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Acquiring search control knowledge of high utility is
essential to reasoners in speeding up their problem-solv-
ing performance. In the domain of geometry problem-
solving, the role of “perceptual chunks”, an assembly of
diagram elements many problems share in common, in ef-
fectively guiding problem-solving search has been exten-
sively studied, but the issue of learning these chunks from
experiences has not been addressed so far. Although the
explanation-based learning technique is a typical learner
for search control knowledge, the goal-orientedness of its
chunking criterion leads to produce such search control
knowledge that can only be used for directly accomplish-
ing a target-concept, which is totally different from what
perceptual-chunks are for. This paper addresses the issues
of acquiring domain-specific perceptual-chunks and dem-
onstrating the utility of acquired chunks. The proposed
technique is that the learner acquires, for each control de-
cision node in the problem-solving traces, a chunk which
is an assembly of diagram elements that can be visually
recognizable and grouped together with the control deci-
sion node. Recognition rules implement this chunking
criterion in the learning system PCLEARN. We show the
feasibility of the proposed technique by investigating the
cost-effective utility of the learned perceptual chunks in
the geometry domain, and also discuss the potential for
the technique being applied to other domains.

1. Introduction

Acquiring search control knowledge (SCK) of
high utility is essential to reasoners in speeding up
their problem-solving performance. We have been
investigating in the domain of geometry problem-
solving what kind of SCK!' should be learned and

!Geometry proof problem-solving has been studied by
many researchers [3,4]. Its characteristic is that not only goal-
oriented backward reasoning but also bottom-up forward rea-
soning is essential to constructing a proof-tree efficiently. In
this paper, we focus only on such SCK that helps the solver
direct forward reasoning.

how it should be learned from the problem-solving
episode of a problem.

Let us look at the two problems in Fig. 1 to make
the research issues of this paper clear. The first
problem is to prove that ZBAC = ZDEC, when the
conditions of Fig. 1 are given. We can solve it only
after coming up with appropriate auxiliary-lines,
CF and DF with a new point F such that 4,C,F are
on a line and AC = CF, because these additional
lines enable us to use the midpoint condition BC =
CD as one of the antecedent conditions for proving
congruence of triangles and consequently it
prompts us to use the given condition AB = DE to
prove ADEF is an isosceles. The second problem,
the more difficult one, is to prove AAQR is an iso-
sceles. We can solve it similarly if we come up
with auxiliary-lines like APE, CE and DE with a
new point E such that 4, P, E are on a line and AP =
PE, because those lines enable us to use the two
given conditions, BP = PC and AB = CD to prove
that AABP and AECP are congruent and ACDE is
an isosceles.

The important thing is that although both prob-
lems have quite different goal-structures from each
other, they need to be solved by utilizing some of
the given conditions in exactly the same way with
similar auxiliary-lines. In other words, if such SCK
as shown in the upper left of Fig. 4 is provided to a
reasoner, it can solve both problems in an analo-
gous way as human experts do; the SCK tells that if
there is a midpoint condition XY = YZ with X, Y, Z
being on a line, then recall (or find) another col-
linear line VYW passing through Y such that V'Y =
YW in order to prove that AXYW is congruent to
AZYV. Preferably selecting to apply this SCK in re-
action to the above midpoint condition, if all the
other antecedent conditions of the SCK are satis-
fied, can lead the reasoner to the solutions in both
problems.

This sort of SCK corresponds to what is called
“perceptual-chunks” in the research field of cogni-
tive science where the role of perceptual-chunks in
effectively guiding problem-solving has been stud-
ied [6,7,9,14]. A perceptual-chunk is a chunk of
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Problem 1
A Givens:
BC=CD,
E AB=DE,
»_ BCD collinear,
B Cl"\ ,.-"' D' AEC collinear
Y/  Goal:

F  ZBAC=LDEC

ble Givens:
R BAR collinear,

A Q BPC collinear,
‘ D AQDC collinear,
PQR collinear,

7C AB=CD, BP=PC,
AQ=QD
YE  Goal: AQ=AR

Fig. 1. Two auxiliary-line problems in geometry. Note that the two problems have something in common about how to draw additional
lines and how to direct problem-solving search, although they have quite different goal-structures.

diagram elements which many problems share in
common as a portion of the whole diagram. Recall-
ing an appropriate perceptual-chunk at a control
decision node during problem-solving processes
and applying the macro-operator attached to the
perceptual-chunk contributes much to controlling
problem-solving search effectively. The most im-
portant characteristic of search-control by percep-
tual-chunks is that it is not goal-oriented; applying
a perceptual-chunk is intended for locally recog-
nizing it in the diagram of the problem, without
caring whether or not its application will directly
accomplish the goal of the problem. In spite of the
beneficial role of perceptual-chunks, however, the
past work has not addressed the issue of learning
useful perceptual-chunks from experiences.

The explanation-based learning (EBL) module
of PRODIGY [11] is a typical system that learns
SCK from experiences. It explains why a selection
at a control decision node has led the reasoner to a
target concept and chunks only the features rel-
evant to the explanation as the antecedent condi-
tions of the learned SCK. The goal-orientedness of
its chunking criterion produces the kind of SCK
that is used for directly accomplishing a target con-
cept, which is totally different from perceptual-
chunks. In this sense, we cannot expect EBL sys-
tems to learn useful perceptual-chunks [15].

This paper addresses the issue of learning per-
ceptual-chunks from an experience. Its basic con-
cept is to chunk the diagram elements that can be
visually recognizable and grouped together with
the diagram elements corresponding to each con-
trol decision node of the problem-solving traces.
“Recognition rules” implement this chunking crite-
rion in the learning system PCLEARN (Perceptual
Chunk LEARNer). Each of them is domain-specific
knowledge which describes the necessary condi-

tions for each domain object to be visually recog-
nizable, representing semantically how we human
beings see diagram elements. Notice that the
chunked area does not always include the goal of
the problem because the goal is not always recog-
nizable (i.e., too far away) at the local control deci-
sion node. This distinguishes the PCLEARN sys-
tem from the EBL learner which chunks all the
paths to the target concept of the problem, in most
cases the goal of the problem.

In the second section, we show the basic notion
of recognition rules and its use for determining the
area to be chunked out. In the third section, we dis-
cuss the feasibility of the recognition rules as a per-
ceptual criterion, by presenting some experimental
data on the operationality and cost-effective utility
of the learned perceptual-chunks when the solver
uses them as search control knowledge. In the
fourth section, we discuss the thrust of this percep-
tual-chunking method in terms of comparisons
with other methods as well as its applicability to
other domains. Further, we discuss how the struc-
ture of “recognition rules” is designed so as to
overcome the tacitness of the knowledge to be
learned, which is one of the key issues in the re-
search field of knowledge acquisition.

2. The PCLEARN Chunking Module
2.1. Recognition Rules

PCLEARN, after solving a problem?, learns a
perceptual chunk with macro-operator information

2In case of auxiliary-line problems as shown in Fig. 1,
PCLEARN needs to be taught about how to draw lines in order
to solve them. Note that once it learns a chunk, the chunk can
be used to find auxiliary lines.
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recognizable(X):- recognizable(s(X,Y)).

recognizable(tn(X,Y,Z)):-

recognizable(s(X,Y)):- recognizable(a(X,Y,Z)).

recognizable(s(X,Y)):- recognizable(tn(X,Y,Z)).

recognizable(s(X,Y)):- recognizable(X), recognizable(Y), exist(s(X.Y)).
recognizable(s(X,Y)):- recognizable(X), recognizable(Y), collinear(X,Z.Y).
recognizable(a(X,Y,Z)):- recognizable(s(X,Y)), recognizable(s(Y,Z)).

recognizable(s(X,Y)), recognizable(s(Y,Z)), recognizable(s(Z,X)).

where s(X,Y) -- segment XY, tr(X,YZ) -- triangle XYZ, a(X,Y,Z) -- angle XYZ
The literals underlined are additional conditions.

Fig. 2. The set of recognition rules in geometry. Each rule describes the necessary conditions for a domain object to be “visually
recognizable”. These rules are as a whole a semantic representation of how we human beings see domain objects.

for each control decision node* of the given prob-
lem-solving traces. For the purpose of chunking
diagram elements that can be visually recognizable
and grouped together for each control decision
node, we need to provide a criterion for determin-
ing what is “visually recognizable”. The use of rec-
ognition rules determines it in PCLEARN.

Recognition rules themselves are a semantic
representation of how human experts visualize do-
main objects. More precisely speaking, each rule
itself describes the necessary conditions for a do-
main object to be “visually recognizable”, consist-
ing of the recognizability of other related domain
objects and some additional conditions.

Fig. 2 is the set of recognition rules we provided
in the domain of geometry. Points, segments, trian-
gles and angles are the domain objects in this do-
main. The first rule states that a point X is always
recognizable when a segment XY is found recog-
nizable because X is a constituting member of X7Y.
In general, when an object is already found recog-
nizable and we want to prove the recognizability of
another object which is a structurally constituting
member of the former object, we do not need any
additional conditions. The first three rules in Fig. 2
belong to this category. On the other hand, when
we prove the recognizability of an object from the
other objects which structurally compose that tar-
get object, we need some (sometimes no) addition-
al conditions. For example, when we prove the rec-
ognizability of segment XY from the recogni-

3A control decision node is a node which is a member of the
successful proof tree with more than one tested domain rules,
some of which have been successfully applied.

zabilities of the two points X and Y, an additional
condition is needed, i.e., the segment XY actually
has to exist in the problem space (corresponding to
exist(s(X.,Y)) in Fig. 2), or two segments s(X,Z) and
s(Z,Y) have to be on the same line for another point
Z (corresponding to collinear(X,Z,Y) in Fig. 2). The
last two recognition rules are the examples where
no additional condition is needed by chance, al-
though they belong to this category.

2.2. Chunking by Use of Recognition Rules

For the purpose of chunking perceptual-chunks
for each control decision node, PCLEARN first (1)
identifies all the recognizable domain objects when
the objects included in the domain rule* that has
been successfully applied to the control decision
node are supposed to be recognizable, and (2) enu-
merates all the recognizable features of the above
objects, and (3) finally obtains a perceptual chunk
which is the assembly of the recognizable objects
with the recognizable features.

2.2.1. Step 1: Picking up Recognizable Objects

The first step is to enumerate all the recogniz-
able objects relevant to a control decision node.
The procedures are

1. to assert that all the objects which appear as the
arguments of the literals in the SAR are recog-
nizable, and

2. to enumerate all the objects which can be
proved as recognizable, using recognition
rules.

4This rule is denoted as SAR (Successfully 4pplied Rule) in
this paper.
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(D :node

/C& : link

Domain rule ¢ ...____
Cong-by-2Side-1Ang

a(b,a,c)=a(d,e,c)

a(c,a,b)=a(d,e,f)

a(c,a,b)=a(c,f,d)

Fig. 3. The successful proof tree of Problem 1 of Fig. 1. A proof tree consists of nodes and links; nodes are statements including the given
conditions and the features that have been produced as a result of inference, and each link connecting some nodes to an upper node
represents the domain rule that has been used for deriving the upper node.

Fig. 3 is a successful proof tree of the Problem 1
in Fig. 1. The underlined nodes are the control de-
cision nodes. Here, the learning process for the
control decision node, AC=CF, is illustrated. The
SAR for this control decision node is Cong-by-
2Side-1Ang. First, the objects appearing in this
SAR, s(b,¢), s(a,c), s(c,d), s(f,c), a(b,c,a), a(d,c,f),
tr(a,b,c) and tr(c,d), are asserted to be recogniz-
able’. Then, by use of the recognition rules, the fol-
lowing objects, a, b, ¢, d, f, s(a,b). s(df), s(b,d),
s(a,f), a(b,a,c), a(b,a,f), a(a,b,c), a(a,b,d), a(d,f,c),
a(d,f,a), a(f,d,c), a(f,d,b), a(b,cf) and a(a,c,d) are
justified to be recognizable®.

2.2.2. Step 2: Enumerating Recognizable Features
The second step is to derive and pick up from the
problem-solving traces all the recognizable fea-

SThese are the core objects from which all the recognizable
objects will be enumerated using recognition rules.

There is a hueristic in using recognition rules; it is to first
use the rules of the first category mentioned in Section 2.1 to
prove the recognizability of the more basic and lower objects
in terms of object hierarchy, and then to use the rules of the
second category to enumerate the recognizability of the upper
objects.

tures of the above recognizable objects. The proce-
dures are

1. the literals appearing in the SAR are picked up
as recognizable,

2. the literals of the additional conditions which
appeared in the recognition rules used success-
fully for proving the recognizability of objects
in Step 1 are picked up as recognizable, and

3. all the features that can be derived from the
above recognizable literals using domain rules
are regarded as recognizable.

After the third step of Step 2, we get a derivation
tree consisting of the enumerated recognizable fea-
tures. Importantly, the derivation tree itself repre-
sents a piece of macro-operator information that
can be applied to the same control decision node in
future problems; the lowest nodes of the tree are
the IF-part of the macro-operator and the other
nodes are the THEN-part. If we notice that the
macro-operator has been derived only from the
recognizable features that have been determined
by use of recognition rules, the significant role of
recognition rules in chunking the macro-operator
may be clear.
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If there is a control decision node, If there is a control decision node, If there is a control decision node,
XY=YZ _T1FXY=YZ,WY=YV, XY=YZ [gxy-vZ, XW=WV, £XYZ=LWYZ
Y—2  collinearXYZ, X collinearXYZ, Y IF £XYZ=LWYZ,
collinearVYW collinearXWV WY?XY’

THEN WTHEN collinearWZX
LXYW=LZYV, Y, YW/ 2y, THEN
AXYW=mAZYYV, LXYW=2XZV, AXYZ = AWYZ,

W LXWY=LZVY, LXWY=24XVZ, W Z XLYZW: LYZX,
LWXY=2LVZY, Z V AXYWw0AXZV LYZX=L LYZW=L,
XW 4 VZ, XW=ZV XZ=WZ,
. .. . .. LYXZ= LYWL,
If there is a control decision node, If there is a control decision node, . R
. - If there is a control decision node,
XY=XZ LXYZ=1 Y/ ZW
X IF XY=XZ X IF £XYw=L XY/
THEN collinearZYW, y IF XY/ w
LXYZ=£XZY THEN THEN
Y Z Z_ 1Y W /XYW=£XYZ Z W LYXW=LZWX

Suwa and Motoda: PCLEARN

Fig. 4. The perceptual-chunks learned by PCLEARN and their macro-operator information. Each one includes information about (1)
the control decision node to which the macro-operator should be applied, (2) the set of antecedent conditions and (3) the statements that

will be produced when successfully applied.

Let us look at the example case of learning from
the control decision node AC=CF in Fig. 3. The
recognizable literals to be picked up before the
derivation process are shown in Fig. 3 as the nodes
colored grey, out of which the literals that have
been incorporated as a result of using recognition
rules (the 2nd of Step 2) are collinear(a,c,f), col-
linear(b,c,d), exist(s(a,b)), exist(s(df)). The first
two, collinear(a,c,f) and collinear(b,c,d), have
been picked up because they appeared in the recog-
nition rules used for proving the recognizability of
the object s(af) and s(b,d) respectively. Out of
these four, the last two will not be used in the deri-
vation process and therefore removed from the
macro-operator.

Notice here that due to the existence of some
additional conditions in the set of recognition rules,
the learned macro-operator becomes more spe-
cific’ than the SAR itself. In case of the above ex-
ample, incorporating the two features of collinea-
rity has been significant in obtaining a perceptual-
chunk of the two congruent triangles located in a
completely point-symmetry (the upper left of Fig.
4), which is more specific than the two merely con-
gruent triangles.

"This specificity directly influences much the opera-
tionality of the learned perceptual-chunks. In this sense, rec-
ognition rules play a crucial role in determining the chunked
area.

2.2.3. Step 3: Generalizing

The final step is to generalize each node of the
acquired derivation tree by dissolving the bindings
of the variables of the used domain rules. The gen-
eralized tree itself represents a macro-operator that
has been learned for the control decision node. In
case of the above example, the one in the upper left
of Fig. 4 is acquired.

We call this sort of macro-operator a perceptu-
ally-chunked macro-operator because the recogni-
tion rules work as a perceptual criterion for deter-
mining the area to be chunked out, just as human
experts might do visually. Also in this sense, we
can say that chunking by use of recognition rules
has a connotation of visually controlling learning
processes.

3. Experimental Results

In this section, we describe some experiments
for showing the feasibility of PCLEARN percep-
tual-chunking in comparison with the EBL system
that learns SCK.

The typical EBL system that learns SCK is PRO-
DIGY [11]. It implements selective learning by
providing four kinds of meta-level target-concepts,
“succeeds”, “fails”, “sole-alternative”, and “‘goal-
interference”. However, in the domain of geometry
problem-solving, learning from *“fails”, “sole-al-
ternative”, and “goal-interference” will not lead to
useful knowledge, because in this domain there
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Table 1

The frequencies of macro-operators being learned from the 20
different problems, for both learners. The number of those
macro-operators which have been learned more than once is
an index showing the capability of the learner’s acquiring
general knowledge

The number of macro-operators

Frequency ™5 T EARN EBL
1 43 86
2 9 7
3 5 0
4 3 1
more than 4 4 0
total 64 94

may be no positive reason why a choice leads to a
failure, and there may be no problem-solving phe-
nomenon corresponding to sole-alternative and
goal-interference. Therefore, we compare the
PCLEARN system with the EBL system that learns
from “succeeds” in which the goal-node of the
problem is specified as the target-concept and the
learner acquires a so-called preference rule by ex-
plaining why the selection of a domain rule at each
control decision node contributed to achieving the
goal.

Two experiments have been done for investigat-
ing generality and utility of the learned knowledge.

3.1. Generality of the Learned Knowledge

Whether or not the learned macro-operator rep-
resents a general and meaningful perceptual chunk
depends upon how frequently it is learned from
various problems. We carried out an experiment in
which each of the 20 geometry problems (shown in
Appendix A) were separately solved and learned
by both learners i.e., the PCLEARN and EBL sys-
tems.

Table 1 shows how many times the same macro-
operator has been learned from the 20 problems for
both learners. PCLEARN learns the same macros
much more frequently (i.e., more than twice),
while it is quite rare that the EBL learner acquires
the same macro more than twice. This is because
the macro-operators learned by EBL tend to be
more specific to the goal-structure of the original
problems. It suggests that goal-orientedness of the
EBL chunking criterion does not suit the nature of

the geometry domain where there is little consist-
ency in goal-structure across problems but rather
more consistency in perceptual chunks across
problems. In this respect, PCLEARN is superior to
EBL systems as a method of learning domain-spe-
cific perceptual chunks in this domain.

3.2. Cost-Effective Utility of the Learned Knowl-
edge

In order to evaluate the feasibility of PCLEARN
as a learner for speeding up problem-solving per-
formance, we evaluated the cost-effective utility of
each of the learned macro-operators throughout its
use over many problems according to the following
formula,

Utility = TotalSavings — TotalMatchCosts. (1)

where TotalSavings is the cumulative cpu-time
benefit that results from applying the macro-opera-
tor frequently, so-called re-ordering effect [10],
and TotalMatchCosts is the cumulative time cost
spent in testing to apply® the macro-operator in
vain over frequent testings during many problems.
Every time a problem is solved, the above costs
and benefits are measured for each macro-opera-
tor, as a result of which the utility of each macro-
operator is updated.

The cpu-time benefit of a macro-operator is cal-
culated, when it was applicable to a problem, by
subtracting the costs relevant to the use of the
macro-operator from the corresponding costs in
solving the same problem without any macro-op-
erators’. The former costs tend to become large by
the existence of macro-operators because they po-
tentially cause the solver to try more matchings in
searching for applicable knowledge, while the lat-
ter may include the costs spent in vain by produc-
ing some irrelevant branches of nodes at the deci-
sion node before applying the successful domain
rule, which the solver would have avoided by use

8The solver first tries to use the available macro-operators,
and after finding it impossible to apply any of them the solver
turns to use the domain knowledge. During this process also,
the matching costs in “testing to apply” the macro-operators
are surely spent. So TotalMatchCosts includes all this sort of
matching costs for each macro-operator.

9The results of solving all the problems without macro-op-
erators are provided in advance.
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Fig. 5. The learning curves obtained for PCLEARN, the EBL learner and the solver that does not use any learned knowledge. Since the
vertical axis indicates cumulative costs, the more gradual increase of learning curves means that there are some speed-up effects due to

using learned knowledge.

Table 2
The costs of testing to apply learned knowledge during solving
20 problems, in both learners

Total |Frequency|Cost per one
(msec) |of testing |testing(msec)
PCLEARN|288,733| 1,146 252
EBL 976,963 1,910 511

of the macro-operator. The tradeoff between these
two effects influences the benefit of each macro-
operator.

We do not separate a training session from a
testing one. Instead, going through the 20 prob-
lems, each one is solved using only a limited
number'® of macro-operators that have been al-
ready learned and have scored high utility values
up to that point. The problem order is assigned so
that the problems become progressively larger.

In Fig. 5, the cumulative problem-solving costs
are plotted against the number of problems solved
up to that point, for both cases of using PCLEARN
macro-operators (“with-PCLEARN-macro” sys-

19In this experiment, the currently best 25 macro-operators
in terms of utility values are selected as available for the next
problem, every time each problem is solved.

Table 3

The frequencies of learned knowledge being applied to other
problems, and its percentage against all the frequencies of
testing to apply them

Frequency| Frequency |Percentage

of testing | of applying| (%)
1,146 39 34
1,910 12 0.6

PCLEARN
EBL

Table 4

The average and standard deviation of the sizes of learned
knowledge; comparison the case of calculating over the ap-
plied knowledge with the case of calculating over all the
learned knowledge

All macros Applied macros
Standard Standard
Average Deviation Average Deviation
PCLEARN 3.3 14 2.7 1.3
EBL 5.0 1.8 32 1.2

tem) and the EBL macro-operators (“with-EBL-
macro” system), together with the case of the sys-
tem without any macro-operators (“without-mac-
ros” system) for reference. The costs of the “with-
PCLEARN-macro” system become worse for the
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first several problems than the “without-macro”
system due to the increased matchings by use of the
macro-operators, but after going through eleven
problems, the slope of the cumulative costs gradu-
ally begins to become smaller than that of the
“without-macro” system, i.e., learning effects by
use of macro-operators begin to appear. On the
other hand, the costs of the “with-EBL-macro” sys-
tem are larger by the costs of using macro-opera-
tors than that of the “without-macros” system,
which indicates that only a few macro-operators
were useful out of the learned ones.

The results of Tables 2, 3 and 4 can be an expla-
nation of why the EBL macro-operators can ex-
hibit little learning effect in the geometry domain.
Table 2 shows, for both the PCLEARN and EBL
macro-operators, the total costs of testing to apply
macro-operators at control choice nodes. The aver-
age costs per one testing of the EBL macro-opera-
tors are about double the costs per one testing of
the PCLEARN macro-operators. Table 3 shows the
applicability of both macro-operators. The
PCLEARN macro-operators scored a higher per-
centage of successful applications, i.e., higher ap-
plicability, in this domain than the EBL macro-op-
erators. The lower applicability of the EBL macro-
operators may be an explanation of their lower
learning effect. Table 4 shows why the EBL
macro-operators cost much more in testing and
have lower applicability. The average sizes'' and
the standard deviations of the applied macro-op-
erators weighed with the frequency of applications
are compared with those of all the learned macro-
operators. For the PCLEARN macro-operators, the
distributions of the sizes of the learned macro-op-
erators and the applied ones are not very different
from each other, which tells that PCLEARN pro-
duces macro-operators with appropriate size in
terms of applicability. On the other hand, however,
for the EBL macro-operators the distribution of the
sizes of the learned macro-operators is extremely
shifted towards larger size than that of the applied
ones, which indicates that the EBL method tends to
produce too large macro-operators in terms of ap-
plicability.

To sum up the above observations, the principle

""For simplicity, we define that the size of a macro-operator
is equal to the number of its preconditions, reflecting the ease
of finding appropriate instantiations of the preconditions.

of EBL techniques to chunk the path from a control
choice node to the goal of the problem tends to
make the size of the learned knowledge too large,
causing too many costs in using it, and also tends to
make the learned knowledge too specific to the
goal-structure of the problem, causing low applica-
bility and therefore little speed-up effect in future
problems. On the contrary, use of the “recognition
rules” in PCLEARN is effective in the domain of
geometry problem-solving in the sense that it con-
tributes much to acquiring macro-operators with
appropriate size and better cost-effective perform-
ance. Fig. 4 shows the set of perceptually-chunked
macro-operators which have scored high utility
values after going through all the problems.

4. Discussion
4.1. Difference from the Operationality Criterion

Since the PCLEARN system chunks a partial
structure of the problem-solving traces, some read-
ers may associate its chunking criterion with the
concept of the operationality criterion [12] that has
been discussed with EBL. Here we have to discuss
that both have different connotations from each
other; both ideas come from different purposes for
chunking, different semantics, and the different
ways in using chunking criteria.

First, the purpose of PCLEARN chunking is to
use the learned knowledge for parsing the whole
problem space into some meaningful subparts,
which helps a solver avoid traversing irrelevant
paths of inference as shown in Koedinger’s CD
model [7]. On the other hand, the purpose of learn-
ing by use of the operationality criterion is to ac-
quire operational and usable knowledge, e.g., in
recognition tasks.

This difference in purpose brings about the dif-
ference of semantics; the semantic of PCLEARN
chunking is to chunk out what is “visually
grouped” in the light of human being’s way of
visualizing domain objects, while the semantic of
learning by use of the operationality criterion is to
chunk out such a portion of the obtained explana-
tion tree that is “described only by operational
predicates (i.e., descriptive predicates) and not by
functional predicates”, in recognition tasks. Here
one may regard what is represented by descriptive
predicates as equal to what is chunked by use of
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recognition rules, and also think that PCLEARN is
an extension of operationality criterion. But it is
not correct; distinguishing functional and descrip-
tive concepts (e.g., “liftable” vs. “with-hand” in the
example of CUP [16]) is one thing and grouping
the represented concepts into some chunks visually
is another. The difference between both learners
may not yet be clear enough in the above example,
because the concept of a single cup is not so com-
plicated as to make humans feel like parsing it into
sub-concepts. But suppose an object with more
complicated configurations which a human rea-
soner tries to parse into smaller parts when he
thinks of the object. In this example, the explana-
tion tree of the whole object would be represented
by many predicates, some of which are functional
and others descriptive. Here, the most important
thing is to parse the whole object into several
subparts from a viewpoint of “visual grouping”,
not from a viewpoint of differentiating between
functional and descriptive predicates. In this exam-
ple, it is clear that the criteria of both chunking
methods will bring about different learning results.

In order to implement the above purposes and
semantics of learning, both chunking methods em-
ploy different criteria in different ways. EBL sys-
tems are provided in advance with a list of opera-
tional (descriptive) predicates that will work in tar-
get tasks, and chunks such a portion of the obtained
explanation tree that is represented by those opera-
tional predicates. However, we cannot determine
in advance what predicates in the explanation tree
are visually grouped at each of the local control
decision nodes, i.e., in other words, it must be de-
pendent on each control decision node. Thus, the
PCLEARN system dynamically determines it at
each control decision node, using knowledge about
how humans visualize each domain object in rela-
tion to other objects.

4.2. Comparison with Other Chunking Methods

Other kinds of chunking methods to be men-
tioned are SOAR [8] and ACT theory [1], in which
the learners chunk the problem-solving processes
relevant to satisfying the subgoals the solvers have
established. We call these methods, including
EBL, goal-oriented chunking because they share
the view that the learner should chunk the goal-ori-
ented problem-solving processes toward accom-
plishing subgoals and/or target-concepts. Com-

pared to these works, the PCLEARN’s chunking
criterion is new in the sense that it is not goal-ori-
ented but rather a bottom-up perception-oriented
chunking mechanism. In this respect, we call it
perceptual chunking.

4.3. Applicability of Perceptual Chunking to Other
Domains

The characterization of the PCLEARN system is
to acquire a useful set of perceptual chunks which
help the solver parse problem diagrams into sev-
eral subparts, contributing much to focusing only
on some key inference steps to generate a solution
plan. Geometry is a class of problem domains in
which such inference is crucially required.

The perceptual-chunking technique can be
straightforwardly applied to those domains in
which proof or diagnosis is performed concerning
a complex structured object that consists of several
unit objects, because

— there are a lot of part-whole relationships in
that sort of structured objects, and

— the recognition rules relate one object to an-
other (or other objects) in terms of recogniz-
ability, when the former object has a part-
whole relation to the latter. For example, the
functor s in Fig. 1 represents a part-whole rela-
tion between a segment XY and the constituent
points X and Y.

In the above characterization, we exclude such a
class of domains in which problem-solving opera-
tors are applied (1) to add or delete something to
and from the current state of the target object or (2)
to transform the structure/shape of the target ob-
ject, like the domain of designing; in such a domain
part-whole relationships appear and/or disappear
as inference goes on, until a goal state of the target
structured object is obtained. It is an open problem
to be investigated whether recognition rules can be
described in advance in an environment where
part-whole relations are not fixed, and whether,
even if they can be, they may work well to parsing
all inference steps into subparts.

4.4. The Structure of Recognition Rules
Perceptual chunks are a kind of tacit knowledge.

Anderson [2] argues that the knowledge underly-
ing expertise is often tacit due to the process of
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knowledge compilation; as experts learn problem-
solving strategies from experience in a domain,
they tend to become unaware of the individual in-
ference steps for deriving the useful associations
between situations and actions which they were
aware of when they were novices. Perceptual
chunks are the product of grouping some diagram
constructs together via visual scanning on problem
diagrams [7.9], accompanied by applications of
problem-solving operators. They are tacit in two
ways; firstly even experts cannot articulate why a
perceptual chunk is useful because they have al-
most forgotten the problem situations from which
they acquired it in the past as well as the individual
steps of visual grouping which they did to acquire
it. Secondly, more importantly, experts cannot eas-
ily articulate what kind of perceptual chunks they
have if they are asked independently of problems,
because they can associate the chunks only with
some problem elements they are faced with.

We will discuss how the PCLEARN system ad-
dresses the issue of acquiring perceptual-chunks
which are tacit in the above senses, from a view
point of relationships between knowledge acquisi-
tion and machine learning. The PCLEARN system
basically employs machine learning techniques of
automating the process of acquiring chunks from
experiences. But the automated process is control-
led by the knowledge that governs how we human
beings recognize diagram elements in problems,
and the issue on how to elicit the knowledge itself
from experts belongs to the field of knowledge ac-
quisition.

However, the knowledge about how to recog-
nize diagrams is also too tacit for experts to easily
articulate. The commonly used technique in
knowledge acquisition is to explicitly design the
structure of the knowledge we want to elicit so that
experts may have only to “fill in” the structure [13]
in articulating knowledge. We designed the struc-
ture of the knowledge about how to recognize dia-
grams such thatit is represented as a relation among
recognizability of discrete diagram units that have
a part-whole relation to each other (i.e., domain
objects); experts have only to articulate the neces-
sary conditions for a diagram unit to be recogniz-
able, independently of problem-solving processes
and it will work well as a chunking criterion in
learning. Although the recognition rules in the ge-
ometry domain are comparably easy to be elicited,
the proposed structure is general enough to be ap-

plied to other domains and thus may work well as a
medium of articulating'? a plausible set of recogni-
tion rules in those domains.

5. Conclusion

We proposed a new mechanism of learning do-
main-specific perceptual-chunks from experience
that can be used as search control knowledge. Its
basic concept is that the learner acquires, for each
control decision node in the problem-solving
traces, a chunk which is an assembly of diagram
elements that can be visually recognizable and
grouped together with the control decision node.
Its chunking criterion is quite different from that of
the other learners that chunk the goal-oriented
problem-solving processes of the solver, e.g., ex-
planation-based learners. Recognition rules, do-
main-specific knowledge relating one object to
other objects in terms of “recognizability” when
the former has a part-whole relation to the latter,
implement this chunking criterion in PCLEARN.
The set of rules can be regarded as a semantic rep-
resentation of how human beings see objects and
its effective use as a guide of learning processes is
demonstrated here. The use of the perceptual-
chunks obtained semantically guides problem-
solving processes toward relevant paths of in-
ference just as human beings do visually, although
PCLEARN syntactically does sentential searches
in logic for applicable perceptual-chunks.

In the domain of geometry problem-solving, a
typical domain where diagrammatic reasoning is
effective, we made some experiments of measur-
ing the utility of the learned perceptual chunks and
showed that the chunks learned by PCLEARN can
work as search control knowledge with higher ap-
plicability and better cost-effective utility, com-
pared to conventional learners like EBL systems.
The results suggest that the chunking criteria pro-
posed are acceptable and useful in this domain.

The results of this paper suggest that the basic
notion of the PCLEARN system is general enough
to be applied on a large scale to those domains in
which proof or diagnosis is performed concerning
a structured object that consists of some unit ob-
jects.

2We used this terminology in the same sense as Gruber
does in his book [5, p. 232].
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