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Abstract. Estimating influence of a node is an important problem in social net-
work analyses. We address this problem in a particular class of model for opinion
propagation in which a node adopts its opinion based on not only its direct neigh-
bors but also the average opinion share over the whole network, which we call
an extended Voter Model with uniform adoption (VM). We found a similarity of
this model with the well known PageRank (PR) and explored the relationships
between the two. Since the uniform adoption implies the random opinion adop-
tion of all nodes in the network, it corresponds to the random surfer jump of PR.
For an undirected network, both VM and PR give the same ranking score vec-
tor because the adjacency matrix is symmetric, but for a directed network, the
score vector is different for both because the adjacency matrix is asymmetric. We
investigated the effect of the uniform adoption probability on ranking and how
the ranking correlation between VM and PR changes using four real world so-
cial networks. The results indicate that there is little correlation between VM and
PR when the uniform adoption probability is small but the correlation becomes
larger when both the uniform adoption and the random surfer jump probabilities
become larger. We identified that the recommended value for the uniform adop-
tion probability is to be around 0.25 to obtain a stable solution.

1 Introduction

Recent technological innovation in the web such as blogosphere and knowledge/media-
sharing sites is remarkable, which makes it possible to form various kinds of large social
networks, through which behaviors, ideas and opinions can spread. Thus, substantial
attention has been directed to investigating the spread of influence in these networks
[12, 4, 17]. The representative problem is the influence maximization problem, that is,
the problem of finding a limited number of influential nodes that are effective for the
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spread of information through the network and new algorithmic approaches have been
proposed under different model assumptions, e.g. descriptive probabilistic interaction
models [5, 15], and basic diffusion models such as independent cascade (IC) model
and the linear threshold (LT) model [8, 9, 19]. This problem has good applications in
sociology and “viral marketing” [1].

Another line of work on the spread of influence is opinion share analyses, i.e. how
people changes their opinions, how each opinion propagates and what the final opinion
share is, etc. A good model for opinion diffusion would be a voter model [13, 16]. It is
one of the most basic stochastic process model, and has the same key property with the
linear threshold model that a node decision is influenced by its neighbors’ decision, i.e.
a person changes its opinion by the opinions of its neighbors. The basic voter model is
defined on an undirected network with self-loop and each node initially holds one of
K opinions, and adopts the opinion of a randomly chosen neighbor at each subsequent
discrete time-step.

Even-Dar and Shapira [6] investigated the influence maximization problem (maxi-
mizing the spread of the opinion that supports a new technology) under the basic voter
model with two (K = 2) opinions (one in favor of the new technology and the other
against it) at a given target timeT. They showed that the most natural heuristic solu-
tion, which picks the nodes in the network with the highest degree, is indeed the optimal
solution, under the condition that all nodes have the same cost.

We propose a new model for the spread of opinions. Each person has a different
influence on the other person and the person to person relation is directional. A person
not only changes its opinion by its direct neighbors but also considers the overall opin-
ion distributions of the whole society. The new model incorporates these factors and
we call this model as an extended Voter Model with uniform adoption. Here we note
that the new model has a strong similarity to the well known PageRank [2, 11] which is
an algorithm to rank Web pages. Since the uniform adoption can be viewed as random
opinion adoption of all nodes in the network, it is equivalent to the random surfer jump
of PageRank.

We mathematically derive the ranking vector of the new Voter Model and compare
it with that of PageRank, and explore how the two models are related by a series of
extensive experiments using four real world social networks. Especially we investigate
the effects of the uniform adoption probability on node ranking and how the ranking of
the new Voter Model and PageRank are correlated to each other with this probability.
The ranking of the new Voter Model becomes the same as that of PageRank if we as-
sume that the network is undirectional, but since both our new model and PageRank use
directional network, the ranking results are not the same. The results indicate that the
correlation varies with the uniform adoption probability. There is little correlation be-
tween the extended Voter Model and PageRank when the uniform adoption probability
is small and the high ranked nodes are different, but the correlation becomes larger when
both the uniform adoption and the random surfer jump probabilities become larger. We
found that the ranking becomes stable for the uniform adoption probability in the range
of 0.15 and 0.35 and the self correlation within the extended Voter Model is high in this
region, which is consistent with the report that the recommended value for the random
surfer jump is 0.15.
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The paper is organized as follows. We briefly explain the standard Voter Model
and revisit PageRank in sections 2 and 3, respectively. Then we explain our new Voter
Model, the extended Voter Model with uniform adoption, in section 4. Experimental
results that describe various correlation results are detailed in section 5. Finally we
summarize our conclusion in section 7.

2 Voter Model

In this section, according to the work [6], we first consider the diffusion of opinions in a
social network represented by an undirected (bidirectional) graphG = (V,E) with self-
loops. Here,V andE (⊂ V × V) are the sets of all the nodes and links in the network,
respectively. For a nodev ∈ V, let Γ(v) denote the set of neighbors ofv in G, that is,
Γ(v) = {u ∈ V; (u, v) ∈ E}. Note thatv ∈ Γ(v).

According to the work [6], we recall the definition of the basic voter model with
two opinions on networkG. In the voter model, each node ofG is endowed with two
states; opinions 1 and 2. The opinions are initially assigned to all the nodes inG, and
the evolution process unfolds in discrete time-stepst = 1,2, 3, · · · as follows: At each
time-stept, each nodev picks a random neighboru and adopts the opinion thatu holds
at time-stept − 1.

More formally, let ft : V → {1, 2} denote the opinion distribution at time-stept,
where ft(v) stands for the opinion of nodev at time-stept. Then, f0 : V → {1,2} is the
initial opinion distribution, andft : V → {1,2} is inductively defined as follows: For
anyv ∈ V,  ft(v) = 1, with probability nt−1(1,v)

nt−1(1,v) + nt−1(2,v) ,

ft(v) = 2, with probability nt−1(2,v)
nt−1(1,v) + nt−1(2,v) ,

wherent(k, v) is the number ofv’s neighbors that hold opinionk at time-stept for
k = 1,2.

3 PageRank Revisited

We revisit PageRank [2, 11]. For a given Web network (directed graph), we identify
each node with a unique integer from 1 to|V|. Then we can define the adjacency matrix
A ∈ {0,1}|V|×|V| by settinga(u, v) = 1 if (u, v) ∈ E; otherwisea(u, v) = 0. A node
can be self-looped, in which casea(u,u) = 1. For each nodev ∈ V, let F(v) and
B(v) denote the set of child nodes ofv and the set of parent nodes ofv, respectively,
F(v) = {w ∈ V; (v,w) ∈ E}, B(v) = {u ∈ V; (u, v) ∈ E}. Note thatv ∈ F(v) andv ∈ B(v)
for a nodev with a self-loop.

Then we can consider the row-stochastic transition matrixP, each element of which
is defined byp(u, v) = a(u, v)/|F(u)| if |F(u)| > 0; otherwisep(u, v) = z(v), wherez is
some probability distribution over pages, i.e.,z(v) ≥ 0 and

∑
v∈V z(v) = 1. This model

means that from dangling Web pages without out-links (F(u) = ∅), a random surfer
jumps to pagev with probability z(v). The vectorz is referred to as a personalized
vector because we can definezaccording to user’s preference.
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Let y denote a vector representing PageRank scores over pages, wherey(v) ≥ 0 and∑
v∈V y(v) = 1. Then using an iteration-step parametert, PageRank vectory is defined

as a limiting solution of the following iterative process,

yT
t = yT

t−1

(
(1− β)P+ βezT

)
= (1− β)yT

t−1P+ βzT , (1)

whereaT stands for a transposed vector ofa ande= (1, · · · ,1)T . In the Equation (1),β
is referred to as the uniform jump probability. This model means that with the probabil-
ity β, a random surfer also jumps to some page according to the probability distribution
z. The matrix ((1− β)P+ βezT) is referred to as a Google matrix. The standard PageR-
ank method calculates its solution by directly iterating Equation (1), after initializingy0

adequately. One measure to evaluate its convergence is defined by

∥yt − yt−1∥L1 ≡
∑
v∈V
|yt(v) − yt−1(v)|. (2)

Note that any initial vectory0 can give almost the same PageRank scores if it makes
Equation (2) almost zero because the unique solution of Equation (1) is guaranteed.

4 Voter Model with uniform adoption

We propose an extended Voter Model with uniform adoption on a directed graphG =
(V,E) with self-loops forK opinions. Letmt(k, v) be the number ofv’s parents that hold
opinionk at time-stept for k = 1,2, ...,K. In addition, just like the personalized vector
employed in PageRank, we introduce some probability distributionz over nodes. Let
mt(k) be the weighted share of opinionk at time-stept given by

mt(k) =
∑

{v∈V; ft(v)=k}
z(v), (3)

then ft : V → {1,2, ...,K} is inductively defined as follows, given an initial opinion
distribution f0 : V → {1,2, ...,K}. For anyv ∈ V,

ft(v) = k, with probability (1− α) mt−1(k, v)∑k=K
k=1 mt−1(k, v)

+ αmt−1(k). (4)

This model indicates that the opinion of each nodev ∈ V is influenced by its parents
nodesB(v) with probability (1− α) and by any other nodeu ∈ V with probabilityα
according toz. Hereafter,α is referred to as the uniform adoption probability and the
extended Voter Model with uniform adoption is referred to as VM for short2.

Now we consider estimating the expected influence degree of nodeu ∈ V, which is
defined as the expected number of nodes influenced byu’s initial opinion f0(u). Note
that the following definition does not depend on which opinionu holds initially. We de-
note the expected influence degree of nodeu at time-stept by xt(u). Let hu ∈ {0,1}|V| be
a vector whoseu-th element is 1 and other elements are 0, andQ the column-stochastic

2 We call it as the extended VM when we have to make distinction from the standard VM.
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transition matrix, each element of which is defined byq(u, v) = a(u, v)/|B(v)|. Here
note thatB(v) , ∅ for any nodev ∈ V because of the existence of self-loop. From the
definition of our model, we can calculatex1(u) as follows.

x1(u) = (1− α)
∑

v∈F(u)

|B(v)|−1 + |V|αz(u) = hT
u

(
(1− α)Q+ αzeT

)
e. (5)

Each element of the vectorhT
u ((1−α)Q+αzeT) is the probability that the corresponding

nodev is influenced by the nodeu with one time-step. Thus from the independence
property of the opinion diffusion process, we can calculatext(u) as follows.

xt(u) = hT
u

(
(1− α)Q+ αzeT

)t
e. (6)

Here since the vectorhu works for selecting theu-th element, we can obtain the vector
consisting of the expected influence degree at time-stept as follows:

xt =
(
(1− α)Q+ αzeT

)t
e=
(
(1− α)Q+ αzeT

)t−1
xt−1 (7)

Moreover, since ((1−α)Q+αzeT) becomes the column-stochastic transition matrix, we
can consider a stationary vector defined byx = limt→∞ xt.

For the sake of technical convenience, we perform scaling to the vectorx defined
by x← x/|V|. Then, similarly to PageRank calculation process defined in Equation (1),
we can obtain the expected influence vector at time-stept as follows after initializing
vector tox0 = e/|V|:

xt =
(
(1− α)Q+ αzeT

)
xt−1 = (1− α)Qxt−1 + αz. (8)

We can employ the same convergence measure defined by Equation (2), just by re-
placing the vectory with x. Here, we note that in case of undirected networks with
self-loops Equations (1) and (8) become completely equivalent since there exist no
dangling nodes. Note also that in this case, our extended VM reduces to the standard
VM by settingα = 0. On the other hand, in case of directed networks with self-loops,
Equations (1) and (8) give different vector sequences, and we empirically evaluate their
differences with special emphasis on their stationary vectors.

5 Experiments

In this section, we evaluate the effects of 1) the uniform adoption probabilityα and
2) community structure, and examine the relation between VM and PR by extensive
experiments using four real networks.

5.1 Experimental settings

In our experiments, we employ the Pearson correlation coefficients as our basic evalua-
tion measure. For the sake of convenience, we recall its definition: given two vectors,x
andy, the correlation coefficientC(x, y) is defined as follows.

C(x, y) =
(x − x̄e)T(y− ȳe)√

(x − x̄e)T(x − x̄e)
√

(y− ȳe)T(y− ȳe)
, (9)
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wherex̄ andȳ stand for the average element values ofx andy, respectively, and recall
thate is a vector defined bye= (1, · · · ,1)T .

As mentioned earlier, we focus on evaluating the vectors of the expected influence
degree, each of which is the stationary vector defined as a limiting solution of Equa-
tion (8) in VM. In our experiments, the personalized vectorz is set to uniform one, i.e.,
z = (1/|V|, · · · ,1/|V|)T . Based on Equation (2), the convergence criterion to obtain the
stationary vectors is set to∥xt−xt−1∥L1 < 10−12 in case of VM, and∥yt−yt−1∥L1 < 10−12

in case of PR.
Our evaluation consists of two series of experiments. In the first series of exper-

iments, we evaluate the effects of the uniform adoption probability on the expected
influence degree. In the second series of experiments, we evaluate the effects of net-
work’s community structure on the expected influence degree. Now, we explain our
method of rewiring the originally observed network to change its community struc-
ture. The rewired network is constructed just by randomly rewiring links of the original
network according to some probabilityp without changing the degree of each node
[14]. More specifically, by arbitrarily ordering all links except for self-loops in a given
original network, we can prepare a link listLE = (e1, · · · ,e|E|). Recall that each di-
rected link consists of an ordered pair offrom-part andto-part nodes, i.e.,e = (u, v).
From the listLE, we can produce two node lists, i.e., thefrom-part node listLF and
the to-part node listLT . Thus, by swapping two elements of the node listLT with the
probability p so as not to produce multiple-links, we can obtain a partially reordered
node listL′T . Then, by concatenatingL′T with the other node listLF , we can produce a
link list for a rewired network. Namely, letL′T be a shuffled node list, and we denote
the i-th order element of a listL by L(i); then the link list of the rewired network is
L′E = ((LF(1), L′T(1)), · · · , (LF(|E|), L′T(|E|))).

5.2 Network Data

In our experiments, we employed four sets of real networks, which exhibit many of the
key features of social networks. Below we describe the details of these network data.

The first one is a reader network of “Ameba”3 that is a Japanese blog service site.
Blogs are personal on-line diaries managed by easy-to-use software packages, and have
rapidly spread through the World Wide Web [7]. Each blog of “Ameba” can have the
reader list that consists of the hyperlinks to the blogs of the reader bloggers. Here, a
reader link from blogX to blog Y is generated when blogY registers blogX as her
favorite blog. Thus, a reader network can be regarded as a social network. We crawled
the reader lists of 117,374 blogs of the Ameba blog service site in June 2006, and
collected a large connected network. This network had 56,604 nodes and 1,071,080
directed links. We refer to this network as the Ameblo network.

Second one is a trackback network of blogs used in [9]. Bloggers discuss various
topics by using trackbacks. Thus, a piece of information can propagate from one blog-
ger to another blogger through a trackback. We exploited the blog “Theme salon of
blogs” in the site “goo”4, where a blogger can recruit trackbacks of other bloggers

3 http://www.ameba.jp/
4 http://blog.goo.ne.jp/usertheme/
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by registering an interesting theme. By tracing up to ten steps back in the trackbacks
from the blog of the theme “JR Fukuchiyama Line Derailment Collision”, we collected
a large connected trackback network in May, 2005. The resulting network had 12,047
nodes and 79,920 directed links. We refer to this network data as the Blog network.

The third one is a fan network of “@cosme”5 that is a Japanese word-of-mouth
communication site for cosmetics. Each user page of “@cosme” can havefan links.
Here, a fan link from userX to userY is generated when userY registers userX as
her favorite user. Thus, a fan network can be regarded as a social network. We traced
up to ten steps in the fan links from a randomly chosen user in December 2009, and
collected a large connected network6. This network had 45,024 nodes and 546,930
directed links. We refer to this network as the Cosme network.

Last we employed a network derived from the Enron Email Dataset [10]. We first
extracted the email addresses that appeared in the Enron Email Dataset as senders and
recipients. We regarded each email address as a node, and constructed a directed net-
work obtained by linking two email addressesu and v if u sent an email tov Next,
we extracted its maximal strongly connected component. We refer to this strongly con-
nected bidirectional network as the Enron network. This network had 4,254 nodes and
44,314 directed links. We refer to this dataset as the Enron network dataset.

Table 1: Basic statistics of networks.

network |V| |E| C(B, F)
Ameblo 56,604 1,071,080 0.61350

Blog 12,047 79,920 0.74377
Cosme 45,024 546,930 0.51940
Enron 19,654 377,612 0.54929

Table 1 shows the basic statistics of the Ameblo, Blog, Cosme and Enron networks.
Here,C(B, F) denotes the Peason correlation coefficients between the in-degree vector
B, each element of which is|B(v)|, and the out-degree vectorF, each element of which
is |F(v)|. From this table, we consider that each network has an intrinsic characteristics
as a directed network becauseC(B, F) is reasonably smaller than 1.

5.3 Effects of uniform adoption probability

As the first series of experiments, we evaluated the effects of the uniform adoption prob-
ability change on the expected influence degree. Here, letx(α) be the stationary vector
defined as a limmiting solution of Equation (8) for VM withα. In order to evaluate the
effects of different uniform adoption probabilities, we calculated the correlation coeffi-
cientsC(x(α), x(α′)) with respect to each pair of the uniform adoption probabilities,α

5 http://www.cosme.net/
6 We further tried this collection procedure twice, and compared the resulting networks. Then,

we found that they overlapped 99.5%.
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andα′ (self correlation). In Fig.1, we plotC(x(α), x(α′)) with respect toα, where each
result with differentα′ is shown by a different marker. Here we changed both the values
of α andα′ from 0.05 to 0.95 with an increment of 0.1.
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Fig. 1: The correlation coefficient between VMs with differentα

From Fig.1, we can observe the following smilar characteristics of VM for all of
the four networks. First, the correlation coefficientsC(x(α), x(α′)) for any pair ofα and
α′ are relatively high. Second,C(x(α), x(α′)) in the range of 0.15 ≤ α ≤ 0.35 shows
especially high values regardless ofα. This suggests that we can recommend to employ
this range ofα because this would give a stable (and thus, representative) value of the
expected influence degree for VM. Incidentally, it is reported that the uniform jump
probabilityβ in PR is frequently used atβ = 0.15 [2, 11]. Third, we can see that when
α = 0.05, C(x(α), x(α′)) decreases almost linearly asα′ increases, while it decreases
very little for small values ofα′ and only modestly for large values ofα′ whenα = 0.95.

Similarly to the above, lety(β) be the stationary vector defined as a limmiting so-
lution of Equation (1) for PR withβ. In order to examine the relation between VM and
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PR, we calculated the correlation coefficientsC(x(α), y(β)) with respect to each pair
of the uniform adoption probabilityα and the uniform jump probabilityβ. In Fig.2,
we plotC(x(α), y(β)) with respect toα, where each result with differentβ is shown by
a different marker. Here we also changed the values ofβ from 0.05 to 0.95 with an
increment of 0.1.
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Fig. 2: The correlation coefficient between VM withα and PR withβ

From Fig.2, we can observe the following similar relationships between VM and
PR for all of the four networks. First, whenα is small, there exists almost no correla-
tion between the expected influence degree and the PageRank score. Second, for anyβ,
C(x(α), y(β)) generally increses asα increases, although their rates of increase depend
on β as well as the network. Third, the maximum values ofC(x(α), y(β)) are attained
atα = 0.95. Incidentally, these maximum values are somewhat smaller than the corre-
lation coefficients between in- and out-degree vectors,C(B, F), shown in Table 1, but
their relative values are consistent between the two.
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5.4 Effects of community structure

As the second series of experiments, we evaluated the effects of the community structure
change on the expected influence degree. To this end, we constructed the 11 rewired
networks from each of the original four networks using the rewiring probabilityp =
2−k (k = 0,1, · · · ,10) so that each network has a different community structure with
different degree from the original one’s (see the rewiring method in Section 5.1). Now,
let x(α, p) be the stationary vector calculated from the network rewired with probability
p for VM with α. In order to evaluate the effects of different community structure,
we calculated the correlation coefficientsC(x(α), x(α, p)) with respect to each pair of
the uniform adoption probabilityα and the rewiring probabilityp. In Fig.3, we plot
C(x(α), x(α, p)) with respect toα, where each result with different p is shown by a
different marker. Again we changed the values ofα from 0.05 to 0.95 with an increment
of 0.1.
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(a) Ameblo network
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(b) Blog network
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(c) Cosme network
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(d) Enron network

Fig. 3: The correlation coefficient of VM between the original network and the rewiring network
with p



Finding Relation between PageRank and Voter Model 11

From Fig.3, we can observe the following smilar characteristics of VM for all of
the four networks. First, the correlation coefficientsC(x(α), x(α, p)) for any pair ofα
andp are relatively high. Second, in comparison to Fig.1, there exist almost no ranges
for α whereC(x(α), x(α, p)) gives especially high values for all values ofp. Third,
C(x(α), x(α, p)) monotonically decreases asp increases. Overall, this experimental re-
sults suggest that the expected influence degree is not much affected by the community
structure although the effect is more for a network with less community structure.

Similarly to the above, lety(β, p) be the stationary vector calculated from the net-
work rewired with probabilityp for PR withβ. In order to examine the relation between
VM and PR in terms of community structure, we calculated the correlation coefficients
C(x(α), y(β, p)) with respect to each pair of the uniform adoption probabilityα and the
rewiring probabilityp by settingβ = α. In Fig.4, we plotC(x(α), y(α, p)) with respect
to α, where each result with differentp is shown by a different marker.
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(a) Ameblo network
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(b) Blog network
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(c) Cosme network
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Fig. 4: The correlation coefficient between VM withα and PR withβ(= α) andp
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From Fig.4, we can see that for all of the four networks, each plotting result is very
similar to the corresponding one appearing in Fig.2. Namely, the correlation coefficients
C(x(α), y(α, p)) for any pair ofα andp are relatively small. Further, this experimental
results also suggest that the expected influence degree is not much affected by the com-
munity structure. As an interesting distinction,C(x(α), y(α, p)) is large whenp is large
for the Ameblo and Cosme networks, but a reverse tendency can be observed for the
Blog and Enron networks. Clarifying this reason is left for our future work.

5.5 Visual analyses

We further analyzed the effects of the uniform adoption probability on the expected
influence degree by visualizing the original networks. More specifically, we embeded
the nodes in each network into a 2-dimensinal space by using the cross-entropy method
[18], and plotted them as points. Then, we emphasized the highly influential nodes that
have the expected influence degree within the top 1 % by using (red) circles. In the
following experiments we only show the results using the Blog network as an example,
but similar results were obtained for the other networks.

Fig.5 are the visualization results for two different values ofα. Here we setα to
0.25 and 0.95 becauase they are considered to give the most and the least representative
values for the expected influence degree as discussed in Section 5.3. From Fig.5, we
can see that the highly influential nodes scatter around the entire the network for bothα
values. This partly explains the reason why the expected influence degree is not much
affected by the community structure. This figure also shows that these two visualization
results are close to each other.

(a) Blog network atα = 0.25 (b) Blog network atα = 0.95

Fig. 5: Visualization of Networks (VM)

We also analyzed the resullts of PR to see if there is any difference between VM and
PR. Fig.6 are the visualization results for PR, and the (red) circles are again the highly
ranked nodes that have the top 1 % PageRank score. Here we setβ to 0.25 and 0.95,
the same asα. From Fig.6, we can also see that the highly ranked nodes scatter around
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entire the network for bothβ values. Although we see that these nodes are different
from the results of VM, but there is no clear difference bewteen the results of different
β values.

(a) Blog network atβ = 0.25 (b) Blog network atβ = 0.95

Fig. 6: Visualization of Networks (PR)

6 Discussion

In this section, we discuss further extensions to our VM by employing majority rules
and non-uniform adoption probability.

In our VM, with probability (1− α), the opinion of each nodev ∈ V is influenced
by choosing one of its parents nodesB(v) and by any other nodeu ∈ V with probability
α according toz. That is, our VM deals with all neighbor nodes equally by chosing one
of neighbors at random. In a situation where a node decides its opinion considering the
opinions of more than one neighbor, theq-voter model is one of the basic stochastic
models [3]. In this model, the opinion of each nodev ∈ V is influenced by its chosenq
parent nodes when their opinion is the same. Similarly, our VM can be further extended
by adding some majority rules. We can also extend our VM with non-uniform adoption
probability, that is, it might be natural to assume that not all friends or acquaintances
have the same influence on a given node. To this end, we can introduce the weighted
transition matrixQ′ whose each element is defined byq′(u, v) = w(u, v)/

∑
u′∈V w(u′, v).

Here,w(u, v) is the weight over the link from a nodeu ∈ V to a nodev ∈ V and
w(u, v) > 0 if a(u, v) = 1; otherwisew(u, v) = 0. By using the column stochastic
transition matrixQ′, we can revise the Equation (8) as follows.

xt =
(
(1− α)Q′ + αzeT

)
xt−1 = (1− α)Q′xt−1 + αz. (10)

In future, we plan to analyze these further extended models.
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7 Conclusion

We addressed in this paper the problem of estimating the influential nodes in a social
network, and focused on a particular class of information diffusion model, a model for
opinion propagation. The popular model for opinion propagation is the Voter model in
which the main assumption is that people change their opinion based on their direct
neighbors, i.e. via local interaction. We extended this model to include the fact that
people’s opinion is also affected by the overall opinion distribution of the whole so-
ciety. The new model is called the Voter Model with uniform adoption (the extended
VM). It assumes that the network is directional because the people to people relation is
directional.

The uniform adoption implies the random opinion adoption of all nodes in the net-
work. We came to notice that this mechanism is the same as the random surfer jump
of the well known PageRank algorithm. This motivated us to investigate the relation-
ship between the extended VM and PageRank. We mathematically derived the ranking
vector of the extended VM and compared it with that of PageRank, and explored how
the two models are related by a series of extensive experiments using four real world
social networks. The both models assume a directed network and give different rank-
ings because the adjacency matrix is asymmetric. However, if we assume an undirected
network in which the adjacency matrix is symmetric, the both models become identical
and should give the same ranking. We investigated the effects of the uniform adoption
probability on node ranking and how the ranking of the extended VM and PageRank
are correlated to each other with this probability. The results indicate that the correla-
tion varies with the uniform adoptiopn probability. The correlation is very small when
the uniform adoption probability is small, but it becomes larger when both the uniform
adoption and the random surfer jump probabilities become larger. However, the visual-
ization rerults do not indicate the clear difference of the rankings between the different
values of the uniform adoption probability. We also investigated how the different com-
munity structure affects the correlation, but did not see the strong effects. We found that
the ranking becomes stable for the uniform adoption probability in the range of 0.15 and
0.35 and the self correlation within the extended Voter Model is high in this region. It is
interesting to note that the reported recommended value for the random surfer jump of
PageRank is 0.15, which is similar to our finding for the uniform adoption probability.
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