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Abstract. We address a new type of influence maximization problem which we
call “target selection problem”. This is different from the traditionally thought in-
fluence maximization problem, which can be called “source selection problem”,
where the problem is to find a set of K nodes that together maximizes their in-
fluence over a social network. The very basic assumption there is that all these
K nodes can be the source nodes, i.e. can be activated. In “target selection prob-
lem” we maximize the influence of a new user as a source node by selecting K
nodes in the network and adding a link to each of them. We show that this is the
generalization of “source selection problem” and also satisfies the submodular-
ity. The selected nodes are substantially different from those of “source selection
problem” and use of the solution of “source selection problem” results in a very
poor performance.
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1 Introduction

The emergence of Social Media such as Facebook, Digg and Twitter has provided us
with the opportunity to create large social networks, which plays a fundamental role
in the spread of information, ideas, and influence. Such effects have been observed in
real life, when an idea or an action gains sudden widespread popularity through gword-
of-mouthh or gviral marketingh effects. This phenomenon has attracted the interest of
many researchers from diverse fields [11], such as sociology, psychology, economy,
computer science, etc.

A substantial amount of work has been devoted to the task of analyzing and min-
ing information diffusion processes in large social networks [15, 13, 1]. The main focus
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over the past decade has been on optimization problems in which the goal is to max-
imize the spread of information through a given network, either by selecting a good
subset of nodes to initiate the cascade [7] or by applying a broader set of intervention
strategies such as node and link additions [18, 21]. Widely used information diffusion
models in these studies are independent cascade (IC) [7], linear threshold (LT) [22] and
their variants [8, 19, 6, 20]. These two models focus on different aspects of information
diffusion. IC model is sender-centered (information push) and each active node inde-
pendently influences its inactive neighbors with given diffusion probabilities. LT model
is receiver-centered (information pull) and a node is influenced by its active neighbors
if their total weight exceeds the threshold for the node. Basically the former models
diffusion process of how a disease spreads and the latter models diffusion process of
how an opinion or innovation spreads.

In this paper we deal with a new type of influence maximization problem. Tradition-
ally this problem is defined to be finding a subset of nodes of size K that maximizes the
influence degree with K as a parameter under a given information diffusion model and
a given social network. It is unconditionally assumed that the information is guaranteed
to start spreading from the selected K nodes. We call this problem as “Source selection
problem” to distinguish it from our problem. We rather select K nodes and send infor-
mation to these nodes. There is no guarantee that these nodes become the information
source nodes. Suppose we want to spread our idea or opinion using a twitter, you must
acquire reliable followers in the first place. To do this you have to carefully select the
target users. Those users who have many followers already may not necessarily be good
targets if they have many followees. Our problem is defined to be creating new links to
a subset of nodes of size K from a new user such that the influence degree of this user is
maximized. We call this problem as “Target selection problem” and analyze it for both
LT and IC models.

“Target selection problem” also carries the same problem of 1) computational com-
plexity of estimating influence degree of a given user which is defined to be the expected
number of influenced nodes at the end of diffusion process that started from this user and
2) combinatorial explosion of search space in finding the optimal K target nodes. Fortu-
nately, the influence degree is submodular, i.e. its marginal gain diminishes as the size
K becomes larger in “Source selection problem”, and the greedy solution has a lower
bound which is 63% of the true optimal solution [7]. We prove that this submodularity
also holds to “Target selection problem”, and use a greedy algorithm at the expense of
optimality. Various techniques have been devised to reduce the computational cost of
solving “Source selection problem”. These include bond percolation [9], pruning [8],
lazy evaluation [14, 5], burnout [19], heuristics [2, 3], belief propagataion [16] and lin-
ear sytem approximation [23]. In this paper we use our own previous work, i.e. bond
percolation [9], pruning [8] and burnout [19].

We compare the influence degree of “Target selection problem” with three other
methods using four different real social networks. One is to use the solution of “Source
selection problem” as target nodes. The other two are to use nodes selected from the
largest out-degree and nodes randomly selected. In this paper we show only the results
of LT model due to the page limitation. The results clearly show that the solution of
“Target selection problem” is different from that of “Source selection problem” and the
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influence degree using the solution of “Source selection problem” is only half of the
influence degree of “Target selection problem”.

2 Information Diffusion Models

We consider a network represented by a directed graph G = (V, E), where V and E
(⊂ V × V) are the sets of all the nodes and links, respectively. Below we revisit the
definition of IC and LT models according to the literatures [7, 10]. In both models the
diffusion process proceeds from an initial active node in discrete time-step t ≥ 0, and it
is assumed that nodes can switch their states only from inactive to active (i.e., the SIR
setting).

IC model has a diffusion probability pu,v with 0 < pu,v < 1 for each link (u, v) as a
parameter. Suppose that a node u first becomes active at time-step t, it is given a single
chance to activate each currently inactive child node v, and succeeds with probability
pu,v. If u succeeds, then v will become active at time-step t + 1. If multiple parent nodes
of v first become active at time-step t, then their activation trials are sequenced in an
arbitrary order, but all performed at time-step t. Whether u succeeds or not, it cannot
make any further trials to activate v in subsequent rounds. The process terminates if no
more activations are possible.

LT model has a weight qu,v (> 0) with
∑

u∈B(v) qu,v ≤ 1 for each link (u, v) as a
parameter, where B(v) = {u ∈ V; (u, v) ∈ E} is the set of parent nodes of node v. First,
for any node v ∈ V , a threshold θv is chosen uniformly at random from the interval [0, 1].
An inactive node v is influenced by its active parent nodes. If the total weight from the
active parent nodes of v at time-step t is at least the threshold θv, i.e.,

∑
u∈Bt(v) qu,v ≥ θv,

then v will become active at time-step t+1. Here, Bt(v) stands for the set of all the parent
nodes of v that are active at time-step t. The process terminates if no more activations
are possible.

For a set of initial active nodes W(⊂ V), let ϕ(W; G) denote the number of active
nodes at the end of the random process. It is noted that ϕ(W; G) is a random variable.
We denote the expected value of ϕ(W; G) by σ(W; G), and call it the influence degree
of W.

3 Target Selection Problem

We first give the formal definition of the source selection problem, or the traditional
influence maximization problem [7, 14, 10, 3, 2]. Given a network G = (V, E) and a con-
stant K, the problem is to find a set of K nodes WK(⊂ V) that maximizes the influence
degree σ(WK ; G), which is formally defined as follows:

argmax
WK⊂V

σ(WK ; G). (1)

On the other hand, in the target selection problem tackled in this paper, we are given
not only a network G and a constant K, but also an external information source node
x � V and values {rx,v | v ∈ V}, each associated with link (x, v), where rx,v ∈ [0, 1]
corresponds to a diffusion probability px,v in case of IC model and a weight qx,v in case
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of LT model. Then, we seek a set of K nodes WK ⊂ V that maximizes the influence
degree of x in an extended network G′(WK) resulted from adding K links from u to
each node w ∈ WK into G, which is formally defined as follows:

argmax
WK⊂V

f (WK), (2)

where f (WK) = σ({x}; G′(WK)) and G′(WK) = (V ∪ {x}, E ∪ {(x,w)|w ∈ WK }). In
case of LT model, we assume that each of the original weights to the target nodes, ex-
pressed as qv,w where w ∈ WK and v ∈ B(w), is weakened to (1 − rx,w)qv,w due to the
constraints on weights for LT model. Here we should emphasize that the target selec-
tion problem is a natural extension to the source selection problem because we obtain
argmaxWK⊂V σ(WK ; G) = argmaxWK⊂V f (WK) by setting rx,w = 1 for each w ∈ WK .
This is because all of the nodes selected in the target selection problem are definitely
activated.

As mentioned in Section 1, since the functionσ is submodular, i.e., σ(W′ ∪{v}; G)−
σ(W′; G) ≥ σ(W∪{v}; G)−σ(W; G) if W′ ⊆ W, we can approximately solve the source
selection problem with a greedy method that recursively finds out Wk based on Wk−1 by
adding node v that maximizes σ(Wk−1 ∪ {v}; G) to Wk−1 starting from W0 = ∅. Fortu-
nately, in the target selection problem, the function f can be proven to be submodular
from the following relation:

f (WK) =
∑

A∈2WK

σ(A; G)
∏

w∈A
rx,w

∏

w∈(WK\A)

(1 − rx,w), (3)

where 2WK denotes the power set of WK . Recall that rx,w corresponds to a diffusion
probability px,w in case of IC model and a weight qx,w in case of LT model. Thus we
can easily see that Equation (3) deals with each possible activation pattern A for the
target set WK with the probability that the pattern A happens. Here we should note that
in case of LT model, each of the original weights to the target nodes qv,w is weakened
to (1 − rx,w)qv,w. Namely, under the condition that the external source node x fails to
activate the target node w, the probability that the node v succeeds to activate the target
node w is equivalent to qv,w.

From Equation (3), since f (WK) is a non-negative linear combination of submodular
functions σ(·), it is also submodular. Thanks to this property, we can solve the target
selection problem in the same fashion as the source selection problem with a greedy
method. As mentioned earlier, we can efficiently calculate such greedy solutions by
using the techniques such as bond percolation [9], pruning [8] and burnout [19].

4 Experiments

Using large real-world networks, we experimentally evaluated the performance of the
proposed method for solving the target selection problem on network G = (V, E). We
show only the results of LT model due to the page limitations. We chose to show LT
model because this model is better suited to opinion spread where we came up with the
notion of “target selection”.
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4.1 Datasets and Settings

In our experiments, we employed four datasets of real networks, where all the networks
are represented as directed graphs. The first one is the Ameblo network, which is a
reader network of Japanese blog service site “Ameaba” 1 (see [4] for more details).
The Ameblo network has 56, 604 nodes and 734, 737 links. The second one is the Blog
network, which is a trackback network of Japanese blogs used in [10]. The Blog net-
work has 12, 047 nodes and 53, 315 links. The third one is the Cosme network, which
is a fan-link network of “@cosme”, 2 a Japanese word-of-mouth communication site
for cosmetics (see [17] for more details). The Cosme network has 45, 024 nodes and
351, 299 links. The last one is the Enron network, which is derived from the Enron
Email Dataset [12] (see [17] for more details). The Enron network has 19, 603 nodes
and 210, 950 links.

We compared the proposed method with three other heuristic methods as mentioned
in Section 1. The first one is to use the solution of the source selection problem for the
original network G = (V, E) and add links to the selected K nodes from an external
source node. Here, we employed the combined methods of our previous work (bond
percolation [9], pruning [8] and burnout [19]). We refer to this method as the InflMaxSrc
method. The second one is to select nodes in order of decreasing out-degrees, where
the out-degree of a node means the number of outgoing links from the node. This is a
method often used in the field of complex networks science. We refer to this method as
the Out-degree method. The third one, which serves as the crude baseline, is to simply
select nodes uniformly at random. We refer to this method as the Random method.

We evaluated the performance, f (WK) = σ ({x}; G′(WK)), where WK is the selected
K nodes by each method. The influence degree σ ({x}; G′(WK)) was estimated by the
empirical mean of the number of active nodes obtained from 10, 000 independent runs
of information diffusion, with each run based on the bond percolation [9], pruning [8]
and burnout [19]. For the parameters of LT model, we set qu,v = 1/B(v) (∀u, v ∈ V).

4.2 Experimental Results

Figures 1a, 1b, 1c and 1d show the results for the Ameblo, Blog, Cosme and Enron net-
works, respectively. Here, we plot the value of the objective function f (influence de-
gree) as a function of the number k of target nodes, where the circles, crosses, squares
and triangles indicate the results for the proposed, InflMaxSrc, Out-degree and Ran-
dom methods, respectively. First, we see that the proposed method significantly outper-
formed the InflMaxSrc, Out-degree and Random methods for all four networks. The
Random method is by far the worst. We can say that the proposed method can spread
the information twice as much as the best of the other two methods can do We also note
that the performance of the Out-degree method strongly depends on the characteristics
of the network structure, and in some cases it is better than the InflMaxSrc method.
We know that the InflMaxSrc method always outperforms the Out-degree and Random
methods for the source selection problem (see [10]), but for the target selection prob-
lem it is not always the case that the InflMaxSrc method outperforms the Out-degree

1 http://www.ameba.jp/
2 http://www.cosme.net/
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(a) Ameblo network
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(b) Blog network
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(c) Cosme network
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(d) Enron network

Fig. 1: Performance comparison for the target selection problem.

method. This is attributed to the fact that the information source node x is not neces-
sarily able to activate all of the target nodes W∗. For instance, the influence degree f of
the proposed method is 1.7 to 7.2 times as much as that of the InflMaxSrc method for
k = 30.

This means that the selected nodes must be substantially different from each other
for the four methods. To verify this we measured the solution similarity by F-measure
F (k) = |W∗k ∩Wk |/k, where k stands for the number of target nodes for the target selec-
tion problem, and W∗k and Wk are the solutions extracted by the proposed and one of the
other three methods, respectively. The largest F-measure is 0.33 for Amebro network
with W∗3 of InflMaxSrc. For the other networks, F-measure is much smaller, e.g., nearly
0 for Cosme network with all k and all other three methods. We confirmed that the
proposed method found a solution dramatically different from that by the other three
methods.

We next show the in- and out-degrees of the selected nodes in Fig. 2 to investigate
why the influence degree achieved by the proposed method is much better than the
influence degree by the other methods, i.e., why the selected nodes are different. Here
we only show the result of the Ameblo network due to a space limitation, but quite
similar results have been obtained from the other networks. From this figure, it is found
that, both the in- and out-degrees of the nodes selected by the InflMaxSrc and Out-
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(a) Average in-degree
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(b) Average out-degree

Fig. 2: Average degrees of target nodes for the Ameblo network.

degree methods tend to be high, while the out-degree of the target nodes selected by
the proposed method is not so high, but their in-degree is always low. The InflMaxSrc
and Out-degree methods select the target nodes independently of their in-degree. This is
self-evident for the Out-degree method by definition. In case of the InflMaxSrc method
the target nodes are always active at the beginning of the information diffusion process
by definition and the in-degree of the target nodes never affects their influence degree.
Thus, it tends to select nodes that have many children as the target nodes. It is noted
that in the LT model, nodes that have fewer parents have better chance to get activated
than those that have many parents. This is because the weights from the parent nodes
are larger in the former case and even a small number of active parents can activate
the child nodes. Thus, the target node selected by the proposed method are more likely
to get activated by the information source node than those selected by the InflMaxSrc
and Out-degree methods. This is the main reason of the large difference in the selected
target nodes and thus in the resulting influence degree.

5 Conclusion

In this paper we proposed a new type of influence maximization problem, which we
call “target selection problem”. Traditionally influence maximization problem assumed
unconditionally that the selected nodes can be the source nodes, e.g., can be activated,
thus can be called “source selection problem”, and was the simplest model for viral
marketing, e.g. which 1000 persons to send direct mails to promote a new product. We
thought it more natural and realistic to view this problem from a slightly different angle.
We maximized the influence of a new user (source node) who is outside of a community
by selection a fixed number of target nodes in the existing community (social network)
and adding a link to each of the target nodes. Acceptance of the information of the target
nodes from the source node follows a probabilistic information diffusion model as well
as the spread of information from the target nodes to the other nodes in the network does
so. This “target selection problem” is a generalization of “source selection problem”
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and carries similar properties, e.g. submodularity and high computational complexity
of estimating influence degree which is the expected number of activated nodes at the
end of information diffusion. We estimated the influence degree by the bond percolation
and selected target nodes by a greedy algorithm. We solved “target selection problem”
in four real world networks, each with slightly different characteristics. Our findings
are 1) The solution of “target selection problem” is substantially different from the
solution of “source selection problem, 2) Use of the selected nodes of “source selection
problem” results in very poor performance (information spread is only half), 3) there is
basically no or very few overlap of the nodes selected. This implies that care should be
taken in selecting whom to contact first to maximize influence over a social network.
We conjecture that such target nodes can be notable mediators, who play an important
rolefor widely spreading information. Our immediate future work is to validate this
claim using available real information propagation data.
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