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In summary, the cross correlation and spectral density
functions have been obtained for the case of neutrons slowing
down in an infinite homogeneous reactor. Given here are
several examples of the results.
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5. Multiregion Neutronics Model for Slow
Transient Analysis of BWRs, Hiroshi Motoda,
Yasunori Bessho, Tamotsu Hayase, Kanji Kato
(Hitachi ERL-Japan)

Simulation technique of transient phenomena is essential
for core design and plant control of boiling water reactors
(BWRs). Needs to develop practical tools for space-time
analyses of reactor core have increased because of increased
core size.

An attempt was made to develop a multiregion neutronics
madel based on coarse-mesh nodal coupling method. First, a
three-dimensional steady-state neutronics model' of Eq. (1)
was extended to a dynamics model taking the balance of
Eeutron source and delayed neutron precursors as given by

q. (2):

Keosi
S; =T‘ (E WjiS; + wsisi) : n
i

where
Sj = neutron source density at node i
keoi = infinite multiplication factor at node i

Wiji = neutron transport kernel from node j to node i
(probability that a neutron born at node j is finally
absorbed at node i)

WS = neutron self-transport kernel
A = eigenvalue.

a5; A
5 Di= T wyis; + (ws; -—°,~Bi)51 + 22 MCgi
at ] Keei ?
(2
Coj
T’ = 8p;S; - AgCei
where

Cgi = 2’th-group delayed neutron precursor concentration
at node i

£; = neutron generation time at node i

Bgi = Uth-group delayed neutron precursor fraction at
node i

Ag = R'th-group delayed neutron precursor decay con-
stant.

Next, the reactor core was divided radially into several
regions (@ = 1, 2, . .., Q). Equations that describe the time
variation of the average neutron source density nqk and
average delayed neutron precursor concentration mqu

within each region q were derived for each axial node
k=1,2,...,K).

This spaual collapsing was made by taking weighted
summation of Eq. (2) over all nodes i within q and k. The
equations derived are summarized here:

fq,kiqk = 25 WHq' g kng' k + W k+1nqk+]
q
+
+ W k-1nq,k-1
Ao
+ quk + WSq,k = ke-o s —Bq,k)ng .k, . 3)
* ZE; Agmeq k

MRq,k = BRq kNak = AMmeq i

where nq k is normalized to unity at initial steady state, i.e.,
ng, k(0)=1.0.

Coefficients 2q.k» WHq ks Wq K» Wq k. etc., are defined
as shown below:

Sak= 2S4S
ieq,k

leq,k jeq'k X B C))

0
Wa k= 2 Sxkn iig— ISl
ieq,k

etc.,
where
S? = initial steady-state neutron source at node i
S = weight at node i.

The optimal weight S"' is shown to satisfy the following
equation, adjoint to the sr.eady-state equation for absorption
rate SifKeoi:

sy == “‘(Ew s*+wss). &)

The physical meanmg of S is the importance of a neutron
absorbed at node i, namely, zlbsorpnon importance.

Two approximations can be employed for slow tran-
sient phenomena (prompt subcritical): (a) quasi-static? and
(b) prompt jump. Coefficients of Eq. (4) can be fitted as
functions of average moderator density uq k and average fuel
temperature Tq,k at each axial node k qf each region q for
cach specific control rod configuration.

The above model was applied to a reference 1000-MW(e)
BWR core. An example of transient behavior is shown in
Fig. 1. The reactor core was assumed in steady state at 60%
power and 40% flow before the transient, and divided radially
into three circular regions (Q = 3) and axially into 24 nodes
(K=24).

First, steady-state neutron source and absorption im-
portance were solved for original three-dimensional node i
and used to calculate coefficients of Eq. (4). As a disturbance,
only moderator density was changed intentionally from its
steady-state distribution, as given by

Augq k = 0.01 sin (ll;—g) sin [m: -(q-1) %] : (6)
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Fig. 1. An cxample of transient behavior analysis.
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In this figure, results obtained by an axial one-dimen-
sional model, a special case of Q = 1, and a one point model,
a special case of the former with constant power distribution
with time, are also shown for comparison. It is seen that the
reactor power can be well predicted by an axial one-
dimensional model, but there exists a notable difference in
power distribution for this type of out-of-phase regionwise
disturbance. Results of other applications also indicate the
necessity of multiregion treatment and practicality of this
model.

1.D. L. DELP et al., GEAP-4598, General Electric Co.
(1964).

2.K. O, OTT and D. A. MENELEY, Nucl. Sci. Eng., 36, 402
(1969).

6. A Discrete Sampling Method for Vectorized
Monte Carlo Calculations, Forrest B. Brown,
William R. Martin, Donald A. Calahan (Univ of
Michigan)

The discrete sampling method outlined below is a particu-
lar extension of Marsaglia’s method' as applied to discrete
distributions. [t is faster than the usual method for sampling
discrete distributions with large table length N, executes in a
fixed time independent of N, and can be efficiently imple-
mented into Monte Carlo codes for paralle]l and vector
processing computers,

, The usual method for discrete sampling can be expressed
as

x= Sup xj, n

F(x{<r
where F(xj) is the cumulative distribution function (cdf) for
the discrete points xj, i = 1,2, ..., N, and r is a random

number distributed uniformly on (0, 1). This method requires
searching a “'ladder” of length N for the xj corresponding to
the largest F(xj) not exceeding r. It is trivial to code and is
used almost universally, but suffers from two disadvantages:
(a) Its speed is limited by the rate of data transfer from
memory to central processing unit (CPU). This rate is gen-
erally much lower than CPU cycle time, and the search will
be relatively slow for large N. (b) This method will not be
efficient on vector processing computers. If it is desired to
sample many values of x at once, Eq. (1) will be satisfied at
many different ladder positions, and the ladder will in gen-
eral have to be searched to the end. Many unneeded opera-
tions and data transfers are thus required.

In Marsaglia’s method, a cdf F(x) is represented as a
mixture of conditional distributions:

F(x) = 2 G(xlk)*h(k) , (2
k

where h(k) is a discrete probability density function (pdf) for
k, and G(xlk) is the conditional cdf for x given a particular
value of k. In this method, a particular G(xlk’) is selected by
sampling k' from h(k), and then x is sampled from G(xlk").
The method is very efficient if G(xlk) is chosen to be an
easily sampled approximation when h(k) is large and a more
difficult to sample remainder only when h(k) is small. Both
G(xlk) and h(k) are chosen ad hoc to suit a particular dis-
tribution and computer.

In the present method, a discrete cdf is also represented
as a mixture of conditional cdfs as in Eq. (2). We choose
G(xlk) and h(k) definitively, however, to meet the following
conditions: (a) The distributions chosen must be sufficient to
exactly represent any arbitrary discrete F(x). (b) Both must
be easy to sample for all values of x and k. (c) When many
samples are to be made at once, the sampling methods must
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allow a high degree of parallelism in computation without
extra memory fetches or unneeded operations. All three
demands are satisfied if h(k) is chosen as a discrete uniform
density for k = 1, 2, .. ., N, where N’ is the number of
discrete x points having nonzero probability, and G(xlk) is
chosen as a discrete binary cdf, i.e.,

h(k)=1/N' for k=1,2,...,N", 3

G(xIk)= 0 for x<x]k

gk for x] k<x<x2k
1 for x2k<x , (€))

where {gk, x| k,x2 k}, k=1,2,..., N are determined below.
The sampling procedure is then as follows: sample k uni-
formly, then select either x| k with probability qk or x2 k
with probability | — qk.

The following algorithm derived from geometric argu-
ments will always determine a sufficient set qk,x1,k, X2k}
for any discrete F(x). Letting [j denote F(xj) — F(xj-1) (i.e.,
fi,i=1,2,...,Nis the discrete pdf for the xj’s), and N’
denote the number of nonzero fj’s, then the algorithm
proceeds by “transferring” 1/N' of the total probability to
each of the h(k)'s. This is done sequentially, picking for
G(xIk) the pair of xj’s with the largest and smallest (nonzero)
remaining probability, choosing a qk to conserve the smaller
probability, and then removing the smallest and a portion of
the largest fj at each stage to conserve probability. Thus,

fork=1,2,...,N"

X2k = Xj, 8.t. fj = smallest positive i, m=1,..., N
X1,k = Xi, s.t. fj = largest fjy, m=1,..., N .
ak= | = N'*fj '
=0
fi=fi-qk/N' . (5

The discrete conditional sampling method described by
Eqs. (2), (3), (4) is fast and well suited to parallel or vector
computation. When many samples are to be obtained, the
first step, selecting k, can be done in parallel without memory
fetches. The second step, fetching the appropriate qk from
memory, requires only one memory fetch per sample, regard-
less of the number of discrete points in F(x). The third step,
deciding between x] k and x2 k, can be performed in paraliel,
and the final step, retrieving the sample, requires only one
memory fetch.

In Fig. 1, timing comparisons are presented for discrete
sampling via the usual method and our methed on the
Amdahl 470V/8 computer. It is apparent from Fig. | that
our method is significantly faster when more than about
three ladder entries must be checked. Preliminary results
obtained with a Cray-1 simulator® show similar gains for the
Cray-1 computer, with an additional speedup by a factor of
~2 when vectorized. Application to the discrete portions of
multigroup Monte Carlo calculations on the Amdahl 470V/8
using 100 neutron groups* yields modest speedups by factors
of 3.2 and 1.5 for sampling the **U fission spectrum and the
group-to-group transfer in water, respectively. Although
discrete sampling comprises only a minor portion of large
production codes® such as MORSE, it is expected that our
method will be highly valuable for two classes of applica-
tions: (a) multigroup Monte Carlo codes for vector compu-
ters, where the parallelism of the method can be exploited,
and (b) specialized calculations involving very large discrete
distributions, since our method executes in a fixed time
regardless of the size of the distribution. We are currently
using the discrete conditional sampling method presented
above for all discrete sampling in a multigroup Monte Carlo
code under development for vector computers.
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