulting from the feature selection module are used
for training and prediction. Here, the interruptibility at the
current moment is “predicted” using the sensor data that has
been collected in the past. These training and prediction are
performed individually for each user.

Past

Today
Window

Immediate-Past
Window

Current Point

Feature Extraction

Feature Selection

All Features

Training / Prediction

Selected Features

Figure 1. The main concept of our methodology.

We note that our work is orthogonal to existing work that
explores predictive data sources (e.g., [17]). Our sophisticated
design supports any time-series data of numeric, binary, and
nominal variables. Thus, given a set of attributes, we attempt
to maximize the benefits of those attributes by harnessing daily
behaviors.

Contribution
Overall, the contributions of this paper are summarized as
follows. First, we propose a novel methodology of system-

atically extracting daily features in support of interruptibility
prediction. Second, in order to verify the advantage of our
methodology, we collect smartphone usage data from 25 par-
ticipants for four weeks as a field study. Third, by extensive
experiments, we confirm that our methodology of looking
back on the current day achieves the highest prediction ac-
curacy and improves accuracy by up to 16% compared with
the baseline of using only the present-time features and by up
to 7% compared with the state-of-the-art methods [8, 14, 25].
Interestingly, the features generated a few hours previously are
shown to be often more influential than those generated at that
moment.

RELATED WORK
In this section, we briefly review the state-of-the-art related
work. Pejovic et al. [20] provided a broad overview of mobile
sensing and context prediction. The authors, without confining
to interruptibility prediction, presented a survey of human ac-
tivities that can be predicted using their mobile phone usages
as well as machine learning techniques used for such predic-
tions. Notably, Turner et al. [30] presented an extensive survey
on interruptibility prediction in three dimensions: scenarios
for interruptibility, data collection, and prediction. Thus, we
present a rather focused survey on feature extraction for past
behaviors that can be found in some recent studies, though
they do not fully exploit past behaviors.

Hudson et al. [14] and Fogarty et al. [8] studied interruptibility
prediction in office environments. The authors coded the data
recorded by the cameras in the offices and logged 23 events
or situations, e.g., speaking, writing, sitting, standing, or on
the phone, to act as simulated sensors. The entire duration
was divided to 15 second intervals. Then, the authors derived
the features based on the intervals that belonged to the past
30 seconds, 1 minute, 2 minutes, and 5 minutes, respectively.
Among these derived features, whether a talk event occurred
in any interval during the past 30 seconds was turned out to
be very predictive. This work achieved the accuracy of up to
82.4%. Sarker et al. [25] studied availability prediction for
just-in-time interventions (JITI) in health monitoring applica-
tions. Various data were collected from both wearable wireless
sensors and smartphones. As for derived features, the authors
adopted the same convention [8, 14]. This work achieved the
accuracy of up to 77.9%.

Pielot et al. [21, 22, 23] studied interruptibility prediction on
mobile devices using various definitions of interruptibility:
call availability [21], instant message viewing [22], and bore-
dom [23]. These studies commonly include the features that
represent the time since the last event (e.g., screen on and call).
Many of these features, such as the time since ringer change,
the time since last screen on, and the time since the last out-
going call, were ranked at the top among important features.
The time since the last event, however, tends to be short since
most events in consideration happen frequently. This series of
work achieved the accuracy of up to 83.2% (call availability),
70.6% (instant message viewing), and 82.9% (boredom).

Pejovic and Musolesi [19] designed and implemented Inter-
ruptMe, which is an interruption management library for An-
droid smartphones. In order to predict responses to notifica-
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tions, the authors basically used the present-time features. The
precision and recall were 0.64 and 0.41 respectively. The aver-
age response time was reduced from 22 minutes to 12 minutes
when using InterruptMe compared with random notifications.
Then, the authors attempted to find out the difference between
interruptible and non-interruptible moments, in terms of the
mean and standard deviation of an attribute for the entire dura-
tion of the experiment (two weeks), but they did not succeed.
Though the previous days up to two weeks were considered,
the mean and standard deviation of a very long duration are
too simplified features to have predictive power.

Overall, to the best of our knowledge, there is no existing
work that considers a sufficiently long duration of the past with
keeping the predictive power for interruptibility prediction

STUDY DESIGN
In this section, we explain the theory and rationale behind the
design of our methodology and propose our research questions
that will be explored in this paper.

Why Looking Back on the Past?
The features based on the immediate past are important for
interruptibility prediction, as witnessed by previous studies [8,
14, 21, 22, 23, 25]. We would like to reconfirm the benefit
of the immediate past (RQ1). More importantly, a relatively
distant past (i.e., the previous several hours) impacts greatly
on interruptibility at the current moment. Though there could
be many reasons, we believe that (i) self-regulation or con-
servation of energy and (ii) prolongation explain a significant
proportion of the phenomenon.

Self-Regulation or Conservation of Energy
People, for goal setting and goal striving, plan and execute ac-
tions that promote goal attainment as well as shield those goals
from distraction and disruption [16]. With the popularity of the
books “Seven Habits of Highly Effective People” by Stephen
Covey and “The Effective Executive” by Peter F. Drucker, peo-
ple are aware of the importance of time management. In order
to reduce wasted time, people keep examining time usage up
to that moment and adjusting their approaches to goal setting
and goal striving. Consequently, people consciously regulate
their own thoughts and behaviors based on the past.

It turns out that, even without conscious management, the
energies that humans consume per day are limited and con-
served [33], just like the law of conservation of energy. To
support this clam, Yano [33] measured the frequency of arm
movements in a one-minute interval using wearable sensors.
The distribution of the frequencies in a day followed a simi-
lar exponential distribution across all participants. Based on
unconscious prioritization, for example, a person suppresses
his/her activities in the morning and focuses on a business
meeting, which requires more energies, in the afternoon. That
is, if high frequency intervals did not appear yet, high fre-
quency intervals will eventually appear afterward.

Prolongation
Mood, which is normally a reaction to a cumulative sequence
of events, is prolonged, not instantaneous [1]. Mood could last

all day or longer. It is apparent that mood affects interruptibil-
ity. Turner et al. [30] categorized the factors of interruptibility
into physiological ability, cognitive affect, and user sentiment.
In addition, intentional unavailability is wanting not to be in-
terrupted because a person is not in the right mood. Salovaara
et al. [24] reported that this type of unavailability took 35% of
all unavailable moments. Thus, if an event affecting a person’s
mood happened, its effect could last for a long time.

How Far Back to Look?
Many evidences that humans have a daily routine can be found
in the literature. Circadian rhythm also supports the daily
routineness. That is, humans’ behaviors are highly periodic
where the periodicity is a day. Song et al. [27] collected mo-
bility patterns (trajectories) from 50,000 individuals for three
months and found a 93% potential predictability in user mo-
bility across the whole user base. The authors concluded
that, despite humans’ deep-rooted desire for change and spon-
taneity, humans’ daily mobility is, in fact, characterized by a
deep-rooted regularity. Also, Yano [33] showed that the fre-
quencies of arm movements were very similar at the same
time of day during the entire year.

Putting the pieces together, we expect that we need to dwell
on the period from the current moment back to the beginning
of a day since our routine starts with a day (RQ2). Then,
since daily patterns are repetitive, it will not be very helpful
to look further back beyond that day if the data on the day is
available (RQ3). Last, for the same reason, the behavior done
one or two days before the target day can be a good substitute
for that done on the target day (RQ4). Here, both days should
be altogether on the weekday or at the weekend.

Research Questions
We now summarize four research questions as follows.

• RQ1: Interruptibility is affected by the immediate past
behavior as well as the current status.

• RQ2: The accuracy of interruptibility prediction improves
significantly when using the behavior of the current day.

• RQ3: Looking further back beyond the current day is not
very helpful for interruptibility prediction if the data on the
current day is available.

• RQ4: The behavior of the target day on weekdays can be
replaced with that of a preceding day on weekdays without
reducing much accuracy.

INTERRUPTIBILITY DATA SETS
We used two real-world smartphone usage data sets: the
KAIST data set and the Device Analyzer data set [31]. The
former is our proprietary data set, and the latter is a public
data set. Especially, the Device Analyzer data set is known to
be the largest collection of smartphone usage data, and we ex-
tracted 907 users for use in our experiment in the order of the
number of instances recorded. In both data sets, hour of day
and day of week were attached to every recording. Interrupt-
ibility is modeled as a binary state as typically done by recent
studies [19, 22, 23, 25]. Table 1 shows the general statistics
of the two data sets. The first column represents the number
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of attributes which will be detailed in Tables 2 and 3 respec-
tively. The total number of interruptibility labels (interruptible
or non-interruptible) is reported in the last column.

Data Set # Attrs. # Users # Labels
KAIST 24 25 4,103

Device Analyzer 26 907 1,646,066

Table 1. Statistics of the two data sets.

KAIST Data Set
Participants
We conducted a field study with 25 participants who installed
our own data-collection application and reported their data
for four weeks. The goal of this study was to obtain not only
smartphone usage data but also the ground truth on the partici-
pants’ interruptibility through experience sampling. Among
25 participants (20 men and 5 women), 5 were recruited from
our department, and 20 were from an online community. For
the former group, we personally asked them to join the experi-
ment; for the latter group, we posted a wanted advertisement
on the online community and selected 20 eager users from
the applicants. The participants consisted of 15 undergradu-
ate students, 5 master students, and 5 PhD students. All of
them lived in a dormitory of KAIST. Then, we provided all
participants with the detailed instructions and received explicit
consent from them before the experiment. After the experi-
ment was complete, we paid about US$100 to each participant.
This study was approved by the KAIST institutional review
board (IRB).

Data Collection
All participants downloaded the data-collection application
from Google Play and installed it on their Android smartphone.
Our application supports Android 4.0 or higher. Table 2 shows
the attributes that the application collected in the background.
Each participant sent us his/her weekly data at the end of
each week, and we verified the data to give him/her feedback
on the quality of the data. We did not collect any personal
information that can be used for inferring the data owner as
per the recommendation of the IRB. This data collection was
run for four weeks from February 2015 to March 2015.

Experience Sampling
We collected the ground-truth information about the partic-
ipants’ state of interruptibility via experience sampling [5].
The experience sampling method (ESM) is a signal-contingent
method of data collection from participants about their cur-
rent experience or situation. In our case, we collected in-situ
self-reports on the subjective state of interruptibility.

A notification in Figure 2 popped up—five times a day ran-
domly on the hour between 9 a.m. and 10 p.m.—per trigger
from our server. The notification asked the participants to
answer the question with “Yes” or “No”. All participants were
explained about the meaning of the question: “you are inter-
ruptible if you are willing to do a simple task by spending less
than ten minutes right now.”

A participant’s interruptibility was recorded together with tem-
poral information (e.g., time and date) when he/she responded

Attribute Description Type # Instances
cpu CPU usage numeric 67,590

bat_lev Battery level numeric 242,560

bat_temp Battery temperature numeric 242,560

cell_strn Cellular signal strength numeric 95,071

wifi_strn WiFi signal strength numeric 40,482

ill Ambient light level numeric 37,093

accel_x Acceleration force (X-axis) numeric 119,347

accel_y Acceleration force (Y-axis) numeric 119,347

accel_z Acceleration force (Z-axis) numeric 119,347

accel_tot Acceleration force (total) numeric 119,347

airplane Airplane mode on/off binary 67,590

screen Screen on/off binary 67,590

headset Headset mode on/off binary 67,590

cell Cellular mode on/off binary 95,071

wifi Wifi mode on/off binary 40,482

charge Charge mode on/off binary 242,560

ringtone Ringtone mode nominal 67,590

charge_stat Charge status nominal 242,560

ssid Connected Wifi SSID nominal 40,482

app_pkg Application package name nominal 264,520

app_cat Application category nominal 264,520

location Location name (district) nominal 52,744

call Phone call event nominal 3,530

sms Message event nominal 4,964

Table 2. Attributes collected in the KAIST data set.

Figure 2. Screen capture of the experience sampling probe.

to a question. If a participant did not respond within ten min-
utes after receiving a question, we recorded his/her status as
“not interruptible” at that time.

Device Analyzer Data Set
Description
The Device Analyzer project is being maintained by the Uni-
versity of Cambridge.1 Its data set contains over 100 billion
records of Android smartphone usage from over 17,000 de-
vices across the world, which is known to be the largest col-
lection of smartphone usage data. We officially obtained a
license from the University of Cambridge and downloaded the
snapshot of the data set as of November 2015. The size of
the raw data reached around 7.5 terabytes. While the project
collects more than 50 attributes, we selected the 26 attributes
that correspond to those of the KAIST data set. Table 3 lists
all the attributes used in this paper.

Among 9,641 users in total, we extracted the users who had
sufficiently many records to achieve reliable results. 907 users
were chosen in the order of the number of incoming calls to
cover 70% of all incoming calls. In this set of selected users,
the number of incoming calls for each user ranged from 743
to 13,635 and averaged out at 2,062. Their data were recorded
for 274 days on the average.

Ground Truth
Since the Device Analyzer data set does not contain experience
sampling data, we treat call availability [21] as interruptibility.

1https://deviceanalyzer.cl.cam.ac.uk/
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Attribute Description Type # Instances
bat_lev Battery level numeric 187,406,246

bat_temp Battery temperature numeric 187,398,446

vol_music Media (music) volume numeric 63,501,119

vol_alarm Alarm sound volume numeric 63,501,119

vol_voicecall Voice call sound volume numeric 63,501,119

vol_system System sound volume numeric 63,501,119

vol_ring Ringtone sound volume numeric 63,501,119

vol_noti Notification sound volume numeric 63,501,119

accel Acceleration force numeric 31,949,667

light Ambient light level numeric 25,560,714

sms_unread_cnt Number of unread SMS numeric 4,719,150

airplane Airplane mode on/off binary 9,486,295

screen Screen on/off binary 35,960,762

headset Headset mode on/off binary 1,739,896

wifi Wifi mode on/off binary 2,241,508

wifi_conn Wifi connectivity binary 6,155,453

mobile_conn Mobile connectivity binary 7,460,751

bluetooth Bluetooth on/off binary 250,749

charge Charge mode on/off binary 10,937,637

ringtone Ringtone mode nominal 9,700,121

charge_stat Charge status nominal 10,937,637

display_orient Display orientation nominal 10,705,032

app_pkg Application package name nominal 101,442,234

app_cat Application category nominal 101,442,234

location Location (LAC, CID) nominal 64,222,074

sms Message event nominal 2,280,439

Table 3. Attributes used in the Device Analyzer data set.

Hence, interruptibility in this data set is defined differently
from that in the KAIST data set. Alternatively to the ESM, this
implicit labeling involves observing user actions and making
deductions, just like Pielot et al. [22] did using notification
dismissal. Implicit labeling is as widely used as explicit la-
beling (experience sampling) [30]. Our labeling is reasonable
because users in non-interruptible circumstances can not or do
not pick up incoming calls because of unavoidable, enforced,
intentional, or negligent unavailability [24]. We excluded call-
related attributes from prediction since they directly indicate
interruptibility.

A user is regarded as being interruptible when he/she picks up
an incoming call and continues the call for at least ten seconds.
In contrast, a user is regarded as being not interruptible when
he/she does not pick up an incoming call or quits the call within
just ten seconds. Here, the minimum call duration means the
time needed to say some short message, e.g., “Sorry, I am busy
right now. Can I call you back later?” When we shortened the
minimum call duration from ten seconds to two seconds, the
proportion of interruptible moments increased by 2.9%, and
prediction accuracy slightly improved by 2–3%.

Detailed Statistics
In order to examine the data sets at fine granularity, we divide
a day into six equi-width timeslots as in Figure 3.

6 a.m.      9 a.m.       12 p.m.        3 p.m.         6 p.m.         9 p.m.      12 a.m.

Morning Lunch Afternoon Dinner NightDawn

Figure 3. Six timeslots in a day.

Figure 4 shows the number of interruptibility labels (i.e., inter-
ruptible or non-interruptible) per user in each timeslot through
the experimental period. The median numbers range between

32 and 47 in Figure 4(a) and between 166 and 297 in Figure
4(b). While the KAIST data set has a sufficient number of
labels, the Device Analyzer data set has a significantly larger
number of labels.

(a) KAIST set. (b) Device Analyzer set.

Figure 4. Number of interruptibility labels in each timeslot.

Figure 5 shows what proportion of the labels are interruptible
or not in each timeslot. In Figure 5(a), 41.2% of the labels
indicate being interruptible, and 58.8% of the labels indicate
being not interruptible. In Figure 5(b), the corresponding
proportions are 55% and 45% respectively. The proportion
of being interruptible is higher in Figure 5(b) than in Figure
5(a). We note that the two label values tend to be balanced
across all timeslots in both data sets. In addition, in the Device
Analyzer data set archived for a sufficiently long period, the
proportion for each day of week turned out to be very similar
to the proportion for all days in Figure 5(b).

41.2 

39.2 

42.7 

45.8 

37.2 

58.8 

60.8 

57.3 

54.2 

62.8 

0% 25% 50% 75% 100%

Overall

Dinner

Afternoon

Lunch

Morning

Interruptible Not Interruptible

55.0 

53.9 

55.9 

55.4 

55.5 

54.4 

45.0 

46.1 

44.1 

44.6 

44.5 

45.6 

0% 25% 50% 75% 100%

Overall

Night

Dinner

Afternoon

Lunch

Morning

Interruptible Not Interruptible

(a) KAIST set. (b) Device Analyzer set.

Figure 5. Proportion of interruptibility label values in each timeslot.

METHODOLOGY: DAILY FEATURE EXTRACTION
In this section, we propose our methodology of extracting daily
features and modeling the interruptibility using the extracted
features.

Temporal Windows
First of all, in order to answer RQ1–RQ4, we define three
types of temporal windows in Figure 6 and consider them
together with the current point. In Definition 1, we clarify the
source of a feature depending on whether it is extracted from
the current point or a temporal window.

1. Current point: the current moment when interruptibility
needs to be predicted

2. Immediate-past window: the interval from the current
point back to 15 minutes before

3. Today window: the interval from the current point back to
the beginning of the current day
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4. Yesterday window (or the-day-before-yesterday win-
dow): the interval from the end of the latest previous day (or
the second-latest previous day) back to the beginning of the
latest previous day (or the second-latest previous day)

Current 
Point

Today

Immediate-Past Window
15 Min.

YesterdayDay before 
Yesterday

Today Window
Yesterday 
Window

Day-before-
Yesterday Window

Figure 6. Temporal windows used for feature extraction.

Definition 1. The basic features are those extracted from
the current point in Figure 6. The extended features are those
extracted from a temporal window in Figure 6. We specifically
call the extended features from the today window the daily
features. �

Extended Features
To cover various data sources, we categorize attributes (vari-
ables) into three types: numeric, binary, and nominal attributes,
as shown in Figure 7. Since each attribute type has distinct
characteristics, we define the extended features separately for
each type so that they best represent the attribute values of the
type in a given temporal window.

Temporal 
Window

0

1
duration

val3

val2

val1

t

Temporal 
Window

t

Temporal 
Window

t
(a) Numeric. (b) Binary. (c) Nominal.

Figure 7. Three types of the attributes in the interruptibility data sets.

Overview and Examples
Table 4 shows the list of extended features for each attribute
type, complementary to Figure 7. For numeric attributes, the
mean and standard deviation are calculated to represent the
central tendency and dispersion of the values in a temporal
window; in addition, a discrete wavelet transform (DWT) is
applied to capture the general trend (i.e., shape) in a given win-
dow, which will be discussed in detail. For binary attributes,
since the semantics of “0” and “1” are opposed to each other,
we keep the duration of “1” samples and the number of transi-
tions from “0” to “1” in a temporal window. Since a nominal
attribute is a generalization of a binary attribute, we keep such
duration and number for each possible value.

While the current point and the immediate-past window are
considered as atomic units, the today window, the yesterday
window, and the day-before-yesterday window are partitioned
into six timeslots—dawn, morning, lunch, afternoon,
dinner, and night—according to Figure 3 before deriving
extended features. For the today window, the timeslot to
which the current point belongs is considered partially up to
the present time. For example, if the present time is 8 p.m.,
the timeslot dinner spans from 6 p.m. to 8 p.m. (not 9 p.m.).

Measure Description
Numeric Attributes (Figure 7(a))

mean the mean of the samples
std the standard deviation of the samples
dwt the 32 DWT coefficients of the samples

Binary Attributes (Figure 7(b))
dur the sum of the duration of “1” samples
num the total number of transitions to “1”

Nominal Attributes (Figure 7(c))
vali_dur the sum of the duration of “vali” samples
vali_num the total number of transitions to “vali”

Table 4. Extended features derived from a temporal window.

The goal of this partition is to shorten the length of a temporal
window such that each interval has coherent semantics, be-
cause considering a too long interval as a whole may loose
important information [19].

We now summarize how an extended feature is constructed in
Figure 8. If a temporal window is immediate-past, the mea-
sures except dwt in Table 4 are calculated for the window. Oth-
erwise, a window is split into timeslots, and then the measures
are calculated for each timeslot. A feature name is denoted by
concatenating the names of an attribute, a temporal window, a
timeslot, and a measure, e.g., cpu_today_lunch_std.

<Attribute>

curr

<Temporal Window> <Measure>

<Timeslot>

Basic Feature

Extended Feature
Immediate-Past

Otherwise

Figure 8. Notation and composition of extended features.

Example 1. Let’s consider the values of the two attributes
in an immediate-past window as shown below. The attribute
accel_x is numeric, and the attribute ringtone is nominal.

9:00 9:03 9:06 9:09 9:12 9:15
accel_x 9.3 8.7 10.8 11.1 9.5 9.6
ringtone silent silent silent silent normal normal

Current Point ↑
• Basic features: 9.6 and “normal” for accel_x and
ringtone respectively.

• Extended features: For accel_x_imm-past, mean = 9.8
and std= 0.9. For ringtone_imm-past, normal_dur
= 3 minutes and normal_num = 1; vibrating_dur =
0 minute and vibrating_num = 0; silent_dur = 12
minutes and silent_num = 1. �

Discrete Wavelet Transform (DWT) Features
The DWT has been widely used for compression and dimen-
sionality reduction owing to its capability of capturing the
major trends of underlying data. It decomposes an input se-
quence into a set of wavelets and produces a set of coefficients
of the same size as the sequence.2 The Haar wavelet [2], which
is very simple yet effective, is adopted in this work. The coeffi-
cients, as going from the first to the last, indicate the frequency
of a finer temporal domain. A key advantage over other trans-
forms (e.g., Fourier transforms) is temporal resolution that

2Refer to the tutorial [29] for the details about the DWT.
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captures location in time as well as frequency, which is essen-
tial for our problem since the time when an event happened
should be preserved. Before going into the details, we present
a motivating example for the DWT.

Example 2. Figure 9 shows the values of accel_x in the
KAIST data set. Between the two different timeslots of Figures
9(a) and 9(b), the mean, which is denoted by the red dashed
line, and the standard deviation are almost the same, although
the shapes are very different from each other. User 22 almost
did not move on February 14 (Figure 9(a)), whereas User 22
frequently moved on February 24 (Figure 9(b)). In fact, the
interruptibility at the dinner on February 14 was different from
that at the dinner on February 24. Thus, the temporal shape is
related to interruptibility, and the DWT is needed to capture
the temporal shape that can be characterized neither by the
mean nor by the standard deviation. �

(a) User 22 / 2015-02-14 / accel_x. (b) User 22 / 2015-02-24 / accel_x.

Figure 9. A motivating example for using the DWT.

We derive DWT coefficients for a sequence generated from
each 3-hour timeslot covered by a temporal window. We do
not apply the DWT to the immediate-past window since its
duration is not long enough. First, a sequence of length 180
is constructed by the values at every minute. If a value does
not exist, it is estimated by linear interpolation between two
consecutive timestamps. Then, we pad zeros on the right side
of the sequence to make its length 256 because the DWT is
defined for the sequences with length of a power of 2. Last,
after applying the DWT to the input sequence, only the first 32
coefficients are selected for dimensionality reduction, and such
an approach is widely accepted when leveraging DWT coeffi-
cients as an attribute [3, 32]. Figure 10 shows the sequences
obtained by restoring those sequences in Figure 9 with the 32
coefficients. For both sequences in Figures 10(a) and 10(b),
the shape of the restored sequence in red is very close to that
of the original sequence in blue.

(a) User 22 / 2015-02-14 / accel_x. (b) User 22 / 2015-02-24 / accel_x.

Figure 10. Reconstruction using the first 32 Haar wavelet coefficients.

Feature Configurations
Table 5 illustrates the definitions of the seven feature config-
urations subsequently used in this paper. CURR takes account
of the current point only. IPAST expands feature extraction
to the immediate past. DAY[] takes advantage of the features

constructed from a long duration in addition to those used by
IPAST; 0 indicates the current day, -1 one day before that day,
and -2 two days before that day; a colon denotes an inclusive
range. For example, DAY[0] takes account of the current point,
the immediate-past window, and the today window.

Time
Conf.

D-b-
Yesterday Yesterday Today Imm-

Past Current

CURR �
IPAST � �
DAY[0] � � �

DAY[-1:0] � � � �
DAY[-2:0] � � � � �
DAY[-1] � � �
DAY[-2] � � �

Table 5. Feature configurations used in this paper.

Example 3. Let’s consider a numeric attribute cpu. If the
current point appears in the timeslot night, the configuration
DAY[0] produces 21 features in total, as shown in Figure 11.
Concatenation of the nodes by following arrows from the root
to a leaf composes a feature. �

cpu

curr today

mean

morning

imm-past

std

dwt

dawn lunch afternoon dinner night

mean

std

dwt

mean

std

dwt

mean

std

dwt

mean

std

dwt

mean

std

dwt

mean

std

Figure 11. List of all features for the attribute cpu in DAY[0].

EVALUATION RESULTS
In this section, we report the results of a series of experiments
designed to answer each research question.

Experimental Setting
Data Preprocessing
We improved the quality of the raw data by preprocessing.
First, numeric attribute values were normalized to between 0
and 1 by min-max normalization and then discretized by the
MLDPC method [7] that determines the optimal cut points by
supervised learning. Hence, small fluctuations in attribute val-
ues were smoothed out. Second, the instance timestamps were
made the same across all attributes of a user. A missing value
at a certain timestamp was estimated by linear interpolation
for numeric attributes and by forward filling, which uses the
immediately previous value, for binary and nominal attributes.
Third, if there were too many possible values in a nominal
attribute (e.g., location identifiers and application names), we
selected the most frequent 10 values and grouped all other
infrequent values into a single value.

Feature Selection and Prediction
Regarding feature selection, we used the correlation-based
feature selection (CFS) [10] method implemented in Weka3.
The CFS method selects a subset of features that are highly
correlated with the class while having low intercorrelation.

3http://www.cs.waikato.ac.nz/ml/weka/
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Regarding prediction, we used four classification methods:
naive Bayes classifier (NB), support vector machine (SVM),
random forest (RF), and C4.5 decision tree (C4.5). Because
of space limitations, we present only the results of naive Bayes
classifiers except RQ1 and RQ2.

Compared Methods
We compared the seven feature configurations in Table 5.

• Baseline (CURR): corresponding to earlier work (e.g., [15])
that uses only the present-time features

• State-of-the-art (IPAST): corresponding to recent work
(e.g., [8, 14, 25, 26]) that uses the immediate-past features
as well

• Proposed methodology (DAY[0]): using the daily features
as well

• Variation (DAY[-1:0], DAY[-2:0], DAY[-1], DAY[-2]):
using the data of one or two days ago

Data Sets
We used the data on all days for RQ1 and RQ2, but we used
the data only on Wednesday, Thursday, and Friday for RQ3
and RQ4. When we address RQ3 and RQ4, since the yes-
terday and the-day-before-yesterday windows are addition-
ally considered, we want to make sure that all temporal win-
dows span through weekdays in order to avoid a possible bias
between weekdays and weekends. In addition, the timeslot
night was not used for prediction in the KAIST data set ow-
ing to the lack of the ground truth, whereas it was used in the
Device Analyzer data set.

Table 6 shows the total number of features extracted by each
configuration when the current point belongs to dinner. Only
the number of DAY[0] is affected by the current point since it
includes the timeslots up until that point, whereas those of the
other configurations are not. The number of features increase
as the duration used for feature extraction gets longer.

��������Conf.
Data Set KAIST

(dinner)
Device Analyzer

(dinner)
CURR 70 71

IPAST 195 199

DAY[0] 2,420 2,599

DAY[-1], DAY[-2] 2,865 3,079

DAY[-1:0] 5,090 5,479

DAY[-2:0] 7,760 8,359

Table 6. Number of features used for prediction in dinner.

Measurement
We built a personalized classification (prediction) model for
each person using his/her own data only. It would be difficult
to apply a global model to all users because the important fea-
tures in each personalized model are typically different across
persons. Then, we measured the accuracy and kappa by 5-fold
cross validation for the relatively small KAIST data set and
10-fold cross validation for the Device Analyzer data set. The
accuracy is the proportion of true results (both true positives
and true negatives) among the total number of instances clas-
sified; the kappa measures the agreement between predicted
labels and true labels. Last, we reported the averages of accu-
racy values and kappa values from all users. The significance

CURR IPAST DAY[0] DAY[-1:0] DAY[-2:0] DAY[-1] DAY[-2]

CURR
P-value

N

IPAST
P-value 0.0001***

25 N

DAY[0]
P-value 0****

25
0****

25N

DAY[-1:0]
P-value 0****

24
0.0118*

24
NS
24N

DAY[-2:0]
P-value 0****

24
0.0118*

24
NS
24

NS
24N

DAY[-1]
P-value 0****

24
NS
24

0.0283*
24

0.0283*
24

0.0283*
24N

DAY[-2]
P-value 0****

24
NS
24

0.0283*
24

0.0283*
24

0.0283*
24

NS
24N

RQ1

RQ2

RQ3

RQ4

NS: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001

Table 7. T-test results for the KAIST data set.

CURR IPAST DAY[0] DAY[-1:0] DAY[-2:0] DAY[-1] DAY[-2]

CURR
P-value

N

IPAST
P-value 0****

907N

DAY[0]
P-value 0****

907
0****
907N

DAY[-1:0]
P-value 0****

883
0****
883

0.0487*
883N

DAY[-2:0]
P-value 0****

883
0****
883

0.008**
883

NS
883N

DAY[-1]
P-value 0****

883
0****
883

0.0128*
883

0****
883

0****
883N

DAY[-2]
P-value 0****

883
0****
883

0.0212*
883

0****
883

0***
883

NS
883N

RQ1

RQ2

RQ3

RQ4

NS: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001

Table 8. T-test results for the Device Analyzer data set.

of the difference between accuracy values was tested for all
pairs of configurations using the two-tailed t-test. The t-test
was performed on overall accuracy, i.e., the average of the
accuracy values on all timeslots. The results are summarized
in Tables 7 and 8, where the p-value and the number (N) of
samples used for each test are presented. The number of as-
terisks denotes the statistical significance. The t-test results
that correspond to RQ1, RQ2, RQ3, and RQ4 are indicated
in colors of orange, yellow, green, and blue, respectively.

RQ1 and RQ2: Daily Features
Figure 12 shows the accuracy and kappa calculated based
on different features to address RQ1 and RQ2 for both data
sets. Error bars indicate the standard error. In both data sets,
DAY[0] achieved the highest accuracy and kappa, followed by
IPAST and CURR, for all timeslots. In addition, as the orange
and yellow areas in Tables 7 and 8 which correspond to RQ1
and RQ2 respectively show, there are statistically significant
differences between CURR and IPAST and between IPAST and
DAY[0]. Table 9 shows the results of all four classifiers for the
experiment in Figure 12, where the colored cells correspond
to the values in the plot. Here, there was no big difference
among the classifiers.

Figure 13 shows the top-15 discriminative features for DAY[0].
Here, the importance of a feature is determined by the number
of users whose model still contains it after feature selection.
We show the results only for the last timeslot—dinner for the
KAIST data set and night for the Device Analyzer data set—
to avoid redundancy since we found a persistent consistency
among all timeslots. As shown in Figure 13, the features
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(a) KAIST data set.
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(b) Device Analyzer data set.

Figure 12. Accuracy and kappa based on different features to address RQ1 and RQ2.
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(a) KAIST data set (for dinner).
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(b) Device Analyzer data set (for night).

Figure 13. Top-15 discriminative features in DAY[0].
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Figure 14. Decomposition of Figure 12(b) into each day of week.

from the current point and the immediate-past window were
ranked the first and the second respectively. However, the
other features were mostly extracted from the today window.
Interestingly, even though we predicted the interruptibility for
the last timeslot, many of these “today-window” features came
from earlier timeslots (even including dawn): 5 out of 8 in the
KAIST data set and 10 out of 12 in the Device Analyzer data
set. This indeed confirms our claim that the behaviors in the
previous several hours affect the current interruptibility.

In Figure 13, we observe that many of the discriminative
features for the KAIST data set are accelerometer-related ones
and those for the Device Analyzer data set are screen or battery-
related ones, all of which are closely related to movement
or usage of smartphones. This result on important sensor
categories is consistent with Dey et al. [6]’s work.

Then, we decomposed the results for all days in Figure 12(b)
into those for each day of week, because human behavior is
typically different on weekdays than on weekends. The KAIST
data set was not examined since there were only four days on
each day of week. In Figure 14 for the Device Analyzer data
set, the results showed the tendency identical to Figure 12(b)
across all days of week. Thus, our methodology is indeed
beneficial irrespective of day of week. We conjecture that

Conf. Accuracy (KAIST) Accuracy (Device Analyzer)
NB SVM RF C4.5 NB SVM RF C4.5

Morning
CURR 0.82 0.75 0.77 0.77 0.79 0.77 0.78 0.77
IPAST 0.92 0.86 0.87 0.84 0.82 0.81 0.81 0.81

DAY[0] 0.95 0.90 0.91 0.85 0.84 0.82 0.83 0.82
Lunch

CURR 0.78 0.71 0.71 0.74 0.78 0.77 0.77 0.77
IPAST 0.84 0.79 0.80 0.80 0.81 0.80 0.81 0.80

DAY[0] 0.91 0.88 0.87 0.83 0.83 0.82 0.82 0.82
Afternoon

CURR 0.79 0.73 0.73 0.74 0.78 0.77 0.77 0.77
IPAST 0.83 0.81 0.78 0.79 0.81 0.80 0.80 0.80

DAY[0] 0.91 0.88 0.88 0.84 0.83 0.82 0.82 0.82
Dinner

CURR 0.79 0.73 0.72 0.75 0.78 0.76 0.77 0.77
IPAST 0.85 0.80 0.81 0.79 0.81 0.79 0.80 0.80

DAY[0] 0.92 0.89 0.88 0.84 0.83 0.82 0.82 0.81
Night

CURR - - - - 0.79 0.76 0.77 0.76
IPAST - - - - 0.82 0.79 0.80 0.80

DAY[0] - - - - 0.86 0.84 0.84 0.82
Overall

CURR 0.79 0.73 0.73 0.75 0.78 0.77 0.77 0.77
IPAST 0.86 0.82 0.82 0.80 0.81 0.80 0.81 0.80

DAY[0] 0.92 0.89 0.89 0.84 0.84 0.82 0.83 0.82

Table 9. Accuracy results for RQ1 and RQ2 with all four classifiers.

conservation of energy and prolongation are effective also at
the weekend whereas self-regulation might not.

In conclusion, although the accuracy achieved by using only
the basic features—79% (kappa = 0.44) in the KAIST data set
and 78% (kappa = 0.47) in the Device Analyzer data set in
overall—is also acceptable, we can even increase the accuracy
by leveraging the daily features—up to 92% (kappa = 0.81) in
the KAIST data set and 84% (kappa = 0.62) in the Device Ana-
lyzer data set in overall. The largest improvements of DAY[0]
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(a) KAIST data set.
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(b) Device Analyzer data set.

Figure 15. Accuracy based on different features to address RQ3.
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(b) Device Analyzer data set.

Figure 16. Accuracy based on different features to address RQ4.

compared with CURR and IPAST were shown to be 16% (from
73% to 89%) and 7% (from 82% to 89%) respectively when
using the SVM or RF classifiers in the KAIST data set.

RQ3: Temporal Window Length
Figure 15 shows the accuracy calculated based on different
features to address RQ3 for both data sets. Prior to feature
selection, DAY[-1:0] and DAY[-2:0] produce more (about
twice or three times) features than DAY[0] because additional
timeslots are considered in the yesterday and the-day-before-
yesterday windows, as shown in Table 6. Despite a larger
number of features, however, we did not observe significant
increases in accuracy for DAY[-1:0] and DAY[-2:0] com-
pared with DAY[0]. In particular, there was almost no increase
in accuracy in the KAIST data set on all timeslots. On the
other hand, in the Device Analyzer data set, the accuracy for
DAY[-1:0] or DAY[-2:0] was slightly higher than that for
DAY[0]. However, the increase from DAY[0] to DAY[-1:0]
is not statistically significant at the significance level of 0.01,
and the increase from DAY[0] to DAY[-2:0] is also almost
not, as shown in Table 8. In conclusion, looking further back
beyond the current day is not very helpful for increasing the
prediction accuracy of interruptibility when the data on the
current day does exist.

RQ4: Daily Routineness
Figure 16 shows the accuracy calculated based on different
features to address RQ4 for both data sets. It was observed
that the accuracy values for both DAY[-1] and DAY[-2] were
slightly lower than that for DAY[0]. This implies that the data
from the current day is more helpful to predict interruptibility
than the data from the latest (or second-latest) previous day in
spite of the repetitive daily patterns. However, the decrease in
accuracy from DAY[0] to DAY[-1] or DAY[-2] is not statis-
tically significant at the significance level of 0.01, as shown
in Table 7. In conclusion, the data from the latest (or second-
latest) previous day can be a good substitute when the model
suffers from the lack of the data from the current day.

CONCLUSION AND IMPLICATION
In this paper, we proposed a feature extraction methodology
for interruptibility prediction using smartphone usage data. We
conducted a field study and performed extensive experiments
on two real-world data sets. Our methodology of looking back
on the current day achieved the accuracy of over 90%, being
higher than the baseline and state-of-the art methods by up to
16% and 7% respectively. The improvement was attributed
to the fact that daily behavioral features were included in the
predictive features of many users. We also found out that
looking further back beyond the current day did not improve
accuracy owing to the daily routineness of human behaviors.
We, thus, confirmed that a day’s behavior is replaceable with
another day’s behavior for the same reason.

We believe that smartphone applications benefiting from our
methodology will improve communication efficiency dramat-
ically, based on a better understanding of when and how to
engage with users. A potential application scenario that we
envision is the real-time mobile Q&A service. When a user
asks a question on such a smartphone application, the ques-
tion is delivered to a set of expert users; when some of them
answer the question, the answers are immediately delivered to
the questioner. Thus, the success of this service depends upon
selection of expert users who are interruptible at that moment.

As the future work, we plan to improve the usability of our
methodology by coping with the cold start problem. Since our
methodology is based on personalization, prediction for a user
becomes reliable after the training data for the user has been
collected for a sufficiently long period (at least three weeks).
A hybrid approach using both personal and aggregated data
could reduce the training requirements for new users.
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