Consistency Based Feature Selection

Manoranjan Dash® and Huan Liu! and Hiroshi Motoda?

! School of Computing, National University of Singapore, Singapore.
2 Division of Intelligent Sys Sci, Osaka University, Ibaraki, Osaka 567, Japan.

Abstract. Feature selection is an effective technique in dealing with
dimensionality reduction for classification task, a main component of
data mining. It searches for an “optimal” subset of features. The search
strategies under consideration are one of the three: complete, heuristic,
and probabilistic. Existing algorithms adopt various measures to evaluate
the goodness of feature subsets. This work focuses on one measure called
consistency. We study its properties in comparison with other major
measures and different ways of using this measure in search of feature
subsets. We conduct an empirical study to examine the pros and cons of
these different search methods using consistency. Through this extensive
exercise, we alm to provide a comprehensive view of this measure and its
relations with other measures and a guideline of the use of this measure
with different search strategies facing a new application.

1 Introduction

Classification is an important data mining task. The basic problem of classifica-
tion is to classify a given pattern (example) to one of m known classes. A pat-
tern of features presumably contains enough information to distinguish among
the classes. When a classification problem is defined by features, the number of
features (N) can be quite large. Pattern classification is inherently connected to
information reduction. Features can also be redundant or irrelevant. An irrele-
vant feature does not affect the underlying structure of the data in any way. A
redundant feature does not provide anything new in describing the underlying
structure. Because redundant and irrelevant information is cached inside the to-
tality of the features, a classifier that uses all features will perform worse than
a classifier that uses relevant features that maximize interclass differences and
minimize intraclass differences [4]. Feature selection is a task of searching for “op-
timal” subset of features from all available features. Its motivation is three-fold:
simplifying the classifier; tmproving the accuracy of the classifier; and reducing
data dimensionality for the classifier. The last point is particularly relevant when
a classifier is unable to handle large volumes of data.

Features may not be all relevant. In order to measure the usefulness (or
goodness) of selected features, we need selection criteria. The class separabil-
ity is often used as one of the basic selection criteria. When a set of features
maximizes the class separability, it is considered well suited for classification.
From a statistics viewpoint, five different measurements for class separability

are analyzed in [8]: error probability, interclass distance, probabilistic distance,
probabilistic dependence and entropy. Information-theoretic considerations [20]
suggested something similar: using a good feature of discrimination provides
compact descriptions of each class, and these descriptions are maximally dis-
tinct. Geometrically, this constraint can be interpreted to mean that (i) such a
feature takes on nearly identical values for all examples of the same class, and
(ii) it takes on some different values for all examples of the other class. In this
work, we use a selection criterion that does not attempt to maximize the class
separability but tries to retain the discriminating power of the data defined by
original features. Feature selection is formalized as finding the smallest set of
features that can distinguish classes as if with the full set. In other words, with
a subset S of features, no two examples with the same values on S have different
class labels [1]. We study the pros and cons of this measure in comparison with
other measures. Another aspect of feature selection is related to the study of
search strategies. Extensive research efforts have been devoted to this study [19,
7,3]. Examples are Branch &Bound [16], Relief [11], Wrapper methods [12], and
Las Vegas algorithms [14]. The search process starts with either an empty set or
a full set. For the former, it expands the search space by adding one feature at
a time (Forward Selection) - an example is Focus [1]; for the latter, it expands
the search space by deleting one feature at a time (Backward Selection) - an
example is ‘Branch & Bound’ [16].

The contributions of this paper are: (a) studying a monotonic criterion for
feature selection w.r.t. other selection criteria; (b) exploring its properties and
use in exhaustive (complete), heuristic, and probabilist search; (c) comparing
its different uses with a number of data sets; and (d) suggesting a framework of
when to use what. In the rest of the paper P is the number of patterns, N is
the number of features, M is the size of relevant features, and m is the number
of class labels.

2 Consistency Measure

Consistency can be interpreted as zero inconsistency. If we attain zero inconsis-
tency, we achieve 100% consistency. Throughout this paper we use consistency
and inconsistency interchangeably.

2.1 The Measure

The suggested measure U is an inconsistency rate over the data set for a given
feature set. In the following description pattern means a set of values for the
features in a candidate subset. The inconsistency rate is calculated as follows:
(1) two patterns are considered inconsistent if they match all but their class
labels, for example, an inconsistency is caused by two instances (0 1 a) and (0 1
a) with different classes (a and a@); and (2) the inconsistency count for a pattern
is the number of times it appears in the data minus the largest number among
different class labels: for example, let us assume there are n matching patterns,

among which ¢; patterns belong to labely, ¢y to labely, and c3 to labels where
c1+cates = n. If ¢ is the largest among the three, the inconsistency count is (n—
¢3); and (3) the inconsistency rate is the sum of all the inconsistency counts for
all possible patterns of a feature subset divided by the total number of patterns
(P). By employing a hashing mechanism, we can compute the inconsistency
rate approximately with a time complexity of O(P). Unlike the commonly used
univariate measures in literature [18], this is a multivariate measure which checks
a subset of features at a time.

2.2 Other Evaluation Measures

An optimal subset is always relative to a certain evaluation function. An optimal
subset chosen using one evaluation function may not be the same as that using
another evaluation function. Typically, an evaluation function tries to measure
the discriminating ability of a feature or a subset to distinguish the different
class labels. Blum and Langley [3] grouped different feature selection methods
into two broad groups (i.e., filter and wrapper) based on their use of an induc-
tive algorithm in feature selection or not. Filter methods are independent of an
inductive algorithm, whereas wrapper methods are not. Ben-Bassat [2] grouped
the evaluation functions until 1982 into three categories: information or un-
certainty measures, distance measures, and dependence measures. Considering
these divisions and latest developments, we divide the evaluation functions into
five categories: distance, information (or uncertainty), dependence, consistency,
and classifier error rate. Distance Measures It is also known as separability,
divergence, or discrimination measure. For a two-class problem, a feature X is
preferred to another feature Y if X induces a greater difference between the
two-class conditional probabilities than Y; if the difference is zero then X and
Y are indistinguishable. An example is Fuclidean distance. Information Mea-
sures These measures typically determine the information gain from a feature.
The information gain from a feature X is defined as the difference between the
prior uncertainty and expected posterior uncertainty using X. Feature X is pre-
ferred to feature Y if the information gain from feature X is greater than that
from feature Y [2]. An example is entropy. Dependence Measures Depen-
dence measures or correlation measures quantify the ability to predict the value
of one variable from the value of another variable. Correlation coefficient is a
classical dependence measure and can be used to find the correlation between a
feature and a class. If the correlation of feature X with class C'is higher than the
correlation of feature Y with C', then feature X is preferred to Y. A slight vari-
ation of this is to determine the dependence of a feature on other features; this
value indicates the degree of redundancy of the feature. All evaluation functions
based on dependence measures can be divided between distance and information
measures. But, these are still kept as a separate category because, conceptually,
they represent a different viewpoint [2]. Consistency Measures This type of
measures has been in focus recently. They are characteristically different from
other measures because of their heavy reliance on the training data and use of
Min-Features bias in selecting a subset of features [1]. Min-Features bias prefers

consistent hypotheses definable over features as few as possible. This measure
is similar to the consistency measure U we described in the beginning of this
section with the difference that U can handle noise (e.g. misclassification). Ex-
ror Rate Measures The methods using this type of evaluation function are
called “wrapper methods”, i.e., the classifier is the evaluation function. As the
features are selected using the classifier that later uses these selected features in
predicting the class labels of unseen instances, the accuracy level is very high
although computationally rather costly [9].

2.3 Consistency Measure vis-a-vis other measures

We compare consistency measure with other measures. First, consistency mea-
sure is monotonic and others are not. Assuming we have subsets {Sp, S, ..., S, }
of features, we have a measure U that evaluates each subset S;. The monotonicity
condition requires the following: Sp D S1 D ... D S, = U(Sy) < U(S51) < ... <
U(Sp). Second, for the consistency measure, a feature subset can be evaluated in
O(P). Tt is usually costlier for other measures. For example, to construct a de-
cision tree in order to have predictive accuracy, it requires at least O(P log P);
to calculate the distances, it requires O(P?). Third, consistency measure can
help remove both redundant and irrelevant features; other measures may not
do so. Last, consistency measure is capable of handling some noise in the data
reflected as a percentage of inconsistencies. This percentage can be obtained by
going through the data once. In short, consistency measure is monotonic, fast,
able to remove redundant and/or irrelevant features, and capable of handling
some noise’

3 Ways of Using Consistency Measure

Different search strategies pose further constraints on a selection criterion. We
demonstrate that the consistency measure can be employed in common forms of
search without modification. Five different algorithms represent standard search
strategies: erhaustive - Focus [1], complete - ABB [13], heuristic - SetCover [6],
probabilistic - LVF [14], and hybrid of ABB and LVF - QBB. We examine their
advantages and disadvantages.

Focus: exhaustive search: Focus [1] starts with an empty set and carries out
breadth-first search until it finds a minimal subset that predicts pure classes.
With some modification of Focus, we have FocusM that can work on non-binary
data with noise. As FocusM is exhaustive search it guarantees an optimal solu-
tion. However, FocusM’s time performance can deteriorate if M is not small with
respect to N. The search space of FocusM is closely related to the number of
relevant features. In general, the less the number of relevant features, the smaller
the search space.

ABB: complete search: Branch & Bound (B&B) [16] starts with a full set

! There are many types of noise. Consistency measure can handle misclassifications.

of features, and removes one feature at a time. When there is no restriction on
expanding nodes in the search space, this could lead to an exhaustive search.
However, if each node is evaluated by a measure U and an upper limit is set for
the acceptable values of U, then B&B backtracks whenever an infeasible node is
discovered. If U is monotonic, no feasible node is omitted and savings of search
time do not sacrifice optimality. As pointed out in [19], the measures used in [16]
such as accuracy have disadvantages (e.g., non-monotonicity); the authors of [19]
proposed the concept of approximate monotonicity. ABB [13] is an automated
B&B algorithm having its bound as the inconsistency rate of the data when the
full set of features is used. It starts with the full set of features SY, removes one
feature from S‘;_l in turn to generate subsets S; where [is the current level

and j specifies different subsets at the [th level. If U(S}) > U(S‘;_l), S; stops
growing (its branch is pruned); otherwise, it grows to level [+ 1, i.e. one more
feature could be removed.

Since inconsistency is a monotonic measure, ABB guarantees an optimal
solution. However, a brief analysis suggests that ABB’s time performance can
deteriorate as the difference N — M increases. This issue is related to how many
nodes (subsets) have been generated. The search space of ABB is closely related
to the number of relevant features. In general, the more the number of relevant
features, the smaller the search space due to early pruning of the illegitimate
nodes. Our analysis of Focus and ABB reveals that Focus is efficient when M
is small, and ABB is efficient when N — M is small. In other cases, we can use
inconsistency measure in heuristic search.

SetCover: heuristic search: SetCover [6] uses the observation that the prob-
lem of finding the smallest set of consistent features is equivalent to ‘covering’
each pair of examples that have different class labels with some feature on which
they have different values. This enables us to apply Johnson’s algorithm [10] for
Set Cover for this problem, which implies that the resulting algorithm outputs
a consistent feature set of size O(M log P) in polynomial time. Variants of Set
Cover have previously been used for learning conjunctions of boolean features.
Consistency criterion can be restated as: a feature set S is consistent if for any
pair of instances with different class labels, there 1s a feature in S that takes
different values. Thus including a feature f in S “takes care of” all those ex-
ample pairs with different class labels on which f takes different values. Once
all pairs are “taken care of” the resulting set S is consistent. The advantages of
SetCover is that it is fast, close to optimal, and deterministic. This works well
for data where features are rather independent of each other. It may, however,
have problems where features have inter-dependencies. This is because it selects
the best feature in each iteration based on the number of instance-pairs covered.
A new solution is needed that avoids the problems of exhaustive and heuristic
search. Probabilistic search is a natural choice.

LVF: probabilistic search: Las Vegas algorithms [5] for feature subset selec-
tion can make probabilistic choices of subsets in search of an optimal set. Another
similar type of algorithms is the Monte Carlo algorithm in which it is often pos-
sible to reduce the error probability arbitrarily at the cost of a slight increase in

computing time [5]. LVF is more suitable since the probability of generating a
certain subset is the same. LVF adopts the inconsistency rate as the evaluation
measure. Due to its monotonicity, a superset of a subset of relevant features is
also good. Hence, there are more chances for good subsets to be selected. LVF
keeps the smallest subset of features randomly generated so far that satisfies a
threshold (by default it is the inconsistency rate of the data with all features).
It is fast in reducing the number of features. We conducted experiments to ob-
serve how the number of valid features (M) drops as the number of randomly
generated feature sets increases. A total of 10 data, both artificial and real, are
chosen for the experiments from the UC Irvine data repository [15] (Table 1).
Two typical graphs are shown in Figure 1 in a longer time span (partial results
shown in Table 1) in order to observe the trend.

Data |LED24 Lung Lymph Mush Par34+3 Promo Soy Splice Vote Zoo

P 1200 32 148 7125 64 106 47 3190 435 74
m 10 3 4 2 2 2 4 3 2 7
N 24 56 18 22 12 57 35 60 16 16

M'(M)] 12(5) 19(4) 8(6) 8(4) 5(3) 15(4) 12(2) 19(9) 13(8) 9(5)
#FEval | 230 155 215 22 25 187 42 284 215 25
#Max 224 256 218 222 212 257 235 260 216 216

Table 1. The number of valid features (M') drops sharply in the first few hundred runs
for all data. P, N, M and m are defined earlier. #Eval is number of subsets generated
and evaluated. #Max is maximum possible subsets.

The trend found in all the experiments is that M’ drops sharply from N in
the first few hundred runs (one run means one feature set is randomly generated
and evaluated). Afterwards, it takes quite a long time to further decrease M’.
Some analysis can confirm this finding. A particular set has a probability of
1/2N to be generated. At the beginning, the full set is valid. Many subsets can
satisfy the inconsistency criterion. As M’ decreases from N to M, fewer and
fewer subsets can satisfy the criterion. However, the probability of a distinct set
being generated is still 1/2"V. That explains why the curves have a sharp drop
in the beginning and then become flat in Figure 1. LVF reduces the number
of features quickly during the initial stage (the first few hundred loops); after
that LVF still searches in the same way (i.e., blindly), the computing resource
is spent on generating many subsets that are obviously not good.

QBB: hybrid search: As ABB and LVF complement each other, QBB is a
natural offspring of ABB and LVF, which uses inconsistency as its evaluation
measure. QBB runs LVF in the first phase and ABB in the second phase so
that the search is more focused after the sharp decrease in the number of valid
subsets. A key issue remains: what is the crossing point in QBB at which ABB
takes over from LVF. If we allow only certain amount of time to run QBB, the
point at which ABB takes over from LVF is crucial for the efficiency of QBB.

Mushroom
T

T T
randomSubsets -----
20 | bestSubsets — |
consistentSubsets ¢
[}
[
5
IS
2
h=]
©
>
£
5 ' —
0 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
runs performed
Promoters
T T T T T
randomSubsets -----
bestSubsets —
consistentSubsets ¢
50
9
; ?
: ¢
[}
[
5
IS
2
h=]
©
>
#* 1
of .
0 1 1 1 1 1
0 2000 4000 6000 8000 10000

runs performed

Fig. 1. The typical trends of the decreasing number of valid features versus the number
of runs performed. Points include both valid and invalid feature subsets. Valid subsets

are connected by solid lines.

Extensive experiments suggested that dividing the total time equally between
LVF and ABB is a robust solution and is more likely to yield the best results. If
the crossing point 1s too early, LVF might not have reduced the valid subset size
substantially for ABB to perform well under time constraint; but if the crossing
point is too late, the small sized subsets generated by LVF at the crossing point
might not contain any minimal size subset, and so ABB becomes ineffective.

3.1 Summary: when to use what

As we have five algorithms to choose from, we are also interested to know how we
should use them. Theoretical analysis and experimental experience suggest the
following. If M - the size of relevant features is small, FocusM should be chosen;
however if M is even moderately large, FocusM will take a long time. If there
are a small number of irrelevant and redundant features, ABB should be chosen;
but ABB will take a long time for a moderate number of irrelevant features. For
data with large numbers of features, FocusM and ABB should not be expected
to terminate in realistic time. For the Letter data with 20,000 instances (N = 16
and M = 11) FocusM took more than 2 days to terminate whereas ABB took
more than 7 hours to generate optimal subsets. Hence, in such cases one should
resort to heuristic or probabilistic search for faster results. Although these algo-
rithms may not guarantee optimal subsets but will be efficient in generating near
optimal subsets in much less time. SetCover is heuristic, fast, and deterministic.
It may face problems with data having highly interdependent features. LVF is
probabilistic, not prone to the problem faced by SetCover, but slow to converge
in later stages. As we have shown, it can reduce the feature subset size very fast
in the beginning but then it slows down in reducing features. QBB is a welcome
modification as it captures the best of LVF and ABB. It is reasonably fast (slower
than SetCover), robust, and can handle features with high interdependency.

4 Further Experiments

The points that remain inconclusive are: (1) features selected using inconsistency
can achieve the objective of dimensionality reduction without sacrificing predic-
tive accuracy; and (2) how the different algorithms fare in terms of time and
optimality. The experimental procedure is to (1) choose data frequently used by
the community; (2) run ABB to get the minimal size as reference; (3) compare
the performance (average time and number of selected features) of different al-
gorithms; and (4) compare the accuracy of two different classifiers (C4.5 [17] and
Back-propagation neural network [21]) over data before and after feature selec-
tion by QBB. Ten data, both artificial and real, are chosen for the experiments
from the UC Irvine data repository [15]. A summary of these data is given in
Table 1. Par343 contains 12 features (3 relevant, 3 redundant, 6 irrelevant).
Figure 2 shows a comparison of the performance (both average time and
number of selected features) of different algorithms. First ABB is run over the
10 data to find the M (minimal size) values. For comparison purpose we have

12 T T T j ' I
LV -ookeee-
QBB —+———
'setCover’ >*
‘Optimal” - |
11)
*- ..
10 |
ek oo
T Tkl
8 °r o |
=]
=
K5}
=]
i
3 8 - 1
D
o
+=
D
=
o]
<
=4 7 - |
L _
K
5 g i
a . 1 L > ; ' I
6 8 10 12 14 1e 18 20

Processing Time (sec)

Fig.2. Experiments to show how differently algorithms fare in terms of time and
optimality. Results of Focus and ABB are out of bounds in x-axis (time).

calculated the average minimal value, M 4,4, over all data which is found to be
5. This value is used as a reference line in Figure 2. Out of the 5 competing
algorithms, FocusM, ABB and SetCover are deterministic, whereas LVF and
QBB are non-deterministic due to their probabilistic nature. QBB spends half
of the time running LVF and the other half running ABB. For LVF and QBB we
show results for 5 different processing time in terms of total numbers of subsets
evaluated (1000...5000). Each experiment was repeated 50 times. Notice that
Focus and ABB are not shown in the graph as their average times fall outside the
range of the ‘processing time’ in the x-axis of the graph, although minimal sized
subsets are guaranteed in each case. For data having large differences between N
and M values such as Lung Cancer, Promoters, Soybean, Splice data ABB takes
very long time (a number of hours) to terminate. For data having large N values
and not very small M values such as Splice data (N = 60, M = 9) FocusM takes
many hours to terminate. The comparison in Figure 2 shows that QBB is more
efficient both in average time and number of selected features compared to LVF,
FocusM, and ABB. The average size of the subsets produced by QBB is close
to M 4,4 and it approaches to M 4,4 with time. SetCover produces near optimal
subsets in much less time. Between QBB and SetCover we would say QBB is
more robust while SetCover, although very fast and accurate, may fail to deliver
efficient subsets if there is dependency among the features.

The error probability is often used as a validation criterion. Among the dif-
ferent algorithms discussed in the paper we take QBB due to its robustness. We
choose C4.5 decision tree and Back-propagation neural network as two classi-
fiers for validation. For back-propagation each data was divided into a training
set (two-third of the original size) and the rest one-third as testing. For C4.5,
we use the default settings, apply it to data before and after feature selection,
and obtain the results of 10-fold cross-validation. This is repeated 10 times for
each data and the average error rate and tree size are reported in Table 2. That
is, QBB has been run 10 times and C4.5 100 times. The experiment shows the
improvement/no reduction for most data (9 out of 10) in C4.5’s accuracy after
feature selection.

Running Back-propagation involves the setting of some parameters, such as
the network structure (number of layers, number of hidden units), learning rate,
momentum, number of CYCLES (epochs), etc. In order to focus our attention
on the effect of feature selection by QBB, we try to minimize the tuning of the
parameters for each data. We fix the learning rate at 0.1, the momentum at
0.5, one hidden layer, the number of hidden units as half of the original input
units for all data. The experiment is carried out in two steps: (1) a trial run
to find a proper number of CYCLES for each data which is determined by a
sustained trend of no decrease of error; and (2) two runs on data with and
without feature selection respectively using the number of CYCLES found in
step 1. Other parameters remain fixed for the two runs in step 2. The results
are shown in Table 2 with an emphasis on the difference before and after feature
selection. In most cases, error rates decrease (6 out of 10) or do not change (3
out of 10) after feature selection.

C4.5 Back-Propagation

Tree Size |Error Rate Error Rate
Data Bef |Aft |Bef |[Aft |Cycles|#HU|Bef |Aft
LED-24 19.0 {19.0 |0.0 |0.0 1000 (12 0.06 (0.0
Lung 19.0 {10.9 |50.0({41.8 (1000 |28 75.0 |75.0

Lymphography|(26.9 (22.1 |21.8({21.4 |7000 |9 25.0 |25.0
Mushroom 36.3 [34.2 |0.0 [0.0 5000 |11 0.0 (0.0

Par3+3 12.0 |15.0 |41.9|0.0 1000 |6 22.2 10.0
Promoters 21.4 |8.2 |26.3|22.1 [2000 |29 46.8 |25.0
Soybean 7.1 (94 2.5 (2.0 1000 |18 10.0 |0.0
Splice 173.0|187.0(5.9 |14.0 |6000 |30 25.64|42.33
Vote 14.5 |14.2 |5.3 |5.3 4000 |8 6.7 (4.0
Zoo 17.8 |17.7 |7.8 |6.6 4000 |8 10.3 |3.4

Table 2. Results of Hybrid Search. #HU is number of Hidden Units.

5 Concluding Remarks

The fact that the consistency criterion does not incorporate any search bias re-
lating to a particular classifier enables it to be used with a variety of different
learning algorithms. As shown in the experiments, for the two different types
of classifiers, selected features improve the performance in terms of lower error
rates in most cases. Features selected without search bias bring us efficiency in
later stage as the evaluation of a feature subset becomes simpler than that of
a full set. On the other hand, since a set of features is deemed consistent if
any function maps from the values of the features to the class labels, any al-
gorithm optimizing this criterion may choose a small set of features that has a
complicated function, while overlooking larger sets of features admitting simple
rules. Although intuitively this should be relatively rare, it can happen in prac-
tice, as apparently this was the case for the Splice data where both C4.5 and
Back-propagation’s performance deteriorate after feature selection.

The inconsistency measure has received a comprehensive examination that
reveals its many merits for feature selection. The outstanding one is its mono-
tonicity. It is also fast to compute, can detect redundant as well as irrelevant
features. It has been used with a variety of search strategies in feature selec-
tion and no modification is required. The salient contribution of this work is
that a guideline is suggested as to when to use what after detailed evaluation
of different search algorithms. We believe the guideline will be very helpful to
practitioners in need to reduce dimensionality of huge data, and to researchers
who want to further the work of feature selection.

References

1. H. Almuallim and T. G. Dietterich. Learning boolean concepts in the presence of
many irrelevant features. Artificial Intelligence, 69(1-2):279-305, November 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Ben-Bassat. Pattern recognition and reduction of dimensionality. In P. R.
Krishnaiah and L. N. Kanal, editors, Handbook of Statistics, pages 773-791. North
Holland, 1982.

A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97:245-271, 1997.

A Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor.
Readings in Machine Learning, pages 201-204, 1990.

. G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice Hall, New Jersy,

1996.

M. Dash. Feature selection via set cover. In Proceedings of IEEE Knowledge
and Data Engineering Erchange Forkshop, pages 165-171, Newport, California,
November 1997. IEEE Computer Society.

M. Dash and H. Liu. Feature selection methods for classification. Intelligent Data
Analysis: An Interbational Journal, 1(3), 1997.

P. A. Devijver and J. Kittler. Pattern Recognition : A Statistical Approach. Prentice
Hall, 1982.

. G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection

problem. In Proceedings of the FEleventh International Conference on Machine
Learning, pages 121-129, 1994.

D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256-278, 1974.

K. Kira and L. A. Rendell. The feature selection problem : Traditional methods
and a new algorithm. In Proceedings of Ninth National Conference on Al pages
129-134, 1992.

R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs.
PhD thesis, Department of Computer Science, Stanford University, CA, 1995.

H. Liu, H. Motoda, and M. Dash. A monotonic measure for optimal feature selec-
tion. In Proceedings of European Conference on Machine Learning, pages 101-106,
1998.

H. Liu and R. Setiono. Feature selection and classification - a probabilistic wrapper
approach. In Proceedings of Ninth International Conference on Industrial and
Engineering Applications of AI and ES, 1996.

C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1996.
FTP from ics.uci.edu in the directory pub/machine-learning-databases.

P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature
selection. IEEE Transactions on Computers, C-26(9):917-922, September 1977.
J. R. Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann, San
Mateo, California, 1993.

T. W. Rauber. Inductive Pattern Classification Methods - Features - Sensors. PhD
thesis, Department of Electrical Engineering, Universidale Nova de Lisboa, 1994.
W. Siedlecki and J Sklansky. On automatic feature selection. International Journal
of Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.

S. Watanabe. Pattern Recognition: Human and Mechanical. Wiley Intersceince,
1985.

A. Zell and et al. Stuttgart Neural Network Simulator (SNNS), user manual,
version 4.1. Technical report, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

