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Abstract. We investigate how well different information diffusion models ex-
plain observation data by learning their parameters and performing behavioral
analyses. We use two models (CTIC, CTLT) that incorporate continuous time
delay and are extension of well known Independent Cascade (IC) and Linear
Threshold (LT) models. We first focus on parameter learning of CTLT model that
is not known so far, and apply it to two kinds of tasks: ranking influential nodes
and behavioral analysis of topic propagation, and compare the results with CTIC
model together with conventional heuristics that do not consider diffusion phe-
nomena. We show that it is important to use models and the ranking accuracy is
highly sensitive to the model used but the propagation speed of topics that are
derived from the learned parameter values is rather insensitive to the model used.

1 Introduction

The growth of Internet has enabled to form various kinds of large-scale social networks,
through which a variety of information including innovation, hot topics and even ma-
licious rumors can be propagated in the form of so-called ”word-of-mouth” communi-
cations. Social networks are now recognized as an important medium for the spread of
information, and a considerable number of studies have been made [1–5]. Widely used
information diffusion models in these studies are the independent cascade (IC) [6–8]
and the linear threshold (LT) [9, 10]. They have been used to solve such problems as
the influence maximization problem [7, 11].

These two models focus on different information diffusion aspects. The IC model is
sender-centered and an active node influences its inactive neighbors independently with
diffusion probabilities assigned to links. On the other hand, the LT model is receiver-
centered and a node is influenced by its active neighbors if the sum of their weights
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exceeds the threshold for the node. Which model is more appropriate depends on the
situation and selecting appropriate model is not easy. In order to study this problem,
first of all, we need to know how different model behaves differently and how well or
badly explain the observation data. Both models have parameters that need be specified
in advance: diffusion probabilities for the IC model, and weights for the LT model.
However, their true values are not known in practice. This poses yet another problem
of estimating them from a set of information diffusion results that are observed as time-
sequences of influenced (activated) nodes. To the best of our knowledge, there are only
a few methods that can estimate the parameter values for the IC models and its variant
that incorporates continuous time delay (referred to as the CTIC model) [3, 12, 13], but
none for the LT model.

With this background, we first propose a novel method of learning the parameter
values of a variant of the LT model that incorporates continuous time delay, similar
to the CTIC model. We refer to this model as the CTLT model. It is indispensable
to be able to cope with continuous time delay to do realistic analyses of information
diffusion because, in the real world, information propagates along the continuous time
axis, and time-delays can occur during the propagation. Thus, the proposed method
has to estimate not only the weight parameters but also the time-delay parameters from
the observed data. Incorporating time-delay makes the time-sequence observation data
structural. In order to exploit this structure, we introduce an objective function that
rigorously represents the likelihood of obtaining such observed data sequences under
the CTLT model on a given network, and obtain parameter values that maximize this
function by deriving parameter update EM algorithm. Next, we experimentally analyze
how different models affect the information diffusion results differently by applying
the proposed method to two tasks and comparing the results with the method which
we already developed with the CTIC model [13]. The first task is ranking influential
nodes in a social network, and we show that ranking is highly sensitive to the model
used. We also show that the proposed method works well and can extract influential
nodes more accurately than the well studied conventional four heuristic methods that
do not take diffusion phenomena explicitly. The second task is the behavioral analysis
of topic propagation on a real world blog data. We show that both model well capture
the propagation phenomena on different topics at this level of abstract characterization.

2 Proposed Method

2.1 Information Diffusion Model

For a given directed network (or equivalently graph) G = (V, E), let V be a set of
nodes (or vertices) and E a set of links (or edges), where we denote each link by e =
(v,w) ∈ E and v � w, meaning there exists a directed link from a node v to a node
w. For each node v in the network G, we denote F(v) as a set of child nodes of v as
follows: F(v) = {w; (v,w) ∈ E}. Similarly, we denote B(v) as a set of parent nodes of
v as follows: B(v) = {u; (u, v) ∈ E}. We define the LT model. In this model, for every
node v ∈ V , we specify a weight (ωu,v > 0) from its parent node u in advance such
that
∑

u∈B(v) ωu,v ≤ 1. The diffusion process from a given initial active set S proceeds
according to the following randomized rule. First, for any node v ∈ V , a threshold θv is
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chosen uniformly at random from the interval [0, 1]. At time-step t, an inactive node v
is influenced by each of its active parent nodes, u, according to weight ωu,v. If the total
weight from active parent nodes of v is at least threshold θv, that is,

∑
u∈Bt(v) ωu,v ≥ θv,

then v will become active at time-step t+1. Here, Bt(v) stands for the set of all the parent
nodes of v that are active at time-step t. The process terminates if no more activations
are possible. Next, we extend the LT model so as to allow continuous-time delays, and
refer to the extended model as the continuous-time linear threshold (CTLT) model. In
the CTLT model, in addition to the weight set {ωu,v}, we specify real values rv with
rv > 0 in advance for each node v ∈ V . We refer to rv as the time-delay parameter on
node v. Note that rv depends only on v, which means that it is the node v’s decision
when to receive the information once the activation condition has been satisfied. The
diffusion process unfolds in continuous-time t, and proceeds from a given initial active
set S in the following way. Suppose that the total weight from active parent nodes of
v became at least threshold θv at time t for the first time. Then, v will become active
at time t + δ, where we choose a delay-time δ from the exponential distribution with
parameter rv. Further, note that even though some other non-active parent nodes of v
become active during the time period between t and t + δ, the activation time of v, t + δ,
still remains the same. The other diffusion mechanisms are the same as the LT model.

For an initial active node v, let ϕ(v) denote the number of active nodes at the end of
the random process for the CTLT model. Note that ϕ(v) is a random variable. Let σ(v)
denote the expected value of ϕ(v). We call σ(v) the influence degree of v for the CTLT
model.

2.2 Learning problem

For the sake of technical convenience, we introduce a slack weight ωv,v for each node
v ∈ V so as to be ωv,v +

∑
u∈B(v) ωu,v = 1. Here note that such a slack weight ωv,v

never contributes to the activation of v. We define the parameter vectors r and ω by
r = (rv)v∈V and ω = (ωu,v)(u,v)∈E . In practice, their true values are not available. Thus,
we must estimate them from past information diffusion histories.

We consider an observed data set of M independent information diffusion results,
DM = {Dm; m = 1, · · · ,M}. Here, each Dm is a time-sequence of active nodes in the
mth information diffusion result (called mth result, hereafter for simplicity),

Dm = 〈Dm(t); t ∈ Tm〉, Tm = 〈tm, · · · , Tm〉,

where Dm(t) is the set of all the nodes that have first become active at time t, and Tm

is the observation-time list; tm is the initial observed time and Tm is the final observed
time. We assume that for any active node v in the mth result, there exits some t ∈ Tm

such that v ∈ Dm(t). Let tm,v denote the time at which node v has become active in the
mth result, i.e., v ∈ Dm(tm,v). For any t ∈ Tm, we set

Cm(t) =
⋃

τ ∈Tm ∩ {τ; τ < t}
Dm(τ)

Note that Cm(t) is the set of nodes that had become active before time t in the mth result.
We also interpret Dm as referring to the set of all the active nodes in the mth result for
convenience sake. The problem is to estimate the values of r and ω fromDM .
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2.3 Likelihood function

For the learning problem described above, we derive the likelihood functionL(r,ω;DM)
with respect to r and ω in a rigorous way to use as our objective function. Here note
that for each node v, since a threshold θv is chosen uniformly at random from the
interval [0, 1], we can regard each weight ω∗,v as a multinomial probability, namely,
ωv,v +

∑
u∈B(v) ωu,v = 1.

Suppose that a node v became active at time tm,v for the mth result. Then, we know
that the total weight from active parent nodes of v became at least threshold θv at the
time when one of these active parent nodes, u ∈ B(v) ∩ Cm(tm,v), became first active.
However, in case of |B(v)∩Cm(tm,v)| > 1, there is no way of exactly knowing the actual
node due to the continuous time-delay. Suppose that a node v was actually activated
when a node ζ ∈ B(v)∩Cm(tm,v) became activated. Then θv is between

∑
u∈B(v)∩Cm(tm,ζ ) ωu,v

and ωζ,v +
∑

u∈B(v)∩Cm(tm,ζ ) ωu,v. Namely, the probability that θv is chosen from this range
is ωζ,v. Here note that such events with respect to different active parent nodes are
mutually disjoint. Thus, the probability density that the node v is activated at time tm,v,
denoted by hm,v, can be expressed as

hm,v =
∑

u∈B(v)∩Cm(tm,v)

ωu,vrv exp(−rv(tm,v − tm,u)). (1)

Next, we consider any node w ∈ V belonging to ∂Dm = {w; (v,w) ∈ E ∧ v ∈
Cm(Tm) ∧ w � Dm } for the mth result. Let gm,w denote the probability that the node
w is not activated by the node v within the observed time period [tm, Tm]. Here we can
naturally assume that each information diffusion process finished sufficiently earlier
than the observed final time, i.e., Tm 
 max{t; Dm(t) � ∅}. Thus, as Tm → ∞, we obtain

gm,w = 1 −
∑

v∈B(w)∩Cm(Tm)

ωv,w. (2)

Therefore, by using Equations (1) and (2), and the independence properties, we can
define the likelihood functionL(r,ω;DM) with respect to r and ω by

L(r,ω;DM) =
M∏

m=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏

t∈Tm

∏

v∈Dm(t)

hm,v

∏

w∈∂Dm

gm,w

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Thus, our problem is to obtain the time-delay parameter vector r and the diffusion pa-
rameter vector ω, which maximizes Equation (3). For this estimation problem, we can
derive an estimation method based on the Expectation-Maximization algorithm in order
to stably obtain its solutions, although we skip its derivation due to a space limitation.

2.4 Behavioral analysis

Thus far, we assumed that the time-delay and diffusion parameters can vary with respect
to nodes and links but independent of the topic of information diffused. However, they
may be sensitive to the topic.
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Our method can cope with this by assigning a different m to a different topic, and
placing a constraint that the parameters depends only on topics but not on nodes and
links throughout the network G, that is rm,v = rm and ωm,u,v = qm|B(v)|−1 for any node
v ∈ V or link (u, v) ∈ E. Here note that 0 < qm < 1 and ωv,v = 1 − qm. This con-
straint is required because, without this, we have only one piece of observation for each
(m, u, v) and there is no way to learn the parameters. Noting that we can naturally as-
sume that people behave quite similarly for the same topic, this constraint should be
acceptable. Under this setting, we can easily obtain the parameter update formulas.
Using each pair of the estimated parameters, (rm, qm), we can analyze the behavior of
people with respect to the topics of information, by simply plotting (rm, qm) as a point
of 2-dimensional space (See Fig. 2 in Section 3.2).

3 Experiments

We applied the proposed learning method to two tasks to analyze how different models
affect the information diffusion results differently and compared the results with the
method which we already developed with the CTIC model [13]. First, we applied it to
the problem of extracting influential nodes, and evaluated the performance of the CTLT
model, i.e. parameter learning and influential node prediction, using the topologies of
four large real network data. Next, we applied our method to behavioral analysis using
a real world blog data based on the method described in section 2.4 and investigated
how each topic spreads throughout the network.

3.1 Ranking Influential Nodes

Experimental Settings We employed four datasets of large real networks, which are
all bidirectional connected networks. The first one is a trackback network of Japanese
blogs used in [14] and had 12, 047 nodes and 79, 920 directed links (the blog network).
The second one is a network of people that was derived from the “list of people” within
Japanese Wikipedia, also used in [14], and had 9, 481 nodes and 245, 044 directed links
(the Wikipedia network). The third one is a network derived from the Enron Email
Dataset [15] by extracting the senders and the recipients and linking those that had
bidirectional communications and there were 4, 254 nodes and 44, 314 directed links
(the Enron network). The fourth one is a co-authorship network used in [16] and had
12, 357 nodes and 38, 896 directed links (the coauthorship network).

Here, we assumed the simplest case where ωu,v = q|B(v)|−1 and rv = r for any
u, v ∈ V . One reason behind this assumption is that there is no need that the observation
sequence data have to pass through every link at least once. This drastically reduces
the amount of data necessary to learn the parameters. Then, our task is to estimate the
values of q and r. The true value of q was decided to be set to 0.9 in order to achieve
reasonably high influence degrees of nodes, and the true value of r was decided to be
chosen from two values, one with a relatively high value r = 2 (a short time-delay
case) and the other with a relatively low value r = 1/2 (a long time-delay case). The
training data DM in the learning stage was constructed by generating each Dm from
a randomly selected initial active node Dm(0) using the true CTLT model. We chose
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Table 1: Parameter estimation accuracy by the proposed method.

Blog network
r∗ Eq Er

2 0.024 0.060
1/2 0.017 0.012

Wikipedia network
r∗ Eq Er

2 0.015 0.028
1/2 0.016 0.007

Enron network
r∗ Eq Er

2 0.013 0.031
1/2 0.011 0.004

Coauthorship network
r∗ Eq Er

2 0.023 0.043
1/2 0.024 0.011

Tm = ∞ and used M = 100. We repeated the same experiment for each network five
times independently.

We measure the influence of node v by the influence degree σ(v) for the CTLT
model that has generated DM . We compared the result of the high ranked influential
nodes for the true CTLT model predicted by the proposed method with four heuris-
tics widely used in social network analysis and the CTIC model based method [13].
The four heuristics are the same as those used in [13], “degree centrality”, “closeness
centrality”, “betweenness centrality”, and “authoritativeness” . The first three heuristics
are commonly used as influence measure in sociology [17]. The authoritativeness is
obtained by the “PageRank” method [18] which is a well known method for identify-
ing authoritative or influential pages in a hyperlink network of web pages 5. The CTIC
model based method employs the CTIC model as the information diffusion model[13],
where we learn the parameters of the CTIC model from the observed dataDM , and rank
nodes according to the influence degrees based on the learned model.

Experimental Results First, we examined the performance of estimating parameters
by the proposed method. Let q∗ and r∗ denote the true values of q and r, respectively.
Let q̂ and r̂ be the values of q and r estimated by the proposed method, respectively. We
evaluated the parameter estimation accuracy by the errors Eq = |q∗ − q̂| and Er = |r∗ − r̂|.
Table 1 shows the average values of Eq and Er of five trials. We observe that the esti-
mated values were close to the true values. The results demonstrate the effectiveness of
the proposed method.

Next, in terms of extracting influential nodes from the network G = (V, E), we evalu-
ated the performance of the ranking methods mentioned above by the ranking similarity
F (k) = |L∗(k) ∩ L(k)|/k within the rank k(> 0), where L∗(k) and L(k) are the true set
of top k nodes and the set of top k nodes for a given ranking method, respectively. We
focused on the performance for high ranked nodes since we are interested in extract-
ing influential nodes. Figure 1 shows the results in the case of r∗ = 2 for the blog, the
Wikipedia, the Enron, and the coauthorship networks, respectively. For the proposed
and the CTIC model methods, we plotted the average value of F (k) at k for five ex-
perimental results stated earlier. The results in the case of r∗ = 1/2 for the proposed
and the CTIC model methods were very similar to those in the case of r∗ = 2. We see
that the proposed method gives better results than the other methods for these networks,
demonstrating the effectiveness of our proposed learning method. We also observe that
the CTIC model method does not work well for predicting the high ranked influential
nodes for the CTLT model for the problem setting we employed.

5 As for the jump parameter ε of PageRank, we used a typical setting of ε = 0.15.
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(a) Blog network
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(b) Wikipedia network
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(c) Enron network
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(d) Coauthorship network

Fig. 1: Performance comparison in extracting influential nodes in the case of r∗ = 2.

3.2 Behavioral Analysis of Real World Blog Data

Experimental Settings To compare the result by the proposed method with that by the
CTIC model based method [13], we used the same real blogroll network as [13], which
was generated from the database of a blog-hosting service in Japan called Doblog 6. In
the network, bloggers are connected to each other and we assume that topics propagate
from blogger x to another blogger y when there is a blogroll link from y to x because this
means that y is a reader of the blog of x. In addition, according to [19], it is supposed
that a topic is represented as a URL which can be tracked down from blog to blog. We
used the same propagation sequences of 172 URLs as [13] for this analysis, each of
which is longer than 10 time steps. Please refer to [13] for more detailed description of
the network generation and URL sequences.

Experimental Results We ran the experiments for each identified URL and obtained
the corresponding parameters q and r. Figure 2 is a plot of the results for the major
URLs. The horizontal axis is the diffusion parameter q and the vertical axis is the delay

6 Doblog(http://www.doblog.com/), provided by NTT Data Corp. and Hotto Link, Inc.
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Fig. 2: Results for the Doblog database.

parameter r. The latter is normalized such that r = 1 corresponds to a delay of one
day, meaning r = 0.1 corresponds delay of 10 days. In general, from this result, it can
be said that the proposed method can extract characteristic properties of certain top-
ics reasonably well only from the observation data. We only explain three URLs that
exhibit some interesting propagation properties. The circle is a URL that corresponds
to the musical baton which is a kind of telephone game on the Internet. It is shown
that this kind of message propagates quickly (less than one day on the average) with a
good chance (one out of 25 to 100 persons responds). This is probably because people
are easily interested in and influenced by this kind of message passing. The square is
a URL that corresponds to articles about a missing child. This also propagates quickly
with a meaningful probability (one out of 80 persons responds). This is understandable
considering the urgency of the message. The cross is a URL that corresponds to articles
about fortune telling. Peoples responses are diverse. Some responds quickly (less than
one day) and some late (more than one month after), and they are more or less uni-
formly distributed. The diffusion probability is also nearly uniformly distributed. This
reflects that each individual’s interest is different on this topic. The dot is a URL that
corresponds to one of the other topics (not necessarily the same).

4 Discussion

With the addition of the proposed method, we now have ways to compare the diffusion
process with respect to two models (the CTIC model and the CTLT model) for the
same observed dataset. Being able to learn the parameters of these models enable us
to analyze the diffusion process more precisely. Comparing the results bring us deeper
insights into the relation between models and information diffusion processes. Hence,
we consider the contribution of the proposed method is significant.
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Indeed, we obtained two interesting insights through the comparative experiments
in the previous section. The first one comes from the results of ranking influential nodes,
in which the ranking accuracy by the proposed method was better than those by the con-
ventional heuristics, which was sort of expected, but the accuracy by the CTIC method
was not, which is rather surprising. This means that the ranking results that involve
detailed probabilistic simulation is very sensitive to the underlying model assumed to
generate the observed data. In fact, the similar results were obtained when the role of
the two models are switched, i.e. data generated by CTIC and the model assumed to
be CTLT (results not shown due to the space limitation). In other words, it is very im-
portant to select an appropriate model for the analysis of information diffusion from
which the data has been generated. However, this is a very hard problem in reality. The
second one comes from the results of the behavior analysis of topic propagation. The
pattern shown in Fig.2 was very similar to that by the CTIC method shown in [13].
Regardless of the model used, in both results, the parameters for the topics that actu-
ally propagated quickly/slowly in observation converged to the values that enable them
to propagate quickly/slowly on the model. Namely, we can say that the difference of
models used has little influence on the relative difference of topic propagation property
which indeed strongly depends on topic itself. Both models are well defined and can
explain this property at this level of abstraction. However, we have to carefully choose
a model at least when solving such problems as the influence maximization problem
[7, 11], a problem at a more detailed level.

5 Conclusion

We considered the problem of analyzing information diffusion process in a social net-
work using two kinds of information diffusion models, incorporating continuous time
delay, the CTIC model and the CTLT model, and investigated how the results differ
according to the model used. To this end, we proposed a novel method of learning the
parameters of the CTLT model from the observed data, and experimentally confirmed
that it works well on real world datasets. We also obtained the following two important
observations through the experiments for the two tasks. One is that in learning the infor-
mation diffusion parameters of nodes and links, the learning results are highly sensitive
to the model used. The other is that in analyzing the topic-oriented characteristics such
as the propagation speed of each topic, using different models has little influence on
the analysis results. These two contrasting observations may hold only for well-defined
diffusion models such as the CTIC and CTLT models. These findings would help us
consider whether we should select a model carefully, or not. In practice, as there are
numerous factors that affects the information diffusion process, it is difficult to select an
appropriate model in a more realistic setting. This model selection is our future work.
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