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Abstract. We show that the node cumulative influence for a particular class of
information diffusion model in which a node can be activated multiple times, i.e.
Susceptible/Infective/ Susceptible (SIS) Model, can be very efficiently estimated
in case of independent cascade (IC) framework with asynchronous time delay.
The method exploits the property of continuous time delay within a stochastic
framework and analytically derives the iterative formula to estimate cumulative
influence without relying on awfully lengthy simulations. We show that it can
accurately estimate the cumulative influence with much less computation time
(about 2 to 6 orders of magnitude less) than the naive simulation using three
real world social networks and thus it can be used to rank influential nodes quite
effectively. Further, we show that the SIS model with a discrete time step, i.e.
fixed synchronous time delay, gives adequate results only for a small time span.

1 Introduction

The proliferation of emails, blogs and social networking services (SNS) in the World
Wide Web has accelerated the creation of large social networks [1–5]. Social networks
naturally mediate the spread of various information. Innovation, topics and even mali-
cious rumors can propagate in the form of so-called “word-of-mouth” communications.
Thus, it is now understood that social networks provide rich sources of information that
is useful to help understand the dynamics of our society, e.g. who are the best group of
people to spread the desired information, how people respond to other people’s opinion,
what kind of topics propagate faster, how the public opinions are formed, how the way
the information spreads differ from community to community, etc.



2 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

Several models have been proposed that simulate information diffusion through a
network. The most widely-used model is the independent cascade (IC). This is a fun-
damental probabilistic model of information diffusion [6, 7], which can be regarded as
the so-called susceptible/infective/recovered (SIR) model for the spread of a disease [2].
This model has been used to solve such problems as the influence maximization problem
which is to find a limited number of nodes that are influential for the spread of infor-
mation [7, 8] and the influence minimization problem which is to suppress the spread of
undesirable information by blocking a limited number of links [9]. Here, it is noted that
the influence of a node is defined as the expected number of nodes that it can activate
due to the stochastic nature of the information diffusion. The SIR model assumes that
a node, once infected, never re-infected after it has been cured (recovered). Thus, the
influence is normally defined as the expected number of recovered nodes at the end of
the time span in consideration. The other class of model for the spread of a disease is
the so-called susceptible/infective/susceptible (SIS) model [2], where a node, once in-
fected, moves to a susceptible state and can be re-activated multiple times. A similar
problem can be solved for this model, too [10, 11]. In these models, efficient methods
of estimating the influence have been proposed based on bond percolation, strongly
connected component decomposition, burnout and pruning [8, 11], but no analytical so-
lutions have been found. Thus, efficiency remains that the computation time is 2 or 3
orders of magnitude faster than naive simulation.

The IC model above, whether it is used in SIR or SIS setting, cannot handle time-
delays that are asynchronous and continuous for information propagation. Time step is
incremented discretely and thus the node states are updated synchronously, which can
be viewed that the time delay is fixed and synchronous. We call this “fixed time de-
lay” for short. In reality, time flows continuously and thus information, too, propagates
on this continuous time axis. For any node, information must be received at any time
from any other nodes and must be allowed to propagate to yet other nodes at any other
time with a possible delay, both in an asynchronous way. We call this “continuous time
delay” for short. For example, the following scenario in case of SIS setting explains
this need. Suppose a person A posted an article to a blog and a person B read it and
responded a week later. Another person C posted an article on the same topic the next
day A posted and B read it and responded the same day. B was activated twice, first by
C and next by A although the time A was activated is earlier than C. Thus, for a realistic
behavior analysis of information diffusion, we need to adopt a model that explicitly rep-
resents continuous asynchronous time delay. The continuous time delay SIR model was
discussed in the machine learning problem setting in which the objective was to learn
the parameters in the diffusion model from the observed time stamped node activation
sequence data [3, 12]. In [12] it was shown that the parameters can be learned by maxi-
mizing the likelihood of the observed data being produced by the model. Note that there
is no need to do simulation to obtain the influence degree in case of SIR setting because
the final influence degree is equal to that of the model without time delay1 since a node
is not allowed to be re-activated multiple times.

In this paper, we address the problem of efficiently estimating the cumulative influ-
ence of a node in the network by adopting the information diffusion model that allows

1 This is equivalent to fixed time delay in discrete time setting.
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continuous time delay and multiple activation of the same node under the framework of
independent cascade model, called CTSIS for short. Interestingly, although the model
we considered in this paper is most complicated among the series of the models dis-
cussed above, it is possible to derive a formula analytically, under a simplified con-
dition, that can iteratively estimate the cumulative influence of a node exploiting the
property of continuous time delay within a stochastic framework. What makes the anal-
ysis easier is that in case of the continuous time there is only one single node that can
be activated at a time, i,e, no multiple activations at different nodes at the same time,
and no simultaneous activations of a node by its multiple active parents each of which
has been activated at a different time in the past. Thus it does not make sense to define
the node influence at a specific time and in light of SIS and continuous time delay we
naturally define the influence to be an integral over a specified time span (cumulative
influence), which is more meaningful in many practical settings.

We show that the proposed method (called iterative method) can accurately esti-
mate the cumulative influence with much less computation time (about 2 to 6 orders
of magnitude less) than empirical mean of the naive simulation method with a limited
number of runs using three real world social networks with different sizes and connec-
tivities. The method can be used to rank influential nodes quite effectively. We compare
the proposed methods with two other methods, the SIS with fixed time delay and the
one which is the extreme case of the propose method where the time span is set to be
infinitely large (called infinite iterative method). We show that these are indeed less
accurate and discuss under which conditions these work well, e.g. SIS with fixed time
delay only works well for a small time span.

The paper is organized as follows. We revisit the information diffusion model, in
particular SIS family, in section 2, and explain the proposed method of cumulative
influence estimation in section 3. Then we report the experimental results in section 4,
followed by discussion in section 5. We summarize our conclusion in section 6.

2 Information Diffusion Model

Let G = (V, E) be a directed network, where V and E (⊂ V × V) stand for the sets of all
the nodes and (directed) links, respectively. For any v ∈ V , let Γ(v; G) denote the set of
the child nodes (directed neighbors) of v, that is,

Γ(v; G) = {w ∈ V; (v,w) ∈ E}.
We consider information diffusion models on G in the susceptible/infected/susceptible
(SIS) framework. In this context, infected nodes mean that they have just adopted the
information, and we call these infected nodes active nodes.

2.1 Basic SIS Model

We first define the basic SIS model for information diffusion on G. In the model, the
diffusion process unfolds in discrete time-steps t ≥ 0, and it is assumed that the state
of a node is either active or inactive. For every link (u, v) ∈ E, we specify a real value
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κu,v with 0 < κu,v < 1 in advance. Here, κu,v is referred to as the diffusion parameter
through link (u, v). Given an initial active node v0 and a time span T , the diffusion
process proceeds in the following way. Suppose that node u becomes active at time-
step t (< T ). Then, node u attempts to activate every v ∈ Γ(u; G), and succeeds with
probability κu,v. If node u succeeds, then node v will become active at time-step t + 1.
Thus, as mentioned in 1, we can view this as synchronous fixed time delay2. If multiple
active nodes attempt to activate node v in time-step t, then their activation attempts are
sequenced in an arbitrary order. On the other hand, node u will become inactive at time-
step t + 1 unless it is activated by an active node in time-step t. The process terminates
if the current time-step reaches the final time T .

2.2 Continuous-time SIS model

Next, we extend the basic SIS model so as to allow continuous-time delays, and refer to
the extended model as the continuous-time SIS (CTSIS) model3. This model can be in-
terpreted as susceptible/exposed/infective/susceptible (SEIS) model in that a node does
not become active (infected) instantly when activated, but wait for a while (exposed)
before it gets activated (infected). Once it gets activated, it instantly turns into suscep-
tible state. In terms of information diffusion of some topic in blog space, this activation
corresponds to posting a blog article on the topic (instantaneous action).

In the CTSIS model on G, for each link (u, v) ∈ E, we specify real values ru,v and
κu,v with ru,v > 0 and 0 < κu,v < 1 in advance. We refer to ru,v and κu,v as the time-delay
parameter and the diffusion parameter through link (u, v), respectively.

Let T be the time span. The diffusion process unfolds in continuous-time t, and
proceeds from a given initial active node v0 in the following way. Suppose that a node
u becomes active at time t (< T ). Then a delay-time δ is chosen for u’s every child
node v ∈ Γ(u; G) from the exponential distribution with parameter ru,v. If t + δ ≤ T ,
v is activated by u with success probability κu,v at t + δ ≤ T . Under the continuous
time framework, there is no possibility that multiple parent nodes of v simultaneously
activate v exactly at the same time t + δ. The process terminates if the current time
reaches the final time T .

2.3 Influence Function

Let T be the time span for the CTSIS model on G. We consider a time-interval [T0, T1]
with 0 ≤ T0 < T1 ≤ T . For any node v ∈ V , let S (v; T0, T1) denote the total number
of nodes activated within time-interval [T0, T1] for the probabilistic diffusion process
from an initial active node v under the CTSIS model. Note that S (v; T0, T1) is a random
variable. Let σ(v; T0, T1) denote the expected value of S (v; T0, T1). We call σ(v; T0, T1)
the cumulative influence degree of node v within time-interval [T0, T1]. Note that σ is
a function defined on V . We call the function σ(·; T0, T1) : V → R the cumulative
influence function for the CTSIS model within time-interval [T0, T1] on network G.

2 This may well be called as “no time delay” because time delay is not explicitly represented in
the formulation.

3 Note that the information propagates at a certain time point, but its delay can be continuous.
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It is important to estimate the cumulative influence function σ(·; T0, T1) efficiently.
In theory we can simply estimate it by simulating the CTSIS model in the following
way. First, a sufficiently large positive integer M is specified. For each v ∈ V , the
diffusion process of the CTSIS model is simulated from initial active node v, and the
total number of nodes activated within time-interval [T0, T1], S (v; T0, T1), is calculated.
Then, σ(v; T0, T1) is estimated as the empirical mean of S (v; T0, T1) that are obtained
from M such simulations. We refer to this estimation method as the naive simulation
method. However, as shown in the experiments, this is extremely inefficient, and cannot
be practical (out of question). In this paper, we deal with the case “T0 = 0, T1 = T” for
simplicity, and we denote σ(v; 0, T ) by σ(v; T ).

3 Estimation Methods

For a given directed graph G = (V, E), we identify each node with a unique integer from
1 to |V |. Then we can define the adjacency matrix A ∈ {0, 1}|V |×|V | by setting au,v = 1 if
(u, v) ∈ E; otherwise au,v = 0. We also define the probability matrix P ∈ [0, 1)|V |×|V | by
replacing each element au,v to the corresponding diffusion probability κu,v if (u, v) ∈ E.
Let f v ∈ {0, 1}|V | be a vector whose v-th element is 1 and other elements are 0, and
1 ∈ {1}|V | be a vector whose elements are all 1.

3.1 Infinite Iterative Method

We can calculate the number of nodes that are reachable with J-steps starting from a
node v by f T

v AJ1. Thus, when considering the diffusion probabilities, we can calculate
the vector of the expected number of reachable nodes starting from each node within
J steps by P1 + · · · + PJ1. Therefor, in case that the time-interval is [0,∞], according
to the definition of the CTSIS model, we obtain the cumulative influence degree σ∞ as
follows:

σ∞ =
∞∑

J=1

PJ1, (1)

Note that the vector σ∞ consists of values of the cumulative influence functions, i.e.,
σ(·;∞). We refer to this estimation method as the infinite iterative method.

However, there exist some intrinsic limitations to the simple iterative method, i.e.,
we cannot specify arbitrary time-interval [T0, T1] and diffusion probabilities for this
method. As for the diffusion probabilities, when the largest eigenvalue of the probabil-
ity matrix P is less than 1, we can guarantee to obtain finite value ofσ∞. In a simple case
that the diffusion parameters are uniform for any link, i.e., κu,v = κ for any (u, v) ∈ E,
since the probability matrix P is equivalent to κA, the diffusion parameter κ must be
less than the reciprocal of the the largest eigenvalue of the adjacency matrix A. Inciden-
tally, the calculation formula for this simple case is quite similar to that of Bonacich’s
centrality [13] and identical to that of Katz’s measure [14].
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3.2 Proposed Method

We want to estimate the cumulative influence degree within time-interval [T0, T1] for
arbitrary diffusion probabilities. To this end, we introduce the probability R(J; T0, T1)
that diffusion takes J-steps within this time-interval according to the CTSIS model.
Here, in order to simplify our derivation, we focus on the simplest case that the time-
delay parameters are uniform for any link, i.e., ru,v = r for any (u, v) ∈ E, although
our approach can be naturally extended to more complex settings. In a special case
where T0 = 0 and T1 = T , we denote this probability by R(J; T ). Here we note that
R(J; T0, T1) = R(J; T1) − R(J; T0). Thus we focus on calculation of R(J; T ).

Let δ j be a random variable of a time-delay for the j-th step (1 ≤ j ≤ J). In order to
meet the condition that the diffusion takes J-steps within time-interval [0, T ], the total
sum of the time-delays must be less than T , i.e., 0 ≤ δ1 + · · ·+ δJ ≤ T . In case of J = 1,
we can easily obtain the following formula.

R(1; T ) =
∫ T

0
r exp(−rδ1)dδ1 = 1 − exp(−rT ). (2)

In case of J ≥ 2, due to the independence of time-delay trials, we can calculate the
probability R(J; T ) as follows:

R(J; T ) =
∫ T

0

∫ T−δ1

0
· · ·
∫ T−(δ1+···+δJ−1)

0

J∏
j=1

r exp(−rδ j)dδ1 · · · dδJ (3)

Here by noting the following two formulas,
∫ T−(δ1+···+δJ−1)

0
r exp(−rδJ)dδJ = 1 − exp(−rT )

J−1∏
j=1

exp(rδ j),

∫ T

0
· · ·
∫ T−(δ1+···+δJ−2)

0
rJ−1 exp(−rT )dδ1 · · · dδJ−1 = exp(−rT )

(rT )J−1

(J − 1)!
,

we can calculate Eq. 3 as follows:

R(J; T ) = R(J − 1; T ) − exp(−rT )
(rT )J−1

(J − 1)!
(4)

Therefore, from Eqs. 2 and 4, we can derive the following explicit formula:

R(J; T ) = 1 − exp(−rT )
J∑

j=1

(rT ) j−1

( j − 1)!
. (5)

Here, we can easily see that R(J; T ) is a monotonic decreasing function approaching to
zero as J increases.

Now, by combining Eqs. 1 and 5, we can derive a new method for estimating the
cumulative influence degree within time-interval [T0, T1] for arbitrary diffusion proba-
bilities. We can formulate the key formula as follows:

σ[T0,T1] =

∞∑
J=1

R(J; T0, T1)PJ1. (6)
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Below we can summarize the algorithm of the proposed method.

1. Set each element of σ[T0,T1] to 0, and set J ← 1 and x← 1.
2. Calculate x← Px and if R(J; T0, T1)||x|| < η, then output σ[T0,T1] and terminate.
3. Set σ[T0,T1] ← σ[T0,T1] + R(J; T0, T1)x and J ← J + 1 and return to 2.

In this algorithm, x ∈ R|V | is a vector to calculate the expected number of the J-step
reachable nodes, and η is a parameter for the termination condition. In our experiments,
η is set to a sufficiently small number, i.e., 10−12.

4 Experiments

We first evaluate the performance (accuracy) of the proposed method (iterative method)
by comparing with the naive simulation method with different number of runs to esti-
mate the empirical mean using three large real social networks. We then compare the
iterative method with two other methods, the infinite iterative method and the SIS with
fixed time delay method in terms of the estimated cumulative influence degree for the
CTSIS model using the same networks. Finally we compare the efficiency (computation
time) of the iterative method with the naive simulation method. In all the experiments,
we consider the simplest case where the both diffusion and time-delay parameters of
the CTSIS model are uniform for any link.

4.1 Datasets

We employed three datasets of large real networks. These are all bidirectionally con-
nected networks. The first one is a network of people that was derived from the “list of
people” within Japanese Wikipedia, also used in [15], and has 9, 481 nodes and 245, 044
directed links (the Wikipedia network). The second one is a network derived from the
Enron Email Dataset [16] by extracting the senders and the recipients and linking those
that had bidirectional communications, and has 4, 254 nodes and 44, 314 directed links
(the Enron network). The third one is a Coauthorship network used in [17] and has
12, 357 nodes and 38, 896 directed links (the coauthorship network).

4.2 Accuracy Evaluation

We evaluated the accuracy of the proposed method by comparing it with the naive sim-
ulation method mentioned in section 2.3. We speculate that the cumulative influence
degree estimated by taking the empirical mean of the results of the naive simulation
method converges asymptotically to the true value as the number of simulations M
increases. Thus, we first examined how the difference of the estimated cumulative in-
fluence degree between the iterative method and the naive simulation method changes
as M changes for the three networks.

The difference was evaluated by

εM =
∑
v∈V
|σ(v; T ) − sM(v; T )|/|V |, (7)
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where σ(v; T ) and sM(v; T ) are the cumulative influence degree of node v estimated by
the iterative method and the naive simulation method, respectively. We used T = 104

and varied M from 100, 1,000, and 10,000.
In these experiments we determined the values for the diffusion and time-delay

parameters as follows. As noted in 3.1, it is required that the diffusion parameter κ must
be less than eig(A)−1, the reciprocal of the largest eigenvalue of the adjacency matrix
A of the network for the infinite iterative method to obtain a finite value of σ∞. The
values of eig(A)−1 for the Wikipedia, Enron, and Coauthorship networks were 0.00674,
0.0205, and 0.105, respectively. Thus, we adopted 0.0067, 0.02, and 0.1 as the values of
κ for these networks, respectively. These are the largest values that the infinite iterative
method can take. We set r = 1 for the time-delay parameter. This is equivalent to setting
the average time delay to be a unit time which is consistent to the discrete time step of
the SIS with fixed time delay method.

Table 1: Estimation difference between the
iterative method (proposed) and the naive
simulation method

network
M

100 1,000 10,000
Wikipedia 0.196 0.062 0.020

Enron 0.552 0.190 0.062
Coauthorship 0.298 0.096 0.031

Table 1 summarizes the results, from
which we can see that the estimation dif-
ference decreases as M increases and it
becomes reasonably small at M = 10, 000
for all the three networks. We are able to
verify our speculation and conclude that
the proposed iterative method can indeed
estimate the cumulative influence accu-
rately.

4.3 Cumulative Influence Degree Comparison

Next, we investigated how well the other approaches can approximate the cumulative
influence degree. We compared two approaches. One is the infinite iterative method de-
scribed in 3.1. The other is the SIS with fixed time delay method [11]5. The SIS with fixed
time delay method uses bond percolation on the layered graph which is constructed from
the original social network with each layer added on top as the time proceeds[10] and
much more efficiently estimates the cumulative influence degree than the naive simula-
tion method. We used the same M (= 10,000) from the result in 4.2. For each network,
we investigated two cases, one with a short time span T = 10 and the other with a
long time span T = 100. Note that we set r=1 and thus, the average time delay δ = 1.
We selected the top 200 most influential nodes that the iterative method identified and
compared their cumulative influence degree with the values that the other two methods
estimated for the same 200 nodes.

Figure 1 illustrates the results of comparison. We can see that the infinite iterative
method estimate the cumulative influence degree fairly well for a long time span T =
100 except for the Wikipedia network, but it tends to overestimate it for a short time
span T = 10. In contrast, the SIS with fixed time delay method tends to underestimate

4 We had to set the value to be small so that the naive simulation returns the result within a day.
5 Note that in [11] the influence degree was defined to be the expected number of active nodes

at the end of observation time T , but here the algorithm in [11] is modified to calculated the
cumulative influence degree.
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(c) Coauthor (T = 10)

1 40 80 120 160 200
0

100

200

300

400

rank

cu
m

ul
at

iv
e 

in
flu

en
ce

 d
eg

re
e

 

 

iterative (proposed)
infinite iterative
SIS with fixed time delay

(d) Wikipedia (T = 100)
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(e) Enron (T = 100)
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Fig. 1: Comparison in cumulative influence degrees of top 200 influential nodes

the cumulative influence degree for a large time span T = 100 but it does well for a
short time span T = 10. These results show that these two methods cannot correctly
estimate the cumulative influence degree for an arbitrary time span.

It is noted that there are many bumps in the graphs for the cases where the estimation
of the other two methods is very poor, i.e. T = 10 for the infinite iterative method and
T = 100 for the SIS with fixed time delay method. This implies that the ranking results
by these methods are different from the true ranking by the iterative method. The curves
becomes smoother when the estimation becomes better.

4.4 Efficiency Evaluation

We see in 4.3 that both infinite iterative method and SIS with fixed time delay method
do not accurately estimate the cumulative influence degree, and we compare the com-
putation time of the iterative method with the naive simulation method for M = 1. The
results are shown in Fig. 2 for three values of the time span T= 10, 20, 100 and for each
of the three networks. Three values are chosen for κ. The minimum values are the same
as the ones used in 4.2 and 4.3, and the other values are obtained by multiplying 1.5 in
sequence. The iterative method returns the values in less than 0.5 sec. for all cases and
very insensitive to the parameter values. The native simulation method is only efficient
when the κ is very small and requires exponentially increasing time as κ increase. In
deed it did not return the values within 3 days in many cases. Considering that this is
for a single simulation, use of the naive simulation method is not practical and out of
question.
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Fig. 2: Comparison in computation time

5 Discussions

We mentioned in 3.1 that the cumulative influence degree derived by the infinite iterative
method is similar to the centrality proposed by Bonacich [13] and identical to the Katz’
measure [14]. In [13] the standard centrality eu of node u is defined by

λeu =
∑
v∈V

au,vev, (8)

where λ is a constant introduced to ensure a non-zero solution, and A is the adjacency
matrix (au,v is its element) as before. Bonacich generalized Eq. 8 by introducing the
strength of relationship β, which is equivalent to κ in this paper, and derived the gener-
alized centrality cu(α, β) as

cu(α, β) =
∑
v∈V

(α + βcv(α, β))au,v, (9)

where α is a normalization constant. It is easily shown that ci(α, β) is written in a matrix
notation as

c(α, β) = α
∞∑

J=0

βJ AJ+11 = α(A1 + βA21 + β2 A31 + · · · ). (10)
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Comparing Eq. 1 with Eq. 10, we note that they are the same except that the generalized
centrality assumes that the strength of relationship with the directed connected nodes is
1. Further, we note that the following equality holds.

σ∞ =
β

α
c(α, β), (11)

which is exactly the same as Katz’s measure. Thus, the cumulative influence degree σ∞
defined by the infinite iterative method is interpreted as a centrality measure.

We showed in 4.3 that the infinite iterative method well approximates the cumulative
influence degree when the time span is large. This is evident because the infinite iterative
method assumes an infinite time span. In the extreme limit of T = ∞, the iterative
method converges to the infinite iterative method. How large T should be in order for
it to be large depends on the delay time parameter r. When r gets smaller, a smaller T
can be called large, e.g. T = 10 is large when r = 0.1. Similar argument can be made
for the SIS with fixed time delay method. The SIS with fixed time delay method advances
the time in a discrete step. Thus, it happens that multiple parents attempt to activate the
same node simultaneously at the same time. If this happens, the activation count is only
incremented by one. When the time span T is small, the diffusion propagation does not
go far and there is not much chance that this simultaneous activation happens. This is
why the SIS with fixed time delay method gives good results for a small time span T .
However, how good the SIS with fixed time delay method approximates the cumulative
influence degree depends on how close the time step is to the average delay-time δ.
It overestimates the true cumulative influence degree for T = 10 when r = 0.1 and
underestimate it when r = 10. We confirmed this by additional experiments but due to
the space limit we do not show the figures.

6 Conclusion

In this paper we addressed the problem of efficiently estimating the cumulative influ-
ence degree of a node in social networks when the information diffusion follows the
Susceptible/Infective/Susceptible (SIS) model with asynchronous continuous time de-
lay based on the independent cascade framework. It is possible to analytically derive a
formula by which to iteratively calculate the cumulative influence degree to a desired
accuracy. The simplified version which corresponds to assuming an infinitely large time
span is closely related to the generalized centrality measure. We showed by applying
the method to three large real world social networks that the method can accurately esti-
mate the cumulative influence degree with 2 to 6 orders of magnitude less computation
time than the naive simulation method. Thus, it can be used to rank the influential nodes
very efficiently. We also compared the proposed iterative method to the SIS with fixed
time delay model and the infinite iterative method and confirmed that they generally
produce poor estimates and only give good results when a specific condition holds for
each.
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