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Abstract

SSF is a system to discover the structure of simultaneous equations governing an
objective process through experiments. SSF is combined with another system SDS
to discover a quantitative formula of a complete equation based on scale-types of
measurement quantities. The combination derives the quantitative model consisting
of simultaneous equations reflecting the first principles underlying in the objective
process. The power of SSF comes from the use of the complete subset structure
in a set of simultaneous equations which can be experimentally identified. The
theoretical foundations of the structure identification and the algorithm of SSF
are described in this paper. Furthermore, the efficiency and practicality of the
combined use of SSF and SDS are demonstrated and discussed with large scale
working examples. This work is to promote the research of scientific discovery to
a novel and promising direction, since the conventional equation discovery systems
could not handle such a simultaneous equation process.

1 Introduction

A challenging task to find regularities in the data is discovering quantitative formulae of scientific
laws from experimental measurements. Langley and others’ BACON systems [1] are the most
well known as a pioneering work. They founded the succeeding BACON family. FAHRENHEIT
[2], ABACUS [3] and IDS [4] and etc. are such successors that use basically similar algorithms to
BACON in searching for a complete equation governing the measured data in a continuous process.
However, one of the drawbacks of the BACON family is their complexity in the search of equation
formulae. Another drawback is the considerable amount of ambiguity in their results for noisy
data even for the relations among small number of quantities [5, 6].

To alleviate these difficulties, some systems, e.g. ABACUS and COPER [7], utilize the in-
formation of the unit dimension of quantities to prune the meaningless terms. However, their
applicability is limited only to the case where the quantity dimension is known. SDS is a quantita-
tive model discovery system developed based on some novel principles[8]. It utilizes the constraints
of scale-type and identity both of which highly constrain the generation of candidate terms. Since
the knowledge of scale-types is widely obtained in various domains, SDS is applicable to non-physics
domains including psychophysics, sociology and etc. In addition, an extra strong mathematical
constraint named triplet checking is introduced to check the validity of those bi-variate equations.
By these constraints, the complexity of the algorithm remains quite low, and the high robustness
against the noise in the measurements is provided.

In spite of these efforts, many of the practical and large scale processes have not been covered
yet. This is because such processes consist of multiple mechanisms, and are represented by multi-
ple equations in terms of given quantities. Some past studies have partially addressed this issue.
The aforementioned FAHRENHEIT and ABACUS identify each operation mode of the objective
process and transition conditions among those modes, and they derives an equation to represent
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each mode. For example, they can discover state equations of water for solid, liquid and gas
phases respectively from experimental data. However, many processes such as large scale electric
circuits are represented by simultaneous equations. The model representation in form of simul-
taneous equations is essential to grasp the dependency structure among the multiple mechanisms
in the processes [9, 10]. An effort to develop a system called LAGRANGE has been made to au-
tomatically discover dynamical models represented by simultaneous equations[11]. It enumerates
candidate models of an objective process based on a set of observations by using inductive logic
programming technique. However, many redundant representations of the process are derived in
high computational complexity, while the soundness of the solutions is not guaranteed.

The primary objective of this study is to establish a method to discover admissible simultaneous
equations governing a large scale process while maintaining the advantage of the recent scientific
discovery approaches such as SDS. We set two assumptions on the feature of the objective process
to be analyzed. One is that the objective process can be represented by a set of quantitative,
continuous, complete and under-constrained simultaneous equations for the quantity ranges of our
interest. Another is that all of the quantities in every equation can be measured, and all of the
quantities except one dependent quantity can be controlled in every equation to their arbitrary
values in the range under experiments while satisfying the constraints of the other equations.
These assumptions are common in the past BACON family except the features associated with
the simultaneous equations. The following studies have been conducted under these assumptions.

(1) Characterization of under-constrained simultaneous equations in terms of invariant structure
of dependency among quantities.

(2) Algorithm to derive the invariant structure through experiments to control the objective
process.

(3) Principle and algorithm to apply scientific discovery approaches such as scale-type besed SDS
to separately derive each equation.

(4) Performance evaluation and demonstration of our proposing framework through various ex-
amples.

Based on the algorithm and the theory obtained in the studies from (1) to (3), we developed a
program named “Simultaneous Structure Finder (SSF)”. In the evaluation and demonstration of
the study (4), SSF is combined with the aforementioned SDS, since SDS has an excellent feature
to discover each complex equation appearing in large scale processes.

2 Basic Principle to Discover Simultaneous Equations

2.1 Insights Through an Example

First, we show an analysis of a simple process represented by under-constrained simultaneous
equations to provide some important insights on the basic principle proposed in this research.
Figure 1 depicts an electric circuit consisting of two parallel resistances and a battery. It can be
modeled by the following equations.

V1 = I1R1 [1], V2 = I2R2 [2],

Ve = V1 [3] and Ve = V2 [4], (1)

where R1, R2:two resistances,
V1, V2:voltage differences across resistances,
I1, I2:electric current going through resistances
and Ve:voltage of a battery.

Another model of this circuit can be given.

I1R1 = I2R2 [1], V2 = I2R2 [2],

Ve = V1 [3] and Ve = V2 [4]. (2)

Both representations give correct behaviors of the circuit. However, the former seems more
natural and comprehensive than the latter in spite of their quantitative equivalence. This may be
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Figure 1: An circuit of parallel resistances.

due to the different configuration of quantities in each equation system. The configuration of the
quantities in a set of simultaneous equations is represented by an “incidence matrix” T where its
rows correspond to the mutually independent equations and its columns to the quantities. If the
j-th quantity appears in the i-th equation, then the (i, j) element of T , i.e., Tij , is 1, and otherwise
Tij is 0 [10]. The following two expressions represent the incidence matrices T1 for Eqs.(1) and T2

for Eqs.(2) respectively.

Ve V1 V2 I1 I2 R1 R2

T1 =

⎡
⎢⎣

0 1 0 1 0 1 0
0 0 1 0 1 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0

⎤
⎥⎦ (3)

T2 =

⎡
⎢⎣

0 0 0 1 1 1 1
0 0 1 0 1 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0

⎤
⎥⎦ (4)

More strictly speaking, when a subset consisting of n independent equations containing n
undetermined quantities are obtained by exogenously specifying the values of some extra quantities
in the under-constrained simultaneous equations, the values of those n quantities are determined
by solving the equations in the subset. In terms of an incidence matrix, exogenous specification of
a quantity value corresponds to eliminating the column of the quantity. Accordingly, the partial
solvability of the under-constrained simultaneous equations can be restated as when each of n
columns come to contain nonzero element in some of n rows by eliminating some extra columns
in an incidence matrix, the quantities corresponding to the n columns are determined. Such an
equation subset corresponding to the n rows is called a “complete subset” of order n in this paper.
In the former model of the electric circuit, if we exogenously specify the values of Ve and R1,
the first, the third and the forth rows of T1 come to contain the three nonzero columns of V1, V2

and I1. Thus these equations form a complete subset of order 3, and the three quantities are
determined while the others, I2 and R2, are not. On the other hand, if the identical specification
on Ve and R1 is made in the latter model, no complete subset of order 3 is obtained, since every
combination of three rows in T2 contains more than three nonzero columns. In the real electric
circuit, the validity of the consequence derived by the former model is clear. In fact, the former
model gives correct answers for any combinations of quantities exogenously specified, while the
latter becomes erroneous in some cases. The model having the incidence matrix which always
derives valid interpretations of the determination of quantities of an objective process is named
“structural form” in this paper.

2.2 Characterizing Simultaneous Equations

Now, more strict formalization and characterization of under-constrained simultaneous equation
processes are given. For the basis of the formalization, some fundamental definitions are introduced
first.

Definition 1 (incidence matrix) Given a set of mutually independent simultaneous equations
which is a model of an objective process, E = {eqi|i = 1, ...M}, containing a set of quantities,



Q = {qj |j = 1, ..., N}, a matrix T is called an “incidence matrix” for E and Q, where Tij = 1 if
qj(∈ Q) appears in eqi(∈ E), otherwise Tij = 0. Here, Tij is an (i, j) element of T .

Definition 2 (complete subset) Given an incidence matrix T , after applying elimination of a
set of columns, RQ(⊂ Q), let a set of nonzero columns of T [CE, Q − RQ] be NQ(⊆ Q − RQ),
where CE ⊆ E, and T [CE, Q−RQ] is a sub-incidence matrix for equations in CE and quantities
in Q − RQ. CE is called a “complete subset” of order n, if |CE| = |NQ| = n. Here, | • | stands
for the cardinality of a set.

Based on these definitions, some characteristics of a complete subset are derived.

Theorem 1 (symmetry theorem) Given a complete subset CE of order n under the elimi-
nation of a set of columns RQ in T where |RQ| = m, let a set of nonzero columns in T [CE, Q]
be CQ, where T [CE, Q] is a sub-incidence matrix for equations in CE and all quantities in Q.
Under the elimination of any subset RQi of CQ where |RQi| = m and i = 1, ..., (n+m)Cm, CE is
a complete subset of order n.

Proof. Because NQ is a set of nonzero columns of T [CE, Q−RQ], CQ = RQ+NQ. |CQ| = m+n,
since |RQ| = m and |NQ| = n by definition of a complete subset. For the elimination of any
RQi(⊂ CQ) where |RQi| = m and i = 1, ..., (n+m)Cm, the rest of NQi = CQ−RQi has the cardi-
nality (m + n)− m, i.e., |NQi| = n. Thus, CE is a complete subset of order n for the elimination
of any RQi.

Theorem 2 (invariance theorem) Given a transform f : UE → UE where UE is the entire
universe of equations. When CE is a complete subset of order n in T , f(CE) is also a complete
subset of order n, if f(CE) for CE ⊂ UE maintains the number of equations and the nonzero
column structure, i.e., |CE| = |f(CE)| and CQ = CQf , where CQf is a set of nonzero columns
in T [f(CE), Q].

Proof. Because of CQ = CQf , an identical set of nonzero columns NQ is obtained by eliminating
RQ in both T [CE, Q] and T [f(CE), Q]. When CE is a complete subset of order n, |CE| = n,
and thus if |CQ| = |CQf | = m + n, then |NQ| can be n by choosing RQ to be |RQ| = m. Under
such a RQ, |CE| = |f(CE)| = |NQ| = n, and f(CE) satisfies the condition of a complete subset
of order n.

Remark 1 The “symmetry theorem” indicates that given an objective simultaneous equation pro-
cess, every complete subset can be identified independent of the choice of quantities to be exogenously
controlled in the experiment, as far as it controls the required number m of the quantities involved
in each subset. An efficient, complete and sound search algorithm can be developed based on this
feature of a complete subset.

Remark 2 Our assumption on the controllability of the quantities admits one dependent quantity
which can not be directly controlled in an equation. The “symmetry theorem” is the theoretical basis
to correctly derive every complete subset and obtain valid quantitative form of each equation through
the experiment. If a dependent quantity exits in a complete subset, the other controllable quantities
in the subset can be used to constrain the subset and make up identical states.

Remark 3 Given a model of an objective process, various simultaneous equation formulae main-
taining the equivalence of the quantitative relations and the dependency structure among quantities
can be derived by limiting the equation transform f of the “invariance theorem” to the quantitative
manipulation such as substitution and arithmetic operation among equations.

In the example of the aforementioned electric circuit, if the value of Ve is exogenously specified in
Eqs.(1), i.e., the first column of T1 is eliminated, the third and forth rows of T1 become to involve
only two nonzero columns. Consequently, the set of equations {Ve = V1[3], Ve = V2[4]} in Eqs.(1)
is known to be a complete subset of order 2. These equations can be transformed by the linear
algebra as follows while keeping their quantitative equivalence.

Ve = 2V1 − V2 [3], Ve = −V1 + 2V2 [4]. (5)



For this third model, the following incidence matrix is obtained.

Ve V1 V2 I1 I2 R1 R2

T3 =

⎡
⎢⎣

0 1 0 1 0 1 0
0 0 1 0 1 0 1
1 1 1 0 0 0 0
1 1 1 0 0 0 0

⎤
⎥⎦ (6)

By applying the elimination of the first column for Ve similarly to the case of T1, the third and
forth rows of T3 become to involve only two nonzero columns, and thus the complete subset of
order 2 consisting of the these two rows still remains in this new model.

As the complexity of the algorithm to enumerate all forms of a complete subset admitted by
the transform f faces the combinatorial explosion, our approach identifies only one specific form
defined bellow.

Definition 3 (canonical form of a complete subset) Given a complete subset CE of order
n, the “canonical form” of CE is the form where all elements of the nonzero columns CQ in its
incidence matrix T [CE, Q] are 1.

An example of the canonical form of a complete subset is eq.5. Because every admissible form
is mathematically equivalent with the others, the identification of the canonical form is sufficient,
and the others can be derived by applying appropriate f to the form.

Though each complete subset represents a basic mechanism to determine the values of quantities
in a given simultaneous equation process, some complete subsets are not mutually independent in
many cases. For instance, the following four complete subsets can be found in the example of
Eqs.(1).

{[3], [4]}(n = 2), {[1], [3], [4]}(n = 3),

{[2], [3], [4]}(n = 3), {[1], [2], [3], [4]}(n = 4) (7)

The number in [ ] indicates each equation and n the order of the subset. They mutually have many
overlaps, and the complete subsets having higher order represent the redundant mechanism with
the lower subsets. The following theorem characterizes the dependency among complete subsets.

Theorem 3 (lattice theorem) Given a model of an objective process consisting of equations
E, the set of all complete subsets of the model, i.e., L = {∀CEi ⊆ E}, forms a lattice of the sets,
where CEi ∪ CEj ∈ L and CEi ∩ CEj ∈ L, ∀CEi, CEj ∈ L.

Proof. Omitted.

Theorem 4 (modular lattice theorem) Given a model of an objective process consisting of
equations E, the set of complete subsets of the model, i.e., L = {∀CEi ⊆ E}, forms a modular
lattice of the sets for the order of the complete subsets, i.e., n(CEi ∪ CEj) = n(CEi) + n(CEj) −
n(CEi ∩ CEj) where n is the order of a given complete subset.

Proof. The order of a complete subset is equal to its cardinality by definition. Because of the
relation |CEi ∪CEj | = |CEi|+ |CEj | − |CEi ∩CEj |, the relation among the order in the theorem
is clear.
Based on the modular lattice structure among complete subsets, the independent component and
its order of each complete subset can be defined as follows.

Definition 4 (independent component of a complete subset) The independent component
DEi of the complete subset CEi is defined as

DEi = CEi −
⋃

∀CEj⊂CEi
and CEj∈L

CEj .

The set of essential quantities DQi of CEi which do not belong to any other complete subsets but
involved only in CEi is also defined as

DQi = CQi −
⋃

∀CEj⊂CEi
and CEj∈L

CQj ,



where CQi is a set of nonzero columns of T (CEi, Q). The order δni and the freedom δmi of DEi

are defined as
δni = |DEi| and δmi = |DQi| − |DEi|.

Remark 4 An “independent component” of a complete subset represents an independent mecha-
nism to determine the values of some quantities under a given dependency structure among quan-
tities in a set of simultaneous equations. The values of quantities appearing only within an inde-
pendent component DEi can be changed with the δmi degree of freedom without violating any other
constraints.

In the example of Eq.(7), the three independent components are derived.

DE1 = {[3], [4]} − φ = {[3], [4]},
δn1 = 2 − 0 = 2,

DE2 = {[1], [3], [4]} − {[3], [4]} = {[1]},
δn2 = 3 − 2 = 1,

DE3 = {[2], [3], [4]} − {[3], [4]} = {[2]},
δn3 = 3 − 2 = 1. (8)

Because of the monotonic structure of set inclusion in the modular lattice, a bottom up and
greedy search is applicable without facing very high complexity of the algorithm to derive every
independent component.

Because each independent component DEi is a subset of the complete subset CEi, the nonzero
column structure of DEi also follows the invariance theorem. Consequently, the subset of the
canonical from of CEi is applicable to represent DEi. Based on this consideration, the definition
of the canonical form of the simultaneous equations representing an given objective process is
introduced.

Definition 5 (canonical form of simultaneous equations) The “canonical form” of a set
of simultaneous equations consists of the equations in ∪b

i=1DEi where each equation in DEi is
represented by the canonical form in the complete subset CEi, where b is the total number of DEi.

The incidence matrix of the model of the electric circuit can be derived in the canonical form T4

based on the result of Eq.(8).

Ve V1 V2 I1 I2 R1 R2

T4 =

⎡
⎢⎣

1 1 1 1 0 1 0
1 1 1 0 1 0 1
1 1 1 0 0 0 0
1 1 1 0 0 0 0

⎤
⎥⎦ (9)

If the canonical form of simultaneous equations are experimentally derived to reflect the actual de-
pendency structure among quantities in the objective process, then the model must be a “structural
form”. Thus, the following terminology is introduced.

Definition 6 (structural canonical form) If the canonical form of simultaneous equations is
derived to be a “structural form”, then the form is named “structural canonical form”.

The incidence matrix T4 which has been obtained from a structural form T1 corresponds to the
structural canonical form for the example.

3 Algorithm of SSF and its Implementation

Under our aforementioned assumption on the measurements and the controllability of quantities,
the bottom up and greedy algorithm indicated in Fig.2 has been developed and implemented into
SSF. SSF requires a list of the quantities for the modeling of the objective process and their actual
measurements. Starting from the set of control quantities having small cardinality, this algorithm



(S1) Let Q = {qk|k = 1, ..., N} be a set of quantities to appear in the model of an objective
process. Set X = {xk|xk = qk, for all but directly controllable
qk ∈ Q}, DE = φ, DQ = φ, N = φ, M = φ, h = 1 and i = 1.

(S2) Choose Cj ⊂ DQj ∈ DQ for some DQj and also Cx ⊆ X, and take their union
Chi = ... ∪ Cj ∪ ... ∪ Cx, while maintaining |Cj | ≤ δmj and |Chi| = h. Control all
xk ∈ Chi, k = 1, ..., |Chi| in an experiment.

(S3) Let a set of all quantities which values are determined be Dhi ⊆ (Q − Chi). Set
DEhi = Chi + Dhi, DQhi = DEhi − ∪∀DE

h′i′⊂DEhi
DE

h′i′ ∈DE

DEh′i′ , δnhi = |Dhi| −∑
∀DE

h′i′⊂DEhi
DE

h′i′∈DE

δnh′i′ , and δmhi = |DQhi| − δnhi. If δnhi > 0, then add DEhi

to the list DE, DQhi to the list DQ, δnhi to the list N , δmhi to the list M and
X = X − DQhi.

(S4) If all quantities are determined, i.e., Dhi = Q−Chi, then go to (S5), else if any more
Chi where |Chi| = h does not exist, h = h + 1, i = 1 and go to (S2), else i = i + 1 and
go to (S2).

(S5) The contents of the lists DE, DQ and N represent the sets of quantities involved in
independent components, the sets of essential quantities and their orders respectively.

Figure 2: Algorithm for structural canonical form

tests if values of any quantities become to be fully under control. If such controlled quantities
are found, the collection of the control quantities and the controlled quantities are considered as a
newly found complete subset |CEi|. Then, based on the definition 4 , its |DEi|, |DQi|, δni and δmi

are derived and stored. Once any independent components are derived, only δmi of the quantities
in every |DQi| and the quantities which do not belong to any |DQi| are used for control. Though
the complexity of this algorithm is NP-hard, this constraint by |DQi| significantly reduces the
computation amount. as shown in the latter section. The constraint of |DQi| does not miss any
complete subset to search due to the monotonic lattice structure among complete subsets.

The conventional systems to discover a complete equation can not directly accept the knowledge
of the structural canonical form for the discovery. The problem to derive quantitative knowledge
of the simultaneous equations must be decomposed into sub-problems to derive each equation
individually. Accordingly, an algorithm to decompose the entire problem into such small problems
is also implemented into SSF. As previously stated in Definition 4 , the values of the quantities
within an independent component of each complete subset are mutually constrained in the order
δni degree. Accordingly, the constraints within the independent component disable the bi-variate
tests among the quantities of an equation in the structural canonical form, if the order δni is more
than one. However, this difficulty is removed if the (δni − 1) quantities are eliminated by the
substitution of the other (δni − 1) equations within the independent component. The reduction of
the number of quantities by (δni − 1) in each equation enables to control each quantities as if it is
in a complete equation. This elimination of quantities is essential to enable the application of the
equation discovery system based on the bi-variate test. The reduction of quantities in equations
provides further advantage, since the computation amount required in the equation search strongly
depends on the number of quantities. In addition, the less degree of freedom of the objective
equation in the search introduces more robustness against the noise in the data and the numerical
error in the data fitting. The algorithm for the problem decomposition of SSF minimizes the
number of quantities involved in each equation based on the admissible equation transform stated
in the invariance theorem. Once quantitative form of each equation is obtained by the equation
discovery system, then those forms can be transformed again into the different forms requested by
the users.

Figure 3 indicates the algorithm to transform a structural canonical form to minimize the
number of quantities in each equation. This algorithm uses the list of the complete subsets and their
order resulted in the algorithm of Fig.2. The quantities involved in each equation are eliminated
by the equations in the other complete subset in (S2). In the next (S3), the quantities involved



(S1) Let DE, DQ and N be the lists obtained
in the algorithm of Fig.2.

(S2) For i = 1 to |DE| {
For j = 1 to |DE| where j �= i {

If DEi ⊃ DEj where DEi, DEj ∈ DE {
DEi = DEi − DQ′

j ,
where DQ′

j is arbitrally, and
DQ′

j ⊂ DQj ∈ DQ and |DQ′
j | = Nj.}}}

(S3) For i = 1 to |DE| {
For j = 1 to Ni {

DEij = DEi − DQij,
where DQij is arbitrally, and
DQij ⊂ DQi ∈ DQ and |DQij | = Ni − 1.}}

(S4) Every DEij shows the list of quantities contained in a transformed equation.

Figure 3: Algorithm for minimization.

in each equation are eliminated by the other equation within the same complete subset, if the
order of the subset is more than one. The quantities to eliminate in (S2) and (S3) are selected
by lexicographical order in the current SSF. This selection can be more tuned up based on the
information of the sensitivity to noise and error of each quantities in the future.

4 Outline of SDS

The information required by SDS besides the knowledge given by SSF and the actual measurements
is the scale-type of each quantity [8]. The scale-types of measured quantities reflect the rules of
the assignment of numerals to objects in the measurement process. The representative scale-types
of the quantitative measurements are interval scale, ratio scale and absolute scale. Examples of
the interval scale quantities are temperature in Celsius and musical tone where the origins of
their scales are not absolute. Examples of the ratio scale quantities are physical mass and absolute
temperature where each has an absolute zero point. The absolute scale quantities are dimensionless
quantities.

The two important theorems called ”extended Buckingham Π-theorem” and ”extended product
theorem” provide the basis of the equation search of SDS. Former states that any meaningful
complete equation φ(x1, x2, x3, ....) = 0 consisting of the arguments of interval, ratio and absolute
scale-types can be decomposed into an equation F (Π1, Π2, ..., Πn−w) = 0 called an “ensemble
equation,” where n is the number of arguments of φ, w is the basic number of bases in x1, x2, x3....,
respectively. For all i, Πi is an absolute scale-type quantity. Latter presents the following multiple
formulae named “regimes” to represent Πs by interval and ratio scale-type quantities.

Π = (
∏

xi∈R

|xi|ai)(
∏

Ik⊆I

(
∑

xj∈Ik

bkj |xj | + ck)ak)

Π =
∑
xi∈R

ai log |xi| +
∑
Ik⊆I

ak log(
∑

xj∈Ik

bkj |xj | + ck)

+
∑

x�∈Ig⊆I

bg�|x�| + cg

where R and I are sets of ratio and interval scale type quantities, respectively. all coefficients
except Π are constants and Ik ∩ Ig = φ. SDS initially seeks the relations of regimes represented in
the extended product theorem through the bi-variate data fitting. Because “scale-type constraint”
admits only these formulae as valid relations, the relations discovered by this approach have high
possibility to represent first principle governing the objective process.

After all regime formulae are derived, SDS starts to seek the relation of ensemble equation by
using “identity constraint”. The basic principle of the identity constraints comes by answering



the question that “what is the relation among Θh, Θi and Θj, if a(Θj)Θh + Θi = b(Θj) and
a(Θi)Θh + Θj = b(Θi) are known?” The following answer is easily proven.

Θh + α1ΘiΘj + β1Θi + α2Θj + β2 = 0

This principle is generalized to various relations among multiple terms.
Once a triplet of bi-variate relations is identified for a set of three quantities by using the

aforementioned constraints, a certain consistency checking among the three relations called “triplet
test” is applied to remove invalid relations due to the noise and error of data fitting.

The superior abilities of SDS have been confirmed of its low complexity, high robustness, high
scalability and wide applicability [8]. This is because of the introduction of these new types of
mathematical constraints and tests.

5 Evaluation of SSF combined with SDS

The program of SSF has been developed in the environment of a numerical processing shell named
MATLAB [12]. The knowledge of an equation in the structural canonical form discovered by SSF
is transferred to SDS, and SDS executes its experiments based on the transferred knowledge and
the knowledge of the scale-types of quantities. This process is iterated for each equation. The
objective processes are provided by simulation in this research.

The performance of SSF has been evaluated in terms of the validity of its results and the com-
putational complexity through some examples including quite large scale processes. In addition,
the performance of the SDS combined with SSF is also checked through the same examples. The
examples we applied are summarized as follows.
(1) Two parallel resistances and a battery
This is depicted in Fig.1, and has been already explained in the previous sections. Its model con-
sists of 4 equations and 7 quantities as shown in Eqs.1.
(2) Heat conduction at walls of holes
Given a large solid material having two vertical holes, gas goes into those holes, and condensed to
its liquid phase during the flow in the holes by providing its heat energy to the walls of the holes.
In these holes, the heat conduction process are represented by the following 8 equations involving
17 quantities[13].

ω = 0.9423

(
vsk3

Lμ

)1/4

, Ḣ = Ḣ1 + Ḣ2

ΔT1 = Tf − Tw1, ΔT2 = Tf − Tw2

h1 = ΔT1
−1/4ω, h2 = ΔT2

−1/4ω (10)

Ḣ1 = 2πγLh1ΔT1, Ḣ2 = 2πγLh1ΔT2

Here, v, s, k, μ are the latent heat per volume, density, heat conductance, viscosity in liquid phase
of the fluid. L is the length of the holes, Tf temperature of the fluid, Tw1 and Tw2 temperature of
walls of two holes. Ḣ is the total rate of heat conduction from the fluid to the wall material.
(3) A circuit of photo-meter
Figure 4 depicts a circuit of photo-meter to measure the rate of increase of photo intensity within
a time period. The model of this system is represented by 14 equations involving 22 quantities.
The contents of equations are not shown due to the limited space.
(4) Reactor core of power plant
A model of nuclear fission reaction process, heat removal of nuclear fuel, and heat and mass balance
of reactor coolant is tested. This model involves 24 equations and 60 quantities.

Table 1 is the summary of the specifications of each problem size, complexity and robustness
against noise. Tscf is to derive the structural canonical form and Tmin to minimize the number of
quantities appearing in each equation. Ttl and Tav are the total and the average time per equation
required by SDS. Tscf shows strong dependency to the parameter m and n, i.e., the size of the
problem. This is natural, since the algorithm to derive structural canonical forms is NP-hard
to the size. Tscf also moderately depends on the difference between the numbers of quantities
and equations in the model, i.e. n − m. This seems reasonable because the large number of
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Figure 4: A circuit of photo meter.

Table 1: Statistics on complexity and robustness

Ex. m n av Tscf Tmin Ttl Tav NL

(1) 4 7 2.5 3 0.00 206 52 35
(2) 8 17 3.9 1035 0.05 725 91 29
(3) 14 22 2.6 1201 0.05 773 55 31
(4) 26 60 4.0 42395 0.11 3315 128 26

m: number of equation, n: number of quantities, av:
average number of quantities/equation, Tscf : CPU
time (sec) to derive structural canonical form, Tmin:
CPU time to derive minimum quantities form, Ttl:
CPU time to derive all equations by SDS, Tav: aver-
age CPU time per equation by SDS, NL: limitation
of % noise level of SDS.

n − m represents the high degree of freedom of the objective simultaneous equations. This also
exponentially increases the search space. In contrast, Tmin shows very slight dependency to the
size of the problem, and the absolute value of the required time is negligible. This observation
is also highly consistent with the theoretical view that its complexity should be only O(n2). The
total time Ttl required by SDS seems not to strongly depend on the size of the problem. This
consequence is also very natural, because SDS handles each equations separately. The required
time of SDS should be proportional to the number of equations in the model. Instead, the efficiency
of the SDS more sensitively depends on the average number of quantities involved in an equation.
This tendency becomes clearer by comparing Tav with av. In the past study, the complexity of
SDS is known to be around O(n2). The relation between Tav and av roughly follows this claim.
Thus, Ttl may vary almost in O(mn2). In short summary, the complexity of SSF shown in the
result of Tscf seems to be crucial for a large scale problem, However, the performance shown in
the Table 1 may be sufficient for numbers of engineering problems.

The last column of Table 1 shows the influence of the noise to the result of SSF+SDS, where
Gaussian noise is artificially introduced to the measurements. The noise does not affect the com-
putation time in principle. The result showed that 25-35% of relative noise amplitude to the
absolute value of each quantity was acceptable at the maximum under which 8 times per 10 trials
of SSF+SDS successfully give the correct structure and coefficients of all equations with statisti-
cally acceptable errors. The noise sensitivity dose not increase significantly, because SSF focuses
on a complete subset which is a small part of the entire system. Similar discussion holds for SDS.
The robustness of SDS combined with SSF against the noise is sufficient for practical application.

Finally, the validity of the results are checked. In the example (1), SSF derived the expected
structural canonical form shown in Eq.9. Then SSF gave the following form of minimum number
of quantities to SDS. Here, each equation is represented by a set of quantities involved in the
equation.

{Ve, R1, I1}, {Ve, R2, I2}, {Ve, V1}, {Ve, V2} (11)



As a result, SDS derived the following answer.

Ve = I1R1 [1], Ve = I2R2 [2],

Ve = V1 [3] and Ve = V2 [4], (12)

This is equivalent with Eq.1 not only in the sense of the invariance theorem but also the quanti-
tativeness. In the example (2), SSF derived the following structural canonical form.

{Ḣ, Ḣ1, Ḣ2}, {ω, v, s, k, L, μ},
{ΔT1, Tf , Tw1}, {ΔT2, Tf , Tw2},
{h1, ΔT1, ω}, {h2, ΔT2, ω}, (13)

{Ḣ1, ΔT1, γ, L, h1, ω}, {Ḣ2, ΔT2, γ, L, h2, ω}.

Then, by the elimination of ω in the last two equations by substituting the fifth and the sixth
equations, SSF gave the form of minimum number of quantities which configuration is identical
with the original. Then, SDS successfully reconstructed the equations in Eqs.10. Similarly almost
original equations could be reconstructed in the other examples, and they have been confirmed to
be equivalent to the original in the sense of the invariant theorem and quantitativeness.

6 Discussion and Related Work

The form of the process models in which the appearance of quantities are minimized resulted by
SSF is quite close to the configuration of our familiar models in many cases. This might be because
the less connection links among equations through quantities clarify the process represented by each
equations, and hence the models obtained by SSF and SDS can provide comprehensive knowledge
of the objective processes.

As mentioned in the introduction, the conventional equation discovery systems can derive only
one or a few complete equation(s) with high computational complexity. SSF and its background
theory, not only to overcome this limitation, provide generic tool and measure which can be
combined with any conventional equation discovery systems. Moreover, the background theory
can be used in more generic manner to identify various simultaneous structures embedded in real
systems. It can be applied to some discrete systems as far as the systems have structures to
propagate states through simultaneous constraints.

The basic theory of complete subsets in simultaneous equations can be seen as an extension of
the causal ordering theory [9]. A complete subset involves many candidates of self-contained sub-
sets. A part of a complete subset becomes a self-contained subset once the exogenous specification
of the values of some quantities is given. The structural form introduced in this research is also an
extension of structural equations [9]. Our theory gives more precise definition and characterization
of structural equations.

7 Conclusion

The research presented here characterized under-constrained simultaneous equations in terms of
complete subsets, and provided an algorithm to derive the structure through experiments. In
addition, an algorithm to apply scientific discovery algorithm such as scale-type based SDS to
simultaneous equations are established. These are implemented into a program named SSF, and
its significant performance under the combination with a discovery system SDS have been readily
confirmed.

A remained but important problem is to establish more efficient algorithm of SSF.

References

[1] G. Bradshaw P.W. Langley, H.A. Simon and J.M. Zytkow. Scientific Discovery; Computational
Explorations of the Creative Process. MIT Press, Cambridge, Massachusetts, 1987.



[2] B. Koehn and J.M. Zytkow. Experimenting and theorizing in theory formation. In Proceedings
of the International Symposium on Methodologies for Intelligent Systems, pages 296–307. ACM
SIGART Press, 1986.

[3] B.C. Falkenhainer and R.S. Michalski. Integrating Quantitative and Qualitative Discovery:
The ABACUS System. Machine Learning, pages 367–401, 1986.

[4] B. Nordhausen and P.W. Langley. An Integrated Approach to Empirical Discovery. In Com-
putational Models of Scientific Discovery and Theory Formation, San Mateo, California, 1990.
Morgan Kaufman Publishers.

[5] C. Schaffer. A Proven Domain-Independent Scientific Function-Finding Algorithm. In Pro-
ceedings Eighth National Conference on Artificial Intelligence. AAAI Press/The MIT Press,
1990.

[6] K.M. Huang and J.M. Zytkow. Robotic discovery: the dilemmas of empirical equations. In
Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine
Discovery, Tokyo, 1996.

[7] M.M. Kokar. Determining Arguments of Invariant Functional Descriptions. Machine Learning,
pages 403–422, 1986.

[8] T. Washio and H. Motoda. Discovering Admissible Models of Complex Systems Based on
Scale-Types and Identity Constraints. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Nagoya, 1997.

[9] Y. Iwasaki and H.A. Simon. Causality in Device Behavior. Artificial Intelligence, pages 3–32,
1986.

[10] K. Murota. Systems Analysis by Graphs and Matroids - Structural Solvability and Control-
lability. Algorithms and Combinatorics, 3, 1987.

[11] S. Dzeroski and L. Todorovski. Discovering Dynamics: From Inductive Logic Programing to
Machine Discovery. Journal of Intelligent Information Systems, 3:1–20, 1994.

[12] The Math Works, Inc. MATLAB Reference Guide, 1992.

[13] J. Kalagnanam, M. Henrion, and E. Subrahmanian. The Scope of Dimensional Analysis in
Qualitative Reasoning. Computational Intelligence, 10(2):117–133, 1994.


