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The parameters of a uranium-enviching. cas-
cade, i.e., the cut and the separation factor, are
considered lo be fluctuating stochastically. The
covariance matrices of the total uramium flow and
235y Fy flow were derived by the classical stochas-
tic theory for evaluating the effect of stochastic
fluctuations of these paramelers to steady-state
plant pervformance. Also the stationary vandom
process theory is applied lo the kinetic equations
of the cascade, and the autocorrelation function
of the *°*UF; flow and enrichment is derived for
evaluating the time behavior of the plant perfor-
mance caused by random fluctuation of these sys-
tem parameters. Numerical values illustrate the
vesponse of product flow and envichment to the
Sfluctuations, which ave both time independent and
dependent, of the cut and the separation gain of
stages and centrifuges. These data lead to a

conclusion concerning the tolerances of centri-
Sfuge parameters and stage controllers.

1. INTRODUCTION

A uranium-enriching plant using the centrifugal
method, producing 2000 tons of 3% enriched urani-
um per year, is a huge cascade composed of
nearly 800 000 centrifuges. A cascade of this type
is a tapered cascade in which the interstage flow
changes stage by stage, while the gaseous diffu-
sion plant is often a square cascade.

The characteristics of a cascade have been
discussed by Cohen' and many other authors®-®;
these works have been based on deterministic
analyses.
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It is believed, however, that the lifetime of
each centrifuge is several years, and the toler-
ance of its cut (i.e., the ratio of the enriched-
uranium flow rate to the feed rate) is greater than
the permissible tolerance in the effective cut of a
separation stage. Therefore, when plant perfor-
mance is to be appraised, the following two points
must be considered:

Problem 1: the influence of stochastic distribu-
tions of plant parameters (that is, the
cut and the separation factor) on plant
performance

Problem 2: the time behavior of flow and en-
richment caused by time-dependent
random fluctuations of the plant pa-
rameters.

To discuss the above two problems, it does not
prove sufficient to study the cascade character-
istics by employing only the deterministic theory.
The objectives of this paper are to evaluate these
problems by the stochastic theory and to make
some contribution in determining the tolerance of
the centrifuge and the performance of the cascade
control system. The classical stochastic theory’
was employed to solve Problem 1 as was the
cascade theory developed by Cohen, and the theory
of the stationary random process® was used to
solve Problem 2. It was also necessary to extend
the method of treating the dynamics of a tapered
cascade derived by Higashi, Oya, and Oishi® for
Problem 2.

Ii. THE EQUATIONS OF THE CASCADE
Statics

Considered is an isotope separation cascade
which consists of N + 1 stages in the rectifier side
NUCLEAR TECHNOLOGY
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and M stages in the stripper side. The interstage
flow rates at the i’th stage are illustrated in
Fig. 1, where F;, G;, and N; are the total uranium
flow rate (*°UF¢ + *®UFe), the U flow rate
(***UF¢), and the enrichment (G;/F;) of the i’th-
stage feed. (The primes ' and '’ indicate the en-
riched and depleted streams, respectively.)
The statics equations at the i’th stage are

F{ = 6F, @
NI N”
TN - % T-N7 @
F+E'=F @
F/N! +F/N/'=F N, or G +G/'=G, , (4)

where 6; and y; are the cut and the separation
factor of the 7’th separation stage, respectively.
Postulating the condition

v =1, N<<1, N'<<1, (5

the approximate equations of the enrichment can
be derived from Eqs. (1) through (4); that is,

N' =N {1 +2(1 - 6)e;} (6)
N'= N L - 26¢;} (7)
where ¢; is the separation gain defined by
v = 1+ 25,- . (8)
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Fig. 1. Interstage flow rates at the i’th stage of the

cascade,
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The flow rate equations of the cascade at the
steady state are obtained from the material bal-
ance around stage ¢ (see Fig. 1):

F =6 Fioi+ (1 -8 )F 1+ 6i0Fy , (9)
Gi = 6 .ol +2(1 - 8;1)€; -1} G
+ (1 - ;40 {1 - 20, 1€, 12} Gi 1
+ 0i,0F) Ny
i=-M,-M+1,...,0,1,..,N

In these equations, F; and N; are the feed uranium
flow rate and its enrichment supplied to the feed
stage ({ = 0), and §;, is the Kronecker’s 6 func-
tion. As shown in Fig. 2, the downstreams into
the top stage (i = N), i.e., the second terms of
Egs. (9) and (10), are equal to zero; likewise, the
upstreams, i.e., the first terms, are equal to zero
at the bottom stage (i = -M). The product flow
rates Fp and Gp are the N’th-stage enriched flow
rates:

(10)

Fp = GN FN ) (11)
Gp = On {1 +2(1 - By)ey}Gy (12)

and the waste flow rates Fy, and Gy are the
-M’th-stage depleted flow rates:

Fy=(1-0nFy , (13)
Gw=(1-0.4)1-204€eu)Gy (14)

Fig. 2. Flow rates at the top stage.
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It is desirable that the cut §; be determined to
satisfy the condition of no-mixing loss, i.e., the
condition of the ideal cascade

o o Lty - DN
’ 1+ \/y_‘
Generally the separation factor is the same for

every centrifuge, and, under the condition of
Eq. (5), Eq. (15) is expressed approximately as

(15)

(16)

which is constant and independent of the stage.
The cascade with a constant cut, termed a tapered
cascade, is nearly ideal when the cut is set as in
Eq. (16). The cascade treated here is of this type,
and relations which hold for the ideal cascade are
used when necessary.

Dynamics

The kinetic equations for the total uranium flow
rate F; and the **U flow rate F; N; or G; are given
by

dar; (t)
gt FF0) - 6V Fu(®) - {1 - 6,1} F; ne)

continuous types. This is required in the analysis
of the stationary stochastic treatment in Sec. IV.

Rearranging the terms in Eq. (17), the follow-
ing difference equation is obtained for total urani-
um flow rates:

dF; (¢

c‘i_t() - % {F, -uD) - 2F (#) + E (0}

- % {E u® - E (1)}

+{6; 41(8) F; 41(2) - 6; <4(8) F ()}

dF, (1)

=8;04T dt + F} ®

Equation (19) is converted to the partial dif-

ferential equation by taking the continuous limit in

stage .

aF(X,H 13°F(X,t) 2F(X,1)
T™% "2 i

(19)

(X, t) F(X, b
X ax T2 ax

aF; (¢
ét()+F}(t)} )

where X is the coordinate which represents the
stage number, as shown in Fig. 3. The range of X
is [0,1], where I =M + N + 2, and X, is the feed
stage; i.e., Xo = M + 1. The boundary condition of

= 6(X - X,) {T (20)

=00\ T —g +H®) (17) F(0,8) = F(1,#) = 0 (21)
Likewise, Eq. (18) for **U flow rates is trans-
d6,(2) formed into
—a TG
8G(X,t) 13°G(X,t) aG(X,?)
- 6 o) [1+2{1 - 8 (D} €, (9] Gr a(0) T=% 27 a¢ ~oax
- {1 - 6 @1 - 26, (B €, 1(D}G; 1t +9 oG (X, ) 8(X,¥)
oX
dF; (¢) Ny (2)
- m{r A=+ EON® (18) 361 00,0 {1 - 0x,1)}
X
where T is the holdup time of a stage. AF (DN ()
It is necessary to transform the above equa- = 8(X =X o) {T bl Al A4 +F () N/(t)} (22)
tions which are discrete in stage into space- ot ’
Stripper Feed .Rectifier
Cascade L ! R L
Stage - o - 0 - o N -
+ + | |
E = 3 z2 2 2z
O
Continuous — Y T S T ST SRS SR S
| ©O - aam - N ™ - - -
Mode T o+ + | ry
Z = E = Z 2 2z
+ + +
E ZF =
Fig. 3. Correspondence of stage numbers i and x.
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with the boundary condition
G(O,t) = G(ly t) = 0 . (23)

In Sec. IV we must derive the impulse response
functions of the cascade, where the input is the
deviation of the i’th-stage parameters (8,¢), and
the output is the %’th-stage flow rate deviation or
enrichment deviation. Therefore, it is convenient
to linearize Egs. (20) and (22) in order to treat the
fluctuations of the system parameters (9,€) as the
source terms,

The variational equation for the total uranium
flow rate is derived from Eq. (20):

BOF(X,8) 1 3%F(X,f) 36F(X,) _ 90(X)BF(X,1)
% 2 o€~ ax 2T ax
26F, (£)
- 2 DD gy - x, {T#wf}(t)}
(24)

Using Eq. (16), Eq. (24) is further reduced to

96F (X,t) 1 926F (X, ) € 38F (X,2)
o8 2 o 2 X
_, AF(X)89(X, 8 30K (1)
= -2 — + 8(X - Xo) {T 37 +0F; (#)

(25)

In the case of enrichment, the variational
equation of Eq. (22) can be simplified by using
Egs. (16) and (25), and the relations

(26)

which are the continuous limits of the following
enrichment relations in the ideal cascade:

N;41 = N; -1 = 26N,

(27
Nig1 -2N; + Ni-1 = €°N;
The result is

aF(X)6N(X,t) 1 *F(X)6N(X,?) € aF(X)8N(X,£)
T o 3T e *2 X

. aF(X)Nf_’))(()GE(X,t) - 2F(X) N(X) €56(X, )

oF; 6Ny (¢
+ 8(X - Xo) {T-_/_at&

+ F 8Ny (t)} . (28)

The validity of the continuous model will be
assured by directly comparing the results with
those of the original discrete cascade equations.
VOL. 17
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lil. THE METHOD OF EVALUATING
STATIC DEVIATIONS

Total Flow

By employing the matrix-vector notation, ura-
nium total flow balance Egs. (9), (11), and (13) are
expressed as

OF +S=0 , (29)

where the matrix © and vectors F and S are
defined as

-1 n
-1 On-1
1- oy -1 On-z. 0
o= 1- 6, -1 6.1 (30)
0 1-6_4,2 -1 Bop
1- 9-M+1 -1
N 1-0y -1 _

.,Fo,...,F-M+1,F-M ,Fw]T ’
(31)
(32)

F=[Fp,Fy,Fy-1,-.

s =[0,0,0,...,5,...,0,0,01" ,

where [ ]” is the transpose of [ ].

Assume a situation where the cut 9; deviates at
random because of a manufacturing error or for
some other reason. In this case, the matrix O is
expressed as the sum of the nominal matrix ©,
and the deviation matrix 9; that is,

9=60+9 ) (33)

where the expectation of the matrix 9, E(9), is
assumed to be the zero matrix. Then the flow
vector F is also written as the sum of the
expectation F, and the deviation f, as

F=Fo+f . (34)

These two terms can be obtained by substituting
Egs. (33) and (34) into Eq. (29) and neglecting the
second-order term 6f, as

Fo = E(F) = -6,'S
f=-600F,

The expectation of the flow deviation fis equal to
the zero vector because of the assumption E(8).
The covariance matrix ¢, defined as the expecta-
tion of the product of f and f7, is

oy = 05 E(OF,FIo &5 . (37)

(35)
(36)
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Postulating that there are no interstage correlations of the cut deviations, i.e.,

E(56; 56;) = 5;,j a4

, (38)

where oy, is the standard deviation of cut at the stage i, the matrix E{(0F,FI6T) in Eq. (37) is derived as

o

2 2 2
Bog 0 -FyoxN
2 2 2 2
0 BN 04—, 0 -F§ 108 -1 0
2 2
2 2 BN _o20n - 2 2
-Fyoy 0 N H-2 0 ~FN-208-2
. . + FN U'N F,zv 0[\,",
"F =10, -1 -3 -3 'Fz- 0,2-
N-10N 0 + Fhoy0f-, 0 N -30N=-3 (39)
2 2 .
2 2 F-MU—M 2 2
0 “FlM420442 0 2 2 0 “Fonoly
+FoM420 M2
2 2 2 2
“Fipyp103m4, 0 Fimu0iygy 0
2 2
“Fyoly 0 Fz.Mo'.ZM

The square root of the diagonal elements of the covariance matrix ¢/ are the standard deviations of
the uranium total flow deviations caused by the random distribution of cut.

2350& Flow

In the case of **UF; flow rate, some approxi-
mations are made to simplify the following dis-
cussions. Because the cut 6; is nearly equal to
0.5, an approximate equation can be derived:

2
[26(1 - 8)]oz6,+56= 0.5 (1 - %) +€60

=05 . (40)

With this approximation, the **°UFg balance Egs.
(10), (12), and (14) can be reduced to

Gi=(6;-1+0.5¢;-1)G; 1
+ {1 - (0,-+1 + 0.5 €,'+1)}Gi+1

+08i0F Ny , (41)
Gp =(6y +0.5¢,)Gy (42)
Gw={l-(6.4 +0.5e_y)}G-n (43)

Expressing the balance equations by the ma-
trix-vector notation

TG+U=0 (44)
and writing T and G as

I'=Te+y , (45)

G=Go+g , (46)

the expectation of G, E(G) = G,, the deviation and
the covariance matrix ¢, are derived in a similar
manner as formerly:

Go = -3y
&= ‘rt;")'Go

47
(48)
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bge = To EyGoGTy Y T3 (49)

Assuming no correlation of the fluctuations of the
separation gain 6¢; and the cut 66;,

E{be; 56)) =0 (50)
E(66;86;) = §;; 0z, (51)
E(Be; b¢;) = 0;; 02 (52)

the matrix E(yGoGiyT) in Eq. (49) is given by
replacing Foy;, with Gi(og; +0.25 %) in Eq. (39).

Enrichment

The enrichment N; is defined as

G;
N; =7

1
The expectation of the squared enrichment devia-

tion n;, En?), caused by the random deviations of
the cut and the separation factor, is

_{G\? Ay Lo G
E(n,-z)—(p}z) B, ) +(E)E<gg,.,.) 2 755 g)

(54)

where E(ff;) and E(gg,) are the #th diagonal
elements of the matrices ¢, and ¢g. The expecta-
tion E(f g) is the i’th diagonal element of the
matrix E(fgT); that is,

T

E{fgT) = ©5'E(0F.GIyDy 5" , (55)

where the matrix E(6F,GJyT) is obtained by re-
placing F’s? with F; G,04, in Eq. (39), under the
conditions of Egs. (50), (51), and (52).

(53)
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IV. THE METHOD OF EVALUATING
DYNAMIC FLUCTUATION

Formulas

First some basic formulas of stochastic pro-
cess theory are presented which are used in the
following formulations.

Let {X;(#)} denote the stationary stochastic
process in the wide sense; i.e.,

E{X;(t) =p; < , (56)

E({)(,(tl) = IJ.,'}{X}'(tz) - IJ-,'}) = ¢,‘i(|t1 - t2l) ’
(57)
where the mean value y; is independent of time ¢,
and the coorelation function ¢; (f) depends only on

the time difference |f, - #;|. In this paper, only
the particular case of u; = 0 is discussed.

The relation between the correlation function
®ii () and the spectral power density function
®;; (jw) (i = j, autocorrelation; i #j, cross corre-
lation) is written as

8;(jw) = [ :%’ (¢) exp(-jwi)dt (58)

¢i; (2) = 2—1, f_: &;; (jw) exp(jwi)dw (59)

When the process {Y(t)} consists of two processes
{x,(9)} and {X,(1)},
Y(®) = X:(2) + Xa(8) (60)
the functions ¢yy(¢) and &yy(jw) are expressed as
Oyy () = 021(8) + $12(t) + 21(2) + d22(¢) (61)
Byy(jw) = duliw) + d12(jw) + Saljw) + 2aljw)
(62)
If the processes {Xi()} and {X.(f)} are independent
of each other, ¢, (f) and &;;(jw) for i #j are equal
to zero.
Now consider the linear filter G, illustrated in
Fig. 4. The transfer function G(jw) is obtained by

Fourier transformation of the impulse response
£(t) of the filter:
G(jw) = [~ g(#) exp(-jwi)dt . (63)

The output process {Y(f)} corresponding to the
input process {X(#)}, which is the stationary sto-

X{t) G Y(t)
Fig. 4. Linear filter G,
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chastic process in the wide sense, is also the
stochastic process. Its mean value p,, auto-
correlation function ¢yy(#), and spectral power
density ®yy(jw) are obtained as

uy=nx [ gt (64)

buy(®) = [ g(t) [T gltdoxx(t - tr+ tddtadt
(65)

dyy(jw) = G(jw) G(-jw) dxx(jw) . (66)

Procedures

The following assumptions are made in this
paper:

1. The fluctuations of the cut 6; and the sepa-
ration gain ¢ from the nominal values
56;(t) and 5¢; (t) are the stationary stochastic
processes with zero mean values.

2. There are no interstage correlations of
fluctuations 66;(f) and 8¢;(!). The fluctua-
tions of the cut and the separation gain have
finite variance and are not dependent on
each other.

3. The relation between the fluctuation of the
flow rate and the fluctuation of the cut or the
separation gain is described by the transfer
function.

Under the above assumptions, the procedure
for evaluating the fluctuations of the total flow
rate and the enrichment caused by random fluc-
tuations of the cascade parameters (6;,¢;) is
shown in Fig. 5. In this figure, g,(f) is the
impulse response of the 2’th-stage flow or enrich-
ment to the i’th-stage parameter disturbance, and
¢N(¢) is the autocorrelation function of the 7’th-
stage random disturbance of the system parame-
ters.

The Transfer Function of the Cascade

The impulse responses of the cascade can be
derived from Egs. (25) and (28). Employing a
nondimensional time 7,

t

TE2T °
where T is the holdup time of a stage, these
equations can be reduced to

]

(67)

0F(X,7) _ 3*8F(X,7) _  3OF(X,7)
aT ax? ax
__, OF(X)86(x, 1)
= -4 ax , (68)
173
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Impulse response Autocorreiation
of disturbance
Qik (1) Catl)
{ Fourier tronaform )
| |
Transfer Power spectral
function density
Gik (jw) oY (jw)

Power spectral density of
k'th stage fluctuation
S ijw) -?eiuuwmm-jw@'u‘uw)

T

{ Inverse Fourier transform )

i

Autocorrslation function of
k'th stage fluctualion

L (1)

Fig. 5. Procedures for evaluating dynamic fluctuation.

(n

(2)

(3)

Fig. 6.
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y
I
u{x—xi)
0 : xi :
y
|
S (x—xi)
o xl-l-l tl xi'+l
y
> !
.a—‘stx—x” o 1

I

Forms of deviation used to calculate impulse

responees.

88G(x,7) _8%G(X,7) 30G(X,T)

ot T X
= -2 §G_(x);;:(_xﬁ - 4eG(X)60(X,7) , (69)

where
8G(X, 7) = F(X)6N(X, 7)
To obtain the impulse response functions, the

869(){,- ’ T)
"'—"—ax or

are approximated in space to assume

i’th-stage disturbances 68(X;,7) and
a6e(X;, 7)

oX i
forms (2) and (3) in Fig. 6. Then the impulse
responses to these disturbances are calculated by

Form (2): R(X; - 5,7) - R(X; + 3, 7)
Form (3): R(X; - 1,7) - 2R(X;,7) + R(X; + 1,7) ,

where R(X;, 7) is the impulse response to the input
of form (1) in Fig. 6.

Forms and notations of the response functions
for various input-output relations are

Impulse
Response Input Cutput  Form
(i) goF(r)  88(X,7) 8F(X7)  (3)
() g 66X, 6G(X,T)  (2)
(iii) g (7) Se(X;, 1) 8G(Xe, 7)) (3) .

The solution of the partial differential equation
dy 3%y

5=5Y2teax+6(t—0)u(x—x,-) (70)
is
E 1) = 3 exp(-a ZEXGX)  (71)
ZE(X;X) = lg {¥ ﬁ; sin(r%x") + 11;1:; coé(’l?i)}
x exp[:l: £ - x)] sin("—’l'—x) (72)

2 2
nw €
- A, = (I_) + (‘5) . (73)
Therefore, the impulse response functions are

(6] giF(7) = i @nix €Xp(-AnT) (74)

anik = -4F(X;) {ZF(X; - 1;%) - 22} (X3 %)
+ZX%: + ;X)) (75)

(ii) gi?(‘r) = f} brir exp(-A.T) (76)
n=1
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boix = ~46GX){Z7 (X: - 5% - Z; (X% + %)}
(17

(iii) &) =>f) Cnix €XD(=Ar7) (78)

Caik = =2G(X;){2Z; (X; - 1;%) - 2Z7(X;; X,)
+ Zy (X% + 1;%)} (79)

The transfer functions are obtained by a
Fourier transformation of Egs. (74), (76), and (78).

Qnik

) Giftio) =5, - (80).
20 bﬂ'l

(1) o) =2 o (81)

(15 6w) = 5 7 - (82)

The Spectral Power Density of the Disturbance

Let the random fluctuation of the cut or sepa-
ration gain be a stationary random rectangular
pulse series, as shown in Fig. 7. The stochastic
distribution of the pulse height is assumed to be
the normal distribution with zero mean value:

3
P(r) = 5
) \f_ XP( 207 )
Further, assuming the frequency of the change to
follow the Poisson distribution, the pulse width !
distributes according to the exponential distribu-
tion with the mean width 1/8;; that is,

H(l) = B: exp(-B;1) (84)

The autocorrelation function of the i’th-stage
disturbance ¢(7) is

o¥(1) = of exp(-B:l7]) , (85)

and the spectral power density function &}(jw) is
obtained as the Fourier transformation of ¢M(7):

(83)

28;07
N(jw) = (86)
() w? + g2
'}
- B
£ r M—
T EO ' -
o = Time T
Fig. 7. Stationary pulse series of disturbance.
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The Autocorrelation Function of Flow Fluctuation

The spectral power density function of the
k’th-stage total flow fluctuation, caused by the
random disturbance of the cut, is

(Jw)- E G (jw) GiF(-jw) &Y (jw)
- f; i i 2BBgaﬁzanikamlh
iz-Muzim=1 (fo + M) (~jw + Aa)(w® + ﬁgl)
(87)
Then the autocorrelation function ¢{F(7) is ob-

tained by the inverse Fourier transformation of
Eq. (87).

¢fF(T) E E 2 236,06, amkamskwnm('r) (88)

iz=M n=1m=1

exp('lml‘r')
By - An

1 exp('lnl‘rl)
2w +0a) | BG - N2

(- ﬁg,) exp('BB;[TI)
269;(8:‘- = hft)(ﬁg" = Agl)
)\n # ﬁ&j ’ hm # BS,‘

exp(-Ag|7) +{1+(ﬁe,-+lm)|1'|
2(ﬁg’ = h:)(ﬁﬂ;"’ ’Lm) 436,-(38,' + l:mr)z

’

Wan(T) =

Am
W D]

R'ﬂ:.Bﬂ'- » )lm*ﬁe,-
1+ Bgl7|
————exp(-8417) ,
43.;,- xp( 05 )
An = le. y Am=Bg .

(89)

Likewise, the autocorrelation functions ¢7¥(7) and
¢$¥(7) are obtained by replacing (Bs;, 0s;, @,ix) With
(Bo;» U055 baix) and (B, 0, Cair), TesSpectively.

V. A MODEL CASCADE

The main parameters of the isotope separation
cascade employed as the calculation model are
listed in Table I. This is a tapered cascade,
having a constant cut and separation factor over
every stage. The feed is the natural uranium of
0.714% enrichment, and the product is 3.251%
enriched uranium. The flow rate is normalized as
the product flow becomes one. The nominal
flow rate and enrichment distributions are illus-

trated in Fig. 8.
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The number of centrifuges required amounts to
as much as 800 000 for the model cascade in
which the product of enriched uranium is 2000 ton/

year.

In evaluations of the dynamic fluctuations, the
continuous cascade model, shown in Seec. II, is

TABLE I
Performance of a Model Cascade

Number Rectifier 22
of Stages Stripper 15
Cut 0 0.48252
Separation Gain € 0.07
Feed 6.4425
Flow Rateb Product 1.0
Waste 5.4425
. Feed 0.714
E“r’?q%;“e“t Product 3.251
Waste 0.248
39 = (1/2) - (e/4).
bArbitrary units.
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Fig. 8. Nominal flow rate and enrichment distributions

in the cascade.
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employed. To assure the validity of this model,
the steady-state solutions of Eqs. (20) and (22)
were calculated. The results agreed almost per-
fectly with the original discrete cascade solutions
shown in Fig. 8. The analytical forms of the
steady-state solutions are presented in the Appen-
dix.

VI. STATIC DEVIATION OF FLOW RATE

Deviations of Cut and Separation Gain

Deviations of the cut and the separation gain
are attributable mainly to manufacturing tolerance
of the centrifuges, the aging effects which can be
dealt with as stati¢ fluctuations, and the static
control error of flow controllers. In this paper,
the following two types of deviation are con-
sidered:

Uniform type: Standard deviations of the i’th-stage
fluctuations are constant over the
cascade.

Standard deviations of the i’th-stage
fluctuations are inversely propor-
tional to the square root of the
i’th-stage feed flow rate.

Average type:

The uniform type corresponds to the situation
where performance of a stage is completely
determined by a stage controller and the stage
fluctuation is caused by an error of the controller,
while the average type corresponds to the situa-
tion where there are no controllers or where a
controller is provided for each centrifuge, not to
the overall stage.

For the average type, some supplemental ex-
planations are presented. When the i’th stage
consists of K; centrifuges and the cut deviation of
the k’th centrifuge from the nominal value is
66, the cut deviation of the ’th stage, 66;, can be
approximated by

(90)

If the standard deviation of 56, is g,, which is

independent of i and &, the expectation of 567, o7,
is expressed as
Ki 0’2 1
2 _ b __ 1 2
%=L XK % (91)

As the number K; is proportional to the i’th-stage
feed flow rate F;, Eq. (91) can be written as

1

o ——

vF.

4

O 0y - (92)
Deviation of the separation gain can also be
approximated by the form of Eq. (90); therefore,
o is also inversely proportional to VF, .
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Numerical calculations are performed for the
next six cases.

Case 1: 0,/6 = 1%, uniform type

Case 2: 0,/8 = 1%, average type

Case 3: 0,/0 = 1%, increases deterministically
over the entire cascade

Case 4: /¢ = 5%, uniform type

Case 5: o./¢ = 5%, average type

Case 6: o,/¢ = 5%, increases deterministically

over the entire cascade.

In cases 2 and 5, the amounts of deviations are
represented by the values at the 8’th stage.
Cases 3 and 6 are deterministic cases which were
added for comparison with the stochastic cases.

Deviations of Flow Rate and Enrichment

The deviations of flow rate and enrichment
caused by the cut fluctuation (cases 1, 2, and 3)
are presented in Figs. 9 and 10. The enrichment
deviations of cases 4, 5, and 6 are shown in
Fig. 11. The fluctuations of the product and waste
uranium are summarized in Table II.
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Fig. 9. Flow rate deviations caused by cut fluctuation.

NUCLEAR TECHNOLOGY VOL. 17 FEBRUARY 1973

Kiguchi et al. URANIUM-ENRICHING CASCADE

40r ... eo=Nominal value

8 (A8=1%)

R -—— { 8ot oo (a8=1% average)
8otoe(c8=1% uniform )

(%)
) ol
[=) (=}
<

Enrichment e

o

w -10 -5 0 5 20 P
Stage |
Fig. 10, Enrichment deviations caused by cut fluctua-
tion.
4.01

eo =Nominal value
e (Ae=5%)
——- @otooe(ce=5%average)

Enrichment ¢ (%)

)
20P

-5 0 5 10 15

Fig. 11. Enrichment deviations caused by separation
gain fluctuation,

177



Kiguchi et al.

of Flow Rate and Enrichment

TABLE II

Product and Waste Uranium Deviation

URANIUM-ENRICHING CASCADE

Product Waste
Flow Rate | Enrichment Flow Rate Enrichment
Case | Fpxop, |ept 0ep (%) Fy * o, ey £ 0yl(®)
1 1.0 £ 0.062 | 3.25 ¥0.14 | 5.443 ¥0.062 | 0.25 ¥ 0.01
2 1.0 +0.062 | 3.25 ¥0.15 | 5.443 # 0.062 | 0.25 7 0.01
3 1.373 2.60 5.069 0.20
4 1.0 3.25 £ 0.02 | 5.443 0.25 ¥ 0.005
5 1.0 3.25 £ 0.02 | 5.443 0.25 7 0.004
6 1.0 3.36 5.443 0.23

i Opp is the square root of the P’th diagonal element of the
covariance matrix ¢y. Oep, Opp, 2nd oe, are the same as or,.
Flow rates are represented in the unit, such that the nominal
product flow rate becomes one.

From these results, the following conclusions
are obtained:

1. A cut fluctuation of 1% causes a product
flow deviation of 6.2% (30 = 19%). In case 3 the
product flow rate increases to 140% of the nominal
rate; thus, the systematic shift of the cut over the
cascade must be forbidden from a standpoint of
flow control.

2. Deviation of the product enrichment is about
0.15% (relative 0.15/3.25 = 4.6%) in both cases 1
and 2.

3. A separation gain fluctuation of 5% causes a
product enrichment deviation of 0.02% (relative
0.02/3.25 = 0.6%). The influence of this fluctuation
is unexpectedly small compared with the effect of
the cut fluctuation.

Strictly speaking, the separation gain of a
centrifuge is influenced by the feed flow rate to
the centrifuge, and when it works in the neighbor-
hood of the point of maximum separation power,
the relation between them is approximated by

¢? F; = constant

or

66,‘

o (93)
Consequently, the flow rate fluctuation, having
interstage correlation, necessarily causes a de-
viation of the separation gain, having interstage
correlation, and in this case, the enrichment fluc-
tuation will be larger than the case where the
i’th-stage separation gain deviation calculated by
Eq. (93) is assumed to have no interstage cor-
relations. However, the effect of actual separation
gain deviation is small, and the above problem
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was considered not sufficiently important to be
dealt with on a strict basis.

THE DYNAMIC FLUCTUATION OF
FLOY RATE

VI

Fluctuation of Cut

In this section, flow and enrichment fluctua-
tions caused by cut fluctuation, which are con-
sidered important in discussing plant control, are
analyzed. The consequence of a separation factor
fluctuation is rather small, as shown in the
previous section; furthermore, the separation fac-
tor is not treated herein.

The causes of dynamic deviation of the cut
are the aging effects, failure of the centrifuge,
error of the controller, and other reasons. Con-
sider the following two fluctuation types, as well
as those in Sec. VI.

Uniform type: Deviation of the i’th-stage cut is
the pulse series shown in Fig. 7 or
Eqgs. (83) and (84), where o; and
1/B8; are constants ¢ and 1/8 over
the cascade.

of and 1/B; are inversely propor-
tional to the i’th-stage feed flow
rate.

Average type:

These types correspond to the situations men-
tioned in Sec. VI, and the mean pulse width of the
average type can be explained as follows. Assum-
ing that the i{’th separation stage consists of K;
centrifuges and the mean time width (in which the
performance of a centrifuge is regarded as con-
stant) is Aw, the mean time width of thei’th stage
is Aw/K;, and K; is proportional to the i’th-stage
feed flow rate F,. Therefore, 1/B; is inversely
proportional to F; .

Numerical calculations are presented for two
cases:

Case 1: a,/8
Case 2: 0,/0 =

In each case,‘1/B; is changed parametrically. The
deviation and the pulse width of the average type
are represented by the values of the 8’th stage.

1%, uniform type

1%, average type.

The Fluctuation of Flow Rate

Time constants of the cascade are presented in
Table I, where the unit of time is the holdup time
of a separation stage 7. The largest one is about
250 7, and plant dynamies are characterized
strongly by this constant.

First, the results of case 1 are presented. An
example of the impulse response is illustrated in
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Fig. 12, Impulse response at selected stages due to a 1% cut change at the feed stage,

TABLE III
Time Constants of Modes
Mode No. Time Constant

n 1/ An a

1 248

2 70.1

3 31.8

4 18.1

5 11.6
10 2.92
15 1.30
20 0.731

®The unit is the holdup time of a separation stage.

Fig. 12. Figure 13 shows the relations between
1/8 and ¢ZF(0) at the top and the feed stages (k=N
and 0). The top-stage enrichment fluctuation
J@,,,"(Of as a function of 1/8 is also illustrated in
Fig. 13. The autocorrelation function ¢fF(7) as a
function of time 7 is presented in Fig. 14, where
the top-stage nominal flow rate is normalized to
2.0725, as shown in Fig. 8.

From these resulis, the following conclusions
are obtained:
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Fig. 13. Fluctuations of flow and enrichment as func-
tions of mean pulse width (uniform type).

1. For the infinite mean pulse width, the
fluctuation coincides with the result of static
evaluation.

2. If the mean pulse width is nearly equal to
the holdup time 7, fluctuations of the flow rate
and the enrichment are rather small. As the
width becomes a few tens of T, they become 3 and
0.04%, respectively, at the top stage. Therefore,
if the cut of each stage can be controlled within
the accuracy of 1% and duration of the deviation is
a few tens of T, no significant problems exist
concerning the flow control.

179



Kiguchi et al. URANIUM-ENRICHING CASCADE

3. When the mean pulse width 1/8 is larger
than the time constant of the first mode 1/x,, the
autocorrelation function (shown in Fig. 14) de-
creases steeply at 7=1/8. However, for a smaller
value of 1/8, the decreasing characteristics of the
first mode become significant.

Regarding case 2, fluctuations of flow and
enrichment corresponding to those in Figs. 13 and
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Fig. 14. Autocorrelation function ¢%F as functions of
time T (niform type).
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Fig, 15. Fluctuations of flow and enrichment as func-
tions of mean pulse width (average type).
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14 are shown in Figs. 15 and 16, and the following
conclusions are obtained.

1. The mean pulse width at the 8°’th stage
1/Bs = 100 T corresponds to 1/8, = 2300 T and
1/Bo =45 T. In this case, flow fluctuation at the
top stage is almost saturatéd and nearly equal to
that of 1/83 = ©». On the other hand, it is still
increasing at the feed stage (% = 0), and the curve
in Fig. 15 becomes convex toward the lower side

of 1/8;.

2. Even the smallest stage (i.e., the top stage)
consists of 900 centrifuges for the model cascade.
Therefore, the cut fluctuation of a stage caused by
a failure of one centrifuge is too small to cause a
significant flow fluctuation.

3. Conclusion (3) of case 1 also applies in this
case.

VIil. PERMISSIBLE FLUCTUATIONS OF
STAGE PARAMETERS

Static and dynamic permissible fluctuations of
stage parameters, to ensure a given cascade
performance, are discussed in this section. The
required performance is set as follows:

1. The stationary deviation of each stage flow
rate from the nominal value should be <10% (3¢ =

10%).

2. The stationary deviation of the product
enrichment should be <10% (3.25 & 30%, 30 =
0.325%).

3. The dynamic fluctuation of each stage flow
rate should be < 10%.
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Fig. 16. Autocorrelation function 9§ as a function of
time 7 (average type).
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Permissible fluctuations to satisfy require-
ments (1) and (2) are presented in Figs. 17a and
and 17b. The stage where the flow rate deviation
is the largest is the 18’th stage for the uniform
type or the 20’th stage for the average type (see
Fig. 9).

Observing these figures, it is evident that
fluctuation of the separation gain can be rather
large, but a high accuracy is required for the cut.
Let it be assumed that the deviation of a stage cut
is determined by a manufacturing error for each
centrifuge; i.e.,

1 1/2
) Ocent

g, = -
stage (number of centrifuges

The top stage, which is the smallest stage,
consists of about 900 centrifuges, and as the
deviation of the separation gain can easily be
made less than several percent, the maximum
permissible Oseage is

Cucage = {0.5% for the uniform type (94)

2.0% for the average type.
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Fig. 17. Permissible regions of fluctuations in cut and
separation factor to satisfy required stationary
performance.
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Therefore,

(95)

Ucent

- {15% for the uniform type

60% for the average type.

These values are far outside the range where
the linear approximation [Eq. (90)] is valid; how-
ever, it is correct to state that the permissible
manufacturing error in the cut of each centrifuge
can be rather large, and an error less than the
above values can be easily realized. Therefore,
while the cut of each centrifuge may deviate
greatly, the mean value of the centrifuges aver-
aged over a stage must be a nominal value with
high accuracy; i.e., Osuage Of Eq. (94). If it is
impossible to make the deviation of the mean
value less than Oswuge, the cut must be controlled by
the flow controller; in this case, Fig. 17 shows the
permissible error in control.

For requirement (3), permissible dynamic fluc-
tuations of the cut are given in Figs. 18a and 18b
as functions of the mean pulse width. We have
considered failure of the centrifuge, control error
of the flow rate, and other reasons as causes of
dynamic cut fluctuation. Centrifuge failure has no
significant effect on the stage cut; consequently,
the figures show required performance of the flow
controller, if any.

IX. CONCLUSIONS

The uranium-enriching plant is a huge cascade
composed of a vast number of centrifuges. Up to
now, analysis of the system has been effected
deterministically. The stochastic treatment is
also necessary, especially to decide the tolerances
for centrifuges and to define the performance of
plant control systems.

First, the influence of stochastic deviation of
stage performance was evaluated by using classic
stochastic theory. Then, the time behavior caused
by the random fluctuation of stage parameters was
evaluated by the theory of stationary random
processes.

The main conclusions obtained by numerical
calculations are as follows:

1. If the cut of each stage is distributed at
random with a standard deviation of 1%, the
deviations of product flow and enrichment are
about 6 and 0.15% (absolute), respectively.

2. If the stage separation gain fluctuates with
o = 5%, the product enrichment fluctuates by
10.02% (absolute).

3. To limit the fluctuation of flow (all stages)
and product enrichment within 10% (= 30), allow-
able tolerances of the cut and gain are as shown
in Fig. 117.
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Fig. 18. Permissible dynamic fluctuation of cut to satisfy required dynamic performance.

4. There are many centrifuges in a stage, and
the cut of a stage is the mean value of those
centrifuges. Therefore, the relative deviation of
the cut of a stage is sufficiently small. However,
the mean value does not necessarily lie within the
specified tolerance. The control system must
correct the mean value to a nominal one.

5. When the perturbations are time dependent,
the magnitude of the response increases mono-
tonically with the time interval of perturbation.
With an infinitely long time interval compared
with the system time constant, the result merges
into the steady problem described above. The
time constant of the system is about 250 times the
holdup time of a centrifuge for the model cascade.

6. If the fluctuation of the cut from the nominal
value is approximated by the rectangular pulse
series with an average width of a few tens of the
holdup time of a centrifuge and with an average
height of 1%, the fluctuation of product flow
becomes about 3%.

7. The latitude of cut fluctuation as a function
of mean time interval of the disturbance is
illustrated in Fig. 18..

8. The cut deviation affects product enrich-
ment more through direct mass balance (mixing)
than through changes in the separation gain.

Thus, the relations have been analyzed between
the fluctuations of cut and gain of centrifuges and
the system performance. The numerical illustra-
tions as well as the formulas should be useful in
the design and operation of a centrifuge plant.
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APPENDIX

The steady-state solutions of Egs. (20) and (22)
can be obtained analytically:

2F, exple(M + 1)] {exple(¥ + 1)] - 1}
e{exple(m + N+ 2)] - 1}
X [1 - exP(‘GX)] )
0=sX=M+1
2F; exple(M + 1)] {1 - exp[-¢(M + )]}
e{exple(M + N + 2)] - 1}

x {exp[-e(x - M - N -2)] - 1} ,
M+1=SX=M+N+2

F(x) =

(A.1)

2F;N; exp[-e(M + 1)] {1 - exp[-e(N + 1)]}
€{1 - expl-e(M+ N+ 2)]}

x [exp(eX) - 1]
0=X=M=+1

G(X) =
2F; N; exp[-e(M + 1)] {exple(m + 1)] - 1}
e{1 - exp[-e(M + N + 2)]}

x {1 - exple(X - M - N - 2)]} ,
M+1=X=M+N+2 .
(A.2)
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From Eqs. (A.1) and (A.2), the enrichment is
given by

N(X) = N; exple(X - M - 1)] (A.3)
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