Finding Relation between PageRank and Voter Model

Takayasu Fushirhj Kazumi Saitd, Masahiro Kimura, Hiroshi Motodd, and Kouzou
Ohard

! Graduate School of Administration and Informatics, University of Shizuoka
52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
{j09118,k-saito}@u-shizuoka-ken.ac. jp

2 Department of Electronics and Informatics, Ryukoku University

Otsu, Shiga 520-2194, Japan
kimura@rins.ryukoku.ac. jp
3 Institute of Scientific and Industrial Research, Osaka University
Osaka 567-0047, Japan
motoda@ar.sanken.osaka-u.ac. jp
4 Department of Integrated Information Technology, Aoyama Gakuin University

Kanagawa 229-8558, Japan
ohara@it.aoyama.ac. jp

Abstract. Estimating influence of a node is an important problem in social net-
work analyses. We address this problem in a particular class of model for opinion
propagation in which a node adopts its opinion based on not only its direct neigh-
bors but also the average opinion share over the whole network, which we call
an extended Voter Model with uniform adoption (VM). We found a similarity of
this model with the well known PageRank (PR) and explored the relationships
between the two. Since the uniform adoption implies the random opinion adop-
tion of all nodes in the network, it corresponds to the random surfer jump of PR.
For an undirected network, both VM and PR give the same ranking score vec-
tor because the adjacency matrix is symmetric, but for a directed network, the
score vector is dierent for both because the adjacency matrix is asymmetric. We
investigated the féect of the uniform adoption probability on ranking and how
the ranking correlation between VM and PR changes using four real world so-
cial networks. The results indicate that there is little correlation between VM and
PR when the uniform adoption probability is small but the correlation becomes
larger when both the uniform adoption and the random surfer jump probabilities
become larger. We identified that the recommended value for the uniform adop-
tion probability is to be around 0.25 to obtain a stable solution.

1 Introduction

Recent technological innovation in the web such as blogosphere and knofmhediipe-
sharing sites is remarkable, which makes it possible to form various kinds of large social
networks, through which behaviors, ideas and opinions can spread. Thus, substantial
attention has been directed to investigating the spread of influence in these networks
[12,4,17]. The representative problem is the influence maximization problem, that is,
the problem of finding a limited number of influential nodes that dfective for the
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spread of information through the network and new algorithmic approaches have been
proposed under fferent model assumptions, e.g. descriptive probabilistic interaction
models [5, 15], and basic fllusion models such as independent cascade (IC) model
and the linear threshold (LT) model [8, 9, 19]. This problem has good applications in
sociology and “viral marketing” [1].

Another line of work on the spread of influence is opinion share analyses, i.e. how
people changes their opinions, how each opinion propagates and what the final opinion
share is, etc. A good model for opiniorfidision would be a voter model [13, 16]. It is
one of the most basic stochastic process model, and has the same key property with the
linear threshold model that a node decision is influenced by its neighbors’ decision, i.e.
a person changes its opinion by the opinions of its neighbors. The basic voter model is
defined on an undirected network with self-loop and each node initially holds one of
K opinions, and adopts the opinion of a randomly chosen neighbor at each subsequent
discrete time-step.

Even-Dar and Shapira [6] investigated the influence maximization problem (maxi-
mizing the spread of the opinion that supports a new technology) under the basic voter
model with two K = 2) opinions (one in favor of the new technology and the other
against it) at a given target time. They showed that the most natural heuristic solu-
tion, which picks the nodes in the network with the highest degree, is indeed the optimal
solution, under the condition that all nodes have the same cost.

We propose a new model for the spread of opinions. Each person h&sramti
influence on the other person and the person to person relation is directional. A person
not only changes its opinion by its direct neighbors but also considers the overall opin-
ion distributions of the whole society. The new model incorporates these factors and
we call this model as an extended Voter Model with uniform adoption. Here we note
that the new model has a strong similarity to the well known PageRank [2, 11] which is
an algorithm to rank Web pages. Since the uniform adoption can be viewed as random
opinion adoption of all nodes in the network, it is equivalent to the random surfer jump
of PageRank.

We mathematically derive the ranking vector of the new Voter Model and compare
it with that of PageRank, and explore how the two models are related by a series of
extensive experiments using four real world social networks. Especially we investigate
the dfects of the uniform adoption probability on node ranking and how the ranking of
the new Voter Model and PageRank are correlated to each other with this probability.
The ranking of the new Voter Model becomes the same as that of PageRank if we as-
sume that the network is undirectional, but since both our new model and PageRank use
directional network, the ranking results are not the same. The results indicate that the
correlation varies with the uniform adoption probability. There is little correlation be-
tween the extended Voter Model and PageRank when the uniform adoption probability
is small and the high ranked nodes ar@atent, but the correlation becomes larger when
both the uniform adoption and the random surfer jump probabilities become larger. We
found that the ranking becomes stable for the uniform adoption probability in the range
of 0.15 and 0.35 and the self correlation within the extended Voter Model is high in this
region, which is consistent with the report that the recommended value for the random
surfer jump is 0.15.
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The paper is organized as follows. We briefly explain the standard Voter Model
and revisit PageRank in sections 2 and 3, respectively. Then we explain our new Voter
Model, the extended Voter Model with uniform adoption, in section 4. Experimental
results that describe various correlation results are detailed in section 5. Finally we
summarize our conclusion in section 7.

2 \Voter Model

In this section, according to the work [6], we first consider thudion of opinions in a
social network represented by an undirected (bidirectional) g@gapHhV, E) with self-
loops. HereV andE (c V x V) are the sets of all the nodes and links in the network,
respectively. For a node € V, let I'(v) denote the set of neighbors win G, that is,
r'(v) ={ueV;(u,v) € E}. Note thatv € I'(v).

According to the work [6], we recall the definition of the basic voter model with
two opinions on networks. In the voter model, each node Gfis endowed with two
states; opinions 1 and 2. The opinions are initially assigned to all the nod&saimd
the evolution process unfolds in discrete time-stepsl, 2,3, - - - as follows: At each
time-stept, each node picks a random neighbarand adopts the opinion thatholds
at time-stegg — 1.

More formally, letf; : V — {1, 2} denote the opinion distribution at time-stgp
where f;(v) stands for the opinion of nodeat time-stegd. Then,fy : V — {1, 2} is the
initial opinion distribution, andf; : V — {1, 2} is inductively defined as follows: For
anyveV,

V) + Ne1(2v)°

fi(v) = 2, with probability 120

V) + ne1(2V)°

{ fi(v) = 1, with probability —224

whereny(k, V) is the number of/'s neighbors that hold opiniof at time-stept for
k=12

3 PageRank Revisited

We revisit PageRank [2, 11]. For a given Web network (directed graph), we identify
each node with a unique integer from 1)%. Then we can define the adjacency matrix
A e {0, 1)V*M by settinga(u,v) = 1 if (u,v) € E; otherwisea(u,v) = 0. A node

can be self-looped, in which casgu,u) = 1. For each node € V, let F(v) and

B(v) denote the set of child nodes wfand the set of parent nodes \gfrespectively,

F(v) ={weV; (v,w) € E}, B(v) ={ueV; (u,v) € E}. Note thatv € F(v) andv € B(v)

for a nodev with a self-loop.

Then we can consider the row-stochastic transition m&trixach element of which
is defined byp(u,Vv) = a(u, v)/|F(u)| if |F(u)| > O; otherwisep(u,Vv) = z(v), wherezis
some probability distribution over pages, i.#v) > 0 and}’,.y z(v) = 1. This model
means that from dangling Web pages without out-linkéuf = 0), a random surfer
jumps to pagev with probability z(v). The vectorz is referred to as a personalized
vector because we can definaccording to user’s preference.
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Let y denote a vector representing PageRank scores over pages wiher® and
>vev Y(V) = 1. Then using an iteration-step parametdPageRank vectoy is defined
as a limiting solution of the following iterative process,

Y =Yi4(A-pP+ped)=(1-py P +p7, (1)

wherea' stands for a transposed vectoraodnde = (1, - -, 1)". In the Equation (1)3

is referred to as the uniform jump probability. This model means that with the probabil-
ity 8, a random surfer also jumps to some page according to the probability distribution
z The matrix ((1- 8)P + e Z') is referred to as a Google matrix. The standard PageR-
ank method calculates its solution by directly iterating Equation (1), after initialiging
adequately. One measure to evaluate its convergence is defined by

1Yy = Vel = Z Ye(V) = Ye-1 (V). (2

veV

Note that any initial vectoyy can give almost the same PageRank scores if it makes
Equation (2) almost zero because the unique solution of Equation (1) is guaranteed.

4 Voter Model with uniform adoption

We propose an extended Voter Model with uniform adoption on a directed @aph
(V, E) with self-loops forK opinions. Letm(k, v) be the number of's parents that hold
opinionk at time-steg for k = 1, 2, ..., K. In addition, just like the personalized vector
employed in PageRank, we introduce some probability distributiomer nodes. Let
m(K) be the weighted share of opinidrat time-stef given by

mi) = > ), 3)

{veV; fe(v)=k}

thenf, : V — {1,2,...,K} is inductively defined as follows, given an initial opinion
distributionfy : V — {1,2,...,K}. Foranyv e V,
. - m—l(k5 V)
fi(v) = k, with probability (1- ¢) —————
t(v) p y (1-a) Kk V)
This model indicates that the opinion of each nede V is influenced by its parents
nodesB(v) with probability (1- @) and by any other node € V with probability «
according toz. Hereafterq is referred to as the uniform adoption probability and the
extended Voter Model with uniform adoption is referred to as VM for short

Now we consider estimating the expected influence degree ofunadé, which is
defined as the expected number of nodes influencedshiyitial opinion fo(u). Note
that the following definition does not depend on which opinidrolds initially. We de-
note the expected influence degree of nodétime-steq by x(u). Let hy € {0, 1}V be
a vector whose-th element is 1 and other elements are 0, @rile column-stochastic

+am_y(K). (4)

2 \We call it as the extended VM when we have to make distinction from the standard VM.
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transition matrix, each element of which is defineddfy,v) = a(u,v)/|B(v)|. Here
note thatB(v) # 0 for any nodev € V because of the existence of self-loop. From the
definition of our model, we can calculatg(u) as follows.

x(U) = (1 - @) Z IBW)I™ + [Viez(u) = hj (1 - 2)Q+az€ )e (5)
veF (u)

Each element of the vectd{| ((1-a)Q+az€") is the probability that the corresponding
nodev is influenced by the node with one time-step. Thus from the independence
property of the opinion diiusion process, we can calculatéu) as follows.

x(U) = h] (1 -a)Q+azd ) e (6)

Here since the vectdr, works for selecting the-th element, we can obtain the vector
consisting of the expected influence degree at time{stsfollows:
t-1

Xt = ((1 -a)Q+ azeT)t e= ((1 —a)Q+ (yzeT) Xt-1 (7)

Moreover, since ((t a)Q+az€) becomes the column-stochastic transition matrix, we
can consider a stationary vector defineddy lim¢_,., X;.

For the sake of technical convenience, we perform scaling to the veatefined
by x « x/|V|. Then, similarly to PageRank calculation process defined in Equation (1),
we can obtain the expected influence vector at time-stepfollows after initializing
vector toxgp = €/|V|:

Xt =((1-a)Q+azé )x1 = (1-)Qx 1 +az (8)

We can employ the same convergence measure defined by Equation (2), just by re-
placing the vectoly with x. Here, we note that in case of undirected networks with
self-loops Equations (1) and (8) become completely equivalent since there exist no
dangling nodes. Note also that in this case, our extended VM reduces to the standard
VM by settinga = 0. On the other hand, in case of directed networks with self-loops,
Equations (1) and (8) give fllerent vector sequences, and we empirically evaluate their
differences with special emphasis on their stationary vectors.

5 Experiments

In this section, we evaluate théfects of 1) the uniform adoption probability and
2) community structure, and examine the relation between VM and PR by extensive
experiments using four real networks.

5.1 Experimental settings

In our experiments, we employ the Pearson correlatiofficients as our basic evalua-
tion measure. For the sake of convenience, we recall its definition: given two vectors,
andy, the correlation cd@cientC(x, y) is defined as follows.

(x = X0)"(y - ¥o)
Vix =3 T(x = %) V(y = y&) (v - ¥€)

C(x,y) = 9)
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wherex andy stand for the average element valuex@ndy, respectively, and recall
thateis a vector defined bg= (1,--- ,1)".

As mentioned earlier, we focus on evaluating the vectors of the expected influence
degree, each of which is the stationary vector defined as a limiting solution of Equa-
tion (8) in VM. In our experiments, the personalized vecds set to uniform one, i.e.,
z=(1/|V],---,1/|V])". Based on Equation (2), the convergence criterion to obtain the
stationary vectors is set o — X;_1/lL.1 < 1072 in case of VM, andly; - yi_1/lL.1 < 10712
in case of PR.

Our evaluation consists of two series of experiments. In the first series of exper-
iments, we evaluate thefects of the uniform adoption probability on the expected
influence degree. In the second series of experiments, we evaluatfetis ef net-
work’s community structure on the expected influence degree. Now, we explain our
method of rewiring the originally observed network to change its community struc-
ture. The rewired network is constructed just by randomly rewiring links of the original
network according to some probabilify without changing the degree of each node
[14]. More specifically, by arbitrarily ordering all links except for self-loops in a given
original network, we can prepare a link lisk = (ey,--- ,eg). Recall that each di-
rected link consists of an ordered pairfadm-part andto-part nodes, i.ee = (u, V).

From the listLg, we can produce two node lists, i.e., them-part node listLg and
theto-part node list_t. Thus, by swapping two elements of the node listwith the
probability p so as not to produce multiple-links, we can obtain a partially reordered
node listL;. Then, by concatenating; with the other node lisLr, we can produce a
link list for a rewired network. Namely, ldt; be a shéfled node list, and we denote
thei-th order element of a list by L(i); then the link list of the rewired network is

Le = (Le(1), L5 (1)), - -, (Le(IED), LL(IED)).

5.2 Network Data

In our experiments, we employed four sets of real networks, which exhibit many of the
key features of social networks. Below we describe the details of these network data.

The first one is a reader network of “AmeBahat is a Japanese blog service site.
Blogs are personal on-line diaries managed by easy-to-use software packages, and have
rapidly spread through the World Wide Web [7]. Each blog of “Ameba” can have the
reader listthat consists of the hyperlinks to the blogs of the reader bloggers. Here, a
reader link from blogX to blog Y is generated when bloy registers blogX as her
favorite blog. Thus, a reader network can be regarded as a social network. We crawled
the reader lists of 11874 blogs of the Ameba blog service site in June 2006, and
collected a large connected network. This network had®86 nodes and,D71, 080
directed links. We refer to this network as the Ameblo network.

Second one is a trackback network of blogs used in [9]. Bloggers discuss various
topics by using trackbacks. Thus, a piece of information can propagate from one blog-
ger to another blogger through a trackback. We exploited the blog “Theme salon of
blogs” in the site “goo™, where a blogger can recruit trackbacks of other bloggers

Shttp://www.ameba.jp/
“http://blog.goo.ne. jp/usertheme/
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by registering an interesting theme. By tracing up to ten steps back in the trackbacks
from the blog of the theme “JR Fukuchiyama Line Derailment Collision”, we collected

a large connected trackback network in May, 2005. The resulting network had 1.2
nodes and 7920 directed links. We refer to this network data as the Blog network.

The third one is a fan network of “@cosntethat is a Japanese word-of-mouth
communication site for cosmetics. Each user page of “@cosme” canfaauaks
Here, a fan link from useK to userY is generated when us#fregisters useK as
her favorite user. Thus, a fan network can be regarded as a social network. We traced
up to ten steps in the fan links from a randomly chosen user in December 2009, and
collected a large connected netwdrkThis network had 4®24 nodes and 54630
directed links. We refer to this network as the Cosme network.

Last we employed a network derived from the Enron Email Dataset [10]. We first
extracted the email addresses that appeared in the Enron Email Dataset as senders and
recipients. We regarded each email address as a node, and constructed a directed net-
work obtained by linking two email addressesandv if u sent an email tos Next,
we extracted its maximal strongly connected component. We refer to this strongly con-
nected bidirectional network as the Enron network. This network haB4nodes and
44, 314 directed links. We refer to this dataset as the Enron network dataset.

Table 1: Basic statistics of networks.

network V| |E| C(B,F)
Ameblo| 56,604 1,071,080 0.61350
Blog 12,047 79,920 0.74377
Cosme| 45,024 546,930 0.51940
Enron| 19,654 377,612 0.54929

Table 1 shows the basic statistics of the Ameblo, Blog, Cosme and Enron networks.
Here,C(B, F) denotes the Peason correlationffiegents between the in-degree vector
B, each element of which i8(Vv)|, and the out-degree vectbr, each element of which
is |[F(v)]. From this table, we consider that each network has an intrinsic characteristics
as a directed network becauséB, F) is reasonably smaller than 1.

5.3 Hfects of uniform adoption probability

As the first series of experiments, we evaluated ffexes of the uniform adoption prob-
ability change on the expected influence degree. Herg(dgtbe the stationary vector
defined as a limmiting solution of Equation (8) for VM with In order to evaluate the
effects of diferent uniform adoption probabilities, we calculated the correlatioffieoe
cientsC(x(a), x(a”)) with respect to each pair of the uniform adoption probabilities,

Shttp://www.cosme.net/
6 We further tried this collection procedure twice, and compared the resulting networks. Then,
we found that they overlapped $96.



8 Authors Suppressed Due to Excessive Length

anda’ (self correlation). In Fig.1, we pla@(x(e), X(a")) with respect tax, where each
result with diferenta’ is shown by a dierent marker. Here we changed both the values
of @ anda’ from 0.05 to Q95 with an increment of Q.
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Fig. 1: The correlation cdicient between VMs with dierenta

From Fig.1, we can observe the following smilar characteristics of VM for all of
the four networks. First, the correlation ¢beientsC(x(«), X(a’)) for any pair ofa and
a’ are relatively high. Secon®(x(a), x(a’)) in the range of A5 < a < 0.35 shows
especially high values regardlessofThis suggests that we can recommend to employ
this range ofx because this would give a stable (and thus, representative) value of the
expected influence degree for VM. Incidentally, it is reported that the uniform jump
probabilitys in PR is frequently used @& = 0.15 [2, 11]. Third, we can see that when
a = 0.05, C(x(a), x(a)) decreases almost linearly asincreases, while it decreases
very little for small values of’ and only modestly for large values @fwhena = 0.95.
Similarly to the above, ley(B) be the stationary vector defined as a limmiting so-
lution of Equation (1) for PR witlB. In order to examine the relation between VM and
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PR, we calculated the correlation ¢heientsC(x(«), y(8)) with respect to each pair
of the uniform adoption probability and the uniform jump probabilitg. In Fig.2,
we plotC(x(«), y(B)) with respect tar, where each result with filerentg is shown by
a different marker. Here we also changed the valug§ fsbm 0.05 to Q95 with an
increment of QL.
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Fig. 2: The correlation cdicient between VM withr and PR with3

From Fig.2, we can observe the following similar relationships between VM and
PR for all of the four networks. First, whenis small, there exists almost no correla-
tion between the expected influence degree and the PageRank score. Second3,for any
C(x(a), y(B)) generally increses asincreases, although their rates of increase depend
on g as well as the network. Third, the maximum value<¢k(«), y(8)) are attained
ata = 0.95. Incidentally, these maximum values are somewhat smaller than the corre-
lation cosficients between in- and out-degree vect@&B, F), shown in Table 1, but
their relative values are consistent between the two.
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5.4 Hfects of community structure

As the second series of experiments, we evaluatediibets of the community structure
change on the expected influence degree. To this end, we constructed the 11 rewired
networks from each of the original four networks using the rewiring probaklity

27k (k = 0,1,---,10) so that each network has afdient community structure with
different degree from the original one’s (see the rewiring method in Section 5.1). Now,
let x(a, p) be the stationary vector calculated from the network rewired with probability
p for VM with «a. In order to evaluate theffects of diferent community structure,

we calculated the correlation déieientsC(x(«), X(a, p)) with respect to each pair of

the uniform adoption probability and the rewiring probabilityp. In Fig.3, we plot
C(x(a), X(a, p)) with respect tax, where each result with fierentp is shown by a
different marker. Again we changed the values &Pm 0.05 to Q95 with an increment

of 0.1.
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Fig. 3: The correlation cdicient of VM between the original network and the rewiring network
with p
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From Fig.3, we can observe the following smilar characteristics of VM for all of
the four networks. First, the correlation ¢heientsC(x(«), X(«, p)) for any pair ofa
andp are relatively high. Second, in comparison to Fig.1, there exist almost no ranges
for @ whereC(x(a), X(a, p)) gives especially high values for all values pf Third,
C(x(a), x(, p)) monotonically decreases psncreases. Overall, this experimental re-
sults suggest that the expected influence degree is not nfiieciesl by the community
structure although theffect is more for a network with less community structure.

Similarly to the above, ley(3, p) be the stationary vector calculated from the net-
work rewired with probabilityp for PR withg. In order to examine the relation between
VM and PR in terms of community structure, we calculated the correlatiofficieats
C(x(@), Y(8, p)) with respect to each pair of the uniform adoption probabilignd the
rewiring probabilityp by setting8 = «a. In Fig.4, we plotC(x(«a), Y(a, p)) with respect
to a, where each result with fierentp is shown by a dterent marker.
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Fig. 4: The correlation cdBcient between VM withr and PR with3(= «) andp
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From Fig.4, we can see that for all of the four networks, each plotting result is very
similar to the corresponding one appearing in Fig.2. Namely, the correlatidincoeets
C(x(a), Y(a, p)) for any pair ofe and p are relatively small. Further, this experimental
results also suggest that the expected influence degree is not ffected by the com-
munity structure. As an interesting distincti€®®(x(«), y(«, p)) is large wherp is large
for the Ameblo and Cosme networks, but a reverse tendency can be observed for the
Blog and Enron networks. Clarifying this reason is left for our future work.

5.5 Visual analyses

We further analyzed thefiects of the uniform adoption probability on the expected
influence degree by visualizing the original networks. More specifically, we embeded
the nodes in each network into a 2-dimensinal space by using the cross-entropy method
[18], and plotted them as points. Then, we emphasized the highly influential nodes that
have the expected influence degree within the top 1 % by using (red) circles. In the
following experiments we only show the results using the Blog network as an example,
but similar results were obtained for the other networks.

Fig.5 are the visualization results for twofféirent values ofr. Here we setr to
0.25 and 095 becauase they are considered to give the most and the least representative
values for the expected influence degree as discussed in Section 5.3. From Fig.5, we
can see that the highly influential nodes scatter around the entire the network far both
values. This partly explains the reason why the expected influence degree is not much
affected by the community structure. This figure also shows that these two visualization
results are close to each other.
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(a) Blog network atr = 0.25 (b) Blog network atx = 0.95

Fig. 5: Visualization of Networks (VM)

We also analyzed the resullts of PR to see if there is affigréince between VM and
PR. Fig.6 are the visualization results for PR, and the (red) circles are again the highly
ranked nodes that have the top 1 % PageRank score. Here Wwes625 and 95,
the same as. From Fig.6, we can also see that the highly ranked nodes scatter around
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entire the network for botjg values. Although we see that these nodes afferdint
from the results of VM, but there is no cleaffdrence bewteen the results offdrent
B values.

3 s o
O
O. i o
tawlolt (@)O e} & 80 o %&% o
{*) 5 ‘%O o o go 9 QIS
o) Q & 19 o (e VAS 19}
& 9% &Oo fe| 9 2 oO o R a %) ‘e
O % el © o et
15 9 S0 OO & Qg 2o s 5
C o O O
5 s % o o @ oy 3 2
& G & OO G (e}
e Bt 318 Ve
o) Mot o & e
OO Q et G s} et
o} O
(a) Blog network ag = 0.25 (b) Blog network a3 = 0.95

Fig. 6: Visualization of Networks (PR)

6 Discussion

In this section, we discuss further extensions to our VM by employing majority rules
and non-uniform adoption probability.

In our VM, with probability (1- «), the opinion of each node< V is influenced
by choosing one of its parents nod&s) and by any other node € V with probability
a according taz. That is, our VM deals with all neighbor nodes equally by chosing one
of neighbors at random. In a situation where a node decides its opinion considering the
opinions of more than one neighbor, thevoter model is one of the basic stochastic
models [3]. In this model, the opinion of each node V is influenced by its chosen
parent nodes when their opinion is the same. Similarly, our VM can be further extended
by adding some majority rules. We can also extend our VM with non-uniform adoption
probability, that is, it might be natural to assume that not all friends or acquaintances
have the same influence on a given node. To this end, we can introduce the weighted
transition matrixQ whose each element is defineddg{u, v) = w(u, v)/ >y ey W(U', V).
Here,w(u, V) is the weight over the link from a node € V to a nodev € V and
w(u,v) > 0 if a(u,v) = 1; otherwisew(u,v) = 0. By using the column stochastic
transition matrixQ’, we can revise the Equation (8) as follows.

X = ((1 -o)Q + azeT) Xe1 = (1 - a)Q X1 + @z (10)

In future, we plan to analyze these further extended models.
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7 Conclusion

We addressed in this paper the problem of estimating the influential nodes in a social
network, and focused on a particular class of informatidgfudion model, a model for
opinion propagation. The popular model for opinion propagation is the Voter model in
which the main assumption is that people change their opinion based on their direct
neighbors, i.e. via local interaction. We extended this model to include the fact that
people’s opinion is alsoftected by the overall opinion distribution of the whole so-
ciety. The new model is called the Voter Model with uniform adoption (the extended
VM). It assumes that the network is directional because the people to people relation is
directional.

The uniform adoption implies the random opinion adoption of all nodes in the net-
work. We came to notice that this mechanism is the same as the random surfer jump
of the well known PageRank algorithm. This motivated us to investigate the relation-
ship between the extended VM and PageRank. We mathematically derived the ranking
vector of the extended VM and compared it with that of PageRank, and explored how
the two models are related by a series of extensive experiments using four real world
social networks. The both models assume a directed network and ffieeedt rank-
ings because the adjacency matrix is asymmetric. However, if we assume an undirected
network in which the adjacency matrix is symmetric, the both models become identical
and should give the same ranking. We investigated ffeets of the uniform adoption
probability on node ranking and how the ranking of the extended VM and PageRank
are correlated to each other with this probability. The results indicate that the correla-
tion varies with the uniform adoptiopn probability. The correlation is very small when
the uniform adoption probability is small, but it becomes larger when both the uniform
adoption and the random surfer jump probabilities become larger. However, the visual-
ization rerults do not indicate the cleaffdrence of the rankings between thé&etient
values of the uniform adoption probability. We also investigated how tfierdint com-
munity structure fiects the correlation, but did not see the strofigas. We found that
the ranking becomes stable for the uniform adoption probability in the range of 0.15 and
0.35 and the self correlation within the extended Voter Model is high in this region. Itis
interesting to note that the reported recommended value for the random surfer jump of
PageRank is 0.15, which is similar to our finding for the uniform adoption probability.
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