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Abstract. We address the problem of detecting the change in opinion share over
a social network caused by an unknown external situation change under the value-
weighted voter model with multiple opinions in a retrospective setting. The un-
known change is treated as a change in the value of an opinion which is a model
parameter, and the problem is reduced to detecting this change and its magnitude
from the observed opinion share diffusion data. We solved this problem by iter-
atively maximizing the likelihood of generating the observed opinion share, and
in doing so we devised a very efficient search algorithm which avoids parameter
value optimization during the search. We tested the performance using the struc-
tures of four real world networks and confirmed that the algorithm can efficiently
identify the change and outperforms the naive method, in which an exhaustive
search is deployed, both in terms of accuracy and computation time.

1 Introduction

Recent technological innovation in the web such as blogosphere and knowledge/media-
sharing sites is remarkable, which has made it possible to form various kinds of large
social networks, through which behaviors, ideas and opinions can spread, and our be-
havioral patterns are strongly affected by the interaction with these networks. Thus,
substantial attention has been directed to investigating the spread of influence in these
networks [9, 2, 14].

Much of the work has treated information as one entity and nodes in the network
are either active (influenced) or inactive (uninfluenced), i.e. there are only two states.
However, application such as an on-line competitive service in which a user can choose
one from multiple choices/decisions requires a model that handles multiple states. In
addition, it is important to consider the value of each choice, e.g., quality, brand, au-
thority, etc. because this impacts our choice. We formulated this problem using a value-
weightedK opinion diffusion model and provided a way to accurately predict the ex-
pected share of the opinions at a future target time from a limited amount of observed
data [6]. This model is an extension of the basic voter model which is based on the as-
sumption that a person changes its opinion by the opinions of its neighbors. There has
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been a variety of work on the voter model. Dynamical properties of the basic model have
been extensively studied including how the degree distribution and the network size af-
fect the mean time to reach consensus [10, 12]. Several variants of the voter model are
also investigated and non equilibrium phase transition is analyzed [1, 15]. Yet another
line of work extends the voter model by combining it with a network evolution model
[3, 2].

These studies are different from what we address in this paper. Almost all of the
work so far on information diffusion assumed that the model is stationary. However, our
behavior is affected not only by the behaviour of our neighbors but also by other external
factors. We apply our voter model to detect a change in opinion share which is caused
by an unknown external situation change. We model the change in the external factors
as a change in the opinion value, and try to detect the change from the observed opinion
share diffusion data. If this is possible, this would bring a substantial advantage. We can
detect that something unusual happened during a particular period of time by simply
analyzing the data. Note that our approach is retrospective, i.e. we are not predicting
the future, but we are trying to understand the phenomena that happened in the past,
which shares the same spirit of the work by Kleinberg [7] and Swan [13] in which they
tried to organize a huge volume of the data stream and extract structures behind it.

Thus, our problem is reduced to detecting where in time and how long this change
persisted and how big this change is. To make the analysis simple, we limit the form of
the value change to a rect-linear one, that is, the value changes to a new higher level,
persists for a certain period of time and is restored back to the original level and stays
the same thereafter. We call this period when the value is high as “hot span” and the rest
as “normal span”. We use the same parameter optimization algorithm as in [6], i.e. the
parameter update algorithm based on the Newton method which globally maximizes the
likelihood of generating the observed data sequences. The problem here is more diffi-
cult because it has another loop to search for the hot span on top of the above loop. The
naive learning algorithm has to iteratively update the patten boundaries (outer loop) and
the value must also be optimized for each combination of the pattern boundaries (inner
loop), which is extraordinary inefficient. We devised a very efficient search algorithm
which avoids the inner loop optimization during the search. We tested the performance
using the structures of four real world networks (blog, Wikipedia, Enron and coauthor-
ship), and confirmed that the algorithm can efficiently identify the hot span correctly as
well as the opinion value. We further compared our algorithm with the naive method
that finds the best combination of change boundaries by an exhaustive search through a
set of randomly selected boundary candidates, and showed that the proposed algorithm
far outperforms the native method both in terms of accuracy and computation time.

2 Opinion Formation Models

The mathematical model we use for the diffusion of opinions is the value-weighted
voter model withK (≥ 2) opinions [6]. A social network is represented by an undirected
(bidirectional) graph with self-loops,G = (V,E), whereV andE (⊂ V × V) are the sets
of all the nodes and links in the network, respectively. For a nodev ∈ V, letΓ(v) denote
the set of neighbors ofv in G, that is,Γ(v) = {u ∈ V; (u, v) ∈ E}. Note thatv ∈ Γ(v).
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In the model, each node ofG is endowed with (K + 1) states; opinions 1,· · · , K,
andneutral (i.e., no-opinion state). It is assumed that a node never switches its state
from any opinionk to neutral. The model has a parameterwk (> 0) for each opinion
k, which is called thevalue-parameterand must be estimated from observed opinion
diffusion data. Letft : V → {0,1,2, · · · ,K} denote the opinion distribution at timet,
where ft(v) stands for the opinion of nodev at timet, and opinion 0 denotes the neutral
state. We also denote bynk(t, v) the number ofv’s neighbors that hold opinionk at
time t for k = 1,2, · · · ,K, i.e., nk(t, v) = |{u ∈ Γ(v); ft(u) = k}|. Given a target time
T, and an initial state in which each opinion is assigned to only one distinct node and
all other nodes are in the neutral state, the evolution process of the model unfolds in
the following way. In general, each nodev considers changing its opinion based on the
current opinions of its neighbors at its (j−1)th update-timet j−1(v), and actually changes
its opinion at thejth update-timet j(v), wheret j−1(v) < t j(v) ≤ T, j = 1,2,3, · · · , and
t0(v) = 0. It is noted that since nodev is included in its neighbors by definition, its own
opinion is also reflected. Thejth update-timet j(v) is decided at timet j−1(v) according
to the exponential distribution of parameterλ (we simply useλ = 1 for anyv ∈ V)1.
Then, nodev changes its opinion at timet j(v) as follows: If nodev has at least one
neighbor with some opinion at timet j−1(v), ft j (v)(v) = k with probabilitywknk(t j−1(v), v)
/
∑K

k′=1 wk′ nk′ (t j−1(v), v) for k = 1, · · · ,K, otherwise,ft j (v)(v) = 0 with probability 1.
Note here thatft(v) = ft j−1(v)(v) for t j−1(v) ≤ t < t j(v). If the next update-timet j(v)
passesT, that is, t j(v) > T, then the opinion evolution ofv is over. The evolution
process terminates when the opinion evolution of every node inG is over.

Given the observed opinion diffusion dataD(Ts,Te) = {(v, t, ft(v))} in time-interval
[Ts,Te] (a single example), we consider estimating the values of value-parametersw1,
· · · , wK , where 0≤ Ts < Te ≤ T. From the evolution process of the model, we can
obtain the following log likelihood function

L(w;D(Ts,Te)) = log
∏

(v,t,k)∈C(Ts,Te)

nk(t, v)wk∑K
k′=1 nk′(t, v)wk′

, (1)

wherew = (w1, · · · ,wK) stands for theK-dimensional vector of value-parameters,
andC(Ts,Te) = {(v, t, ft(v)) ∈ D(Ts,Te); |{u ∈ Γ(v); ft(u) , 0}| ≥ 2}. Thus, our es-
timation problem is formulated as a maximization problem of the objective function
L(w;D(Ts,Te)) with respect tow. We find the optimal values ofw by employing a
standard Newton method (see [6] for more details).

3 Change Detection Problem

We investigate the problem of detecting the change in behavior of opinion diffusion in
a social networkG based on the value-weighted voter model withK opinions, which
is referred to as thechange detection problem. In this problem, we assume that some
change has happened in the way the opinions diffuse, and we observe the opinion dif-
fusion data in which the change is embedded, and consider detecting where in time and
how long this change persisted and how big this change is.

1 Note that this is equivalent to picking a node randomly and updating its opinion in turn|V|
times.
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Here, we mathematically formulate the change detection problem. For the opin-
ion diffusion dataD(0,T) in time-interval [0,T], let [T1,T2] denote the hot (change)
span of the diffusion of opinions. This implies that the intervals [0,T1) and (T2,T] are
the normal spans. Letwn and wh denote the value-parameter vectors for the normal
span and the hot span, respectively. Note thatwn/||wn|| , wh/||wh|| since the opinion
dynamics under the value-weighted voter model is invariant to positive scaling of the
value-parameter vectorw, where∥wn∥ and∥wh∥ stand for the norm of vectorswn and
wh. Then, the change detection problem is formulated as follows: Given the opinion
diffusion dataD(0,T) in time-interval [0,T], detect the anomalous span [T1,T2], and
estimate the value-parameter vectorwh of the hot span and the value-parameter vector
wn of the normal span.

Since the value-weighted voter model is a stochastic process model, every sample of
opinion diffusion can behave differently. This means that it is quite difficult to accurately
detect the true hot span from only a single sample of opinion diffusion. Methods that
use only the observed bursty activities, including those proposed by Swan and Allan
[13] and Kleinberg [7] would not work. We believe that an explicit use of underlying
opinion diffusion model is essential to solve this problem. It is crucially important to
detect the hot span precisely in order to identify the external factors which caused the
behavioral changes.

4 Detection Methods

4.1 Naive Method

Let T = {t1, · · · , tN} be a set of opinion change time points of all the nodes appearing
in the diffusion resultsD(0,T). We can consider the following value-parameter vector
switching when there is a hot spanS = [T1,T2]:

w =
{

wn if t ∈ T \ S,
wh if t ∈ T ∩ S.

Then, an extended objective functionL(wn,wh;D(0,T),S) can be defined by ade-
quately modifying Equation (1) under this switching scheme. Clearly, the extended
objective function is expected to be maximized by settingS to be the true spanS∗ =
[T∗1,T

∗
2], for whichD(0,T) is generated by the value-weighted voter model, provided

thatD(0,T) is sufficiently large. Therefore, our hot span detection problem is formal-
ized as the following maximization problem.

Ŝ = arg max
S
L(ŵn, ŵh;D(0,T),S), (2)

whereŵn andŵh denote the maximum likelihood estimators for a givenS.
In order to obtainŜ according to Equation (2), we need to prepare a reasonable set

of candidate spans, denoted byS. One way of doing so is to constructS by considering
all pairs of observed activation time points. Then, we can construct a set of candidate
spans byS = {S = [t1, t2] : t1 < t2, t1 ∈ T , t2 ∈ T }. Equation (2) can be solved
by a naive method which has two iterative loops. In the inner loop we first obtain the
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maximum likelihood estimators,̂wn andŵh, for each candidateS by maximizing the
objective functionL(wn,wh;D(0,T),S) using the Newton method. In the outer loop we
select the optimal̂S which gives the largestL(ŵn, ŵh;D(0,T),S) value. However, this
method can be extremely inefficient when the number of candidate spans is large. Thus,
in order to make it work with a reasonable computational cost, we consider restricting
the number of candidate time points to a small value, denoted byJ, i.e., we construct
TJ = {t1, · · · , tJ} by selectingJ points fromT ; then we construct a restricted set of
candidate spans bySJ = {S = [t1, t2] : t1 < t2, t1 ∈ TJ, t2 ∈ TJ}. Note that|SJ| =
J(J − 1)/2, which is large whenJ is large.

4.2 Proposed Method

It is easily conceivable that the naive method can detect the hot span with a reasonably
good accuracy when we setJ large at the expense of the computational cost, but the
accuracy becomes poorer when we setJ smaller to reduce the computational load.
We propose a novel detection method below which alleviates this problem and can
efficiently and stably detect a hot span from diffusion resultsD(0,T).

We first obtain the maximum likelihood estimators,ŵ based on the original objec-
tive function of Equation (1), and focus on the first-order derivative of the objective
functionL(w;D(0,T)) with respect to the value-parameter vectorw at each individual
opinion change time. More specifically, letwt be the value-parameter vector at time
t ∈ T . Then we obtain the following formula for the maximum likelihood estimators
due to the uniform parameter setting and the globally optimal condition.

∂L(ŵ;D(0,T))
∂w

=
∑
t∈T

∂L(ŵ;D(0,T))
∂wt

= 0. (3)

Now, we can consider the following partial sum for a given hot spanS = [T1,T2].

g(S) =
∑

t∈T∩S

∂L(ŵ;D(0,T))
∂wt

. (4)

Clearly,∥g(S)∥ is likely to have a sufficiently large positive value ifS ≈ S∗ due to our
problem setting. Namely, the hot span is detected as follows:

Ŝ = arg max
S∈S
∥g(S)∥. (5)

Here note that we can incrementally calculateg(S). More specifically, letT =
{t1, · · · , tN} be a set of candidate time points, whereti < t j if i < j; then, we can obtain
the following formula.

g([ti , t j+1]) = g([ti , t j ]) +
∂L(ŵ;D(0,T))
∂wt j+1

. (6)

The computational cost of the proposed method for examining each candidate span is
much smaller than the naive method described above. When|T | = N is very large, we
construct a restricted set of candidate spansSJ as explained above. We summarize our
proposed method below.
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1. MaximizeL(w;D(0,T)) by using the Newton method.
2. Construct the candidate time setT and the candidate span setS.
3. Detect a hot span̂S by Equation (5) and output̂S.
4. MaximizeL(wn,wh;D(0,T), Ŝ) by using the Newton method, and output (ŵn, ŵh).

Here note that the proposed method requires likelihood maximization by using the New-
ton method only twice.

5 Experimental Evaluation

We adopted four datasets of large real networks. They are all bidirectionally connected
networks. The first one is a trackback network of Japanese blogs used in [5], which
has 12,047 nodes and 79,920 directed links (the blog network). The second one is a
network of people that was derived from the “list of people” within Japanese Wikipedia,
used in [4], and has 9,481 nodes and 245,044 directed links (the Wikipedia network).
The third one is a network derived from the Enron Email Dataset [8] by extracting the
senders and the recipients and linking those that had bidirectional communications. It
has 4,254 nodes and 44,314 directed links (the Enron network). The fourth one is a
coauthorship network used in [11], which has 12,357 nodes and 38,896 directed links
(the coauthorship network).

For each of these networks, we generated opinion diffusion results for three different
values ofK (the number of opinions), i.e.,K = 2, 4, and 8, by choosing the topK
nodes with respect to node degree ranking as the initialK nodes and simulating the
model mentioned in section 2 from 0 toT = 25. We assumed that the value of all
the opinions were initially 1.0, i.e. the value-parameters for all the opinions are 1.0
for the normal span, and further assumed that the value of the first opinion changed
to double for a period of [10,15], i.e. the value-parameter of the fast opinion is 2.0
and the value-parameters of all the other opinions are 1.0 for the hot span. We then
estimated the hot span and the value-parameters for both the spans (normal and hot)
by the two methods (the proposed and the naive), and compared their accuracy and the
computation time. We adopted 1,000 as the value ofJ (the number of candidate time
points) for the proposed method, and 5, 10, and 20 for the naive method.

Figures 1 and 2 show the experimental results2 where each value is the average over
10 trials for 10 distinct diffusion results. We evaluated the accuracy of the estimated hot
span [̂T1, T̂2] by the absolute error|T̂1−T1|+ |T̂2−T2|, and the accuracy of the estimated
opinion valueŝw by the mean absolute errorΣK

i=1(|ŵin −win| + |ŵih −wih|)/K, wherewin

andwih are values of opinioni for the normal and the hot spans, respectively.
From these results, we can find that the proposed method is much more accurate

than the naive method for both the networks. The average error for the naive method
decreases asJ becomes larger. But, even in the best case for the naive method (J = 20),
its average error in the estimation of the hot span is maximum about 30 times larger
than that of proposed method (in the case of the Enron network underK = 2), and it
is maximum about 6 times larger in the estimation of value-parameters (in the case of

2 We only show the results for the two networks (Enron and coauthorship) due to the space limi-
tation. In fact, we obtained similar results also for the other two networks (blog and Wikipedia).
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Fig. 1: Comparison on the Enron network
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0.0 

15.0 

30.0 

C
om

pu
ta

ti
on

 ti
m

e 
(s

)

2 4 8
#Opinion  K

30.0

15.0

0.0

57.4

(c) Computation time

Fig. 2: Comparison on the coauthorship network

the coauthorship network underK = 2). It is noted that the naive method needs much
longer computation time to achieve these best accuracies than the proposed method
although the number of candidate time points for the naive method is 50 times smaller.
Indeed, it is about 20 times longer for the former case, about 13 times longer for the
latter case, and maximum about 95 times longer for the whole results (in the case of the
Enron network underK = 8). From these results, it can be concluded that the proposed
method is able to detect and estimate the hot span and value-parameters much more
accurately and efficiently compared with the naive method.

6 Conclusions

In this paper, we addressed the problem of detecting the unusual change in opinion
share from the observed data in a retrospective setting, assuming that the opinion share
evolves by the value-weighted voter model with multiple opinions. We defined the hot
span as the period during which the value of an opinion is changed to a higher value
than the other periods which are defined as the normal spans. A naive method to detect
such a hot span would iteratively update the pattern boundaries that form a hot span
(outer loop) and iteratively update the opinion value for each hot span candidate (in-
ner loop) such that the likelihood function is maximized. This is very inefficient and
totally unacceptable. We developed a novel method that avoids the inner loop optimiza-
tion during search. It only needs to estimate the value twice by the iterative updating
algorithm (Newton method), which can reduce the computation times by 7 to 95 times,
and is very efficient. We applied the proposed method to opinion share samples gen-
erated from four real world large networks and compared the performance with the
naive method that considers only the randomly selected boundary candidates. The re-
sults clearly indicate that the proposed method far outperforms the naive method both
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in terms of accuracy and efficiency. Although we assumed a simplified problem setting
in this paper, the proposed method can be easily extended to solve more intricate prob-
lems. As the future work, we plan to extend this framework to spatio-temporal hot span
detection problems.
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