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A coarse mesh nodal coupling method, a well-known technique often used in
steady-state neutronics analysis of light water reactors, is extended to a problem of
transient phenomena of boiling water reactors (BWRs). Spatial collapse is attempted
to develop a multiregion neutronics model and the associated axially one-dimensional

and one-point models.

These models are numerically solved through the use of two approximations,
quasi-static and prompt jump. The results as applied to a reference BWR core for tran-
sient analyses, initiated by artificial thermal-hydraulic disturbances, are presented to

show the practicality of the approach.

The nature of the optimal weighting function necessary for the spatial collapse
and for the quasi-static approximation is also discussed.

I. INTRODUCTION

Simulation techniques of transient phenomena
are essential for boiling water reactor (BWR) core
design and plant control. Transient analysis is more
difficult than steady-state analysis both in terms
of modeling and numerical computation.

The BWR core is composed of hundreds of
fuel bundles. Each fuel bundle forms a channel
along which coolant flows. Since there is no cross-
flow among channels, a one-dimensional separated
flow model' is believed to be good enough to
describe the two-phase flow phenomena in a channel.
However, these bundles are neutronically coupled
with each other. Therefore, the neutronics model
must take into account reactivity feedbacks in
such a way that spatial variations of disturbances
(fuel temperatures and moderator densities) are
appropriately treated.

!G. B. WALLIS, One Dimensional Two-Phase Flow,
McGraw-Hill Book Company, New York (1969).

A three-dimensional treatment of the neutronics
would be the most straightforward approach. How-
ever, this is neither practical nor economical. Some
simplification is desired.

The BWR is characterized by the existence of
an axial void distribution, and it is important
to evaluate its change along the axial direction
during transients. Therefore, a multinode treatment
of the axial direction would be a minimum re-
quirement.

The degree of sophistication of the radial di-
rection treatment depends on the phenomena to
be analyzed. A radially collapsed, axial one-dimen-
sional model would be sufficient for the analysis
of a turbine trip accident in which core char-
acteristics are considered to behave uniformly in
the radial direction. However, at least a three-
dimensional equivalent model would be required
for analyses of such accidents as one recirculation
pump trip and an anticipated transient without
scram with some control rods not inserted because
spatial distortion of the neutron flux plays an
important role in these cases.
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A conventional fine mesh numerical method
is limited by computing time and memory even
for steady-state calculations.? The MEKIN code,?
which solves three-dimensional power distribution
on the basis of a few group time-dependent fine
mesh diffusion method, is recognized as one of
the most sophisticated kinetics codes.

A coarse mesh nodal coupling approach is a
natural way to improve the computational efficiency.
Attempts have been made to improve the accuracy
without sacrificing the efficiency. Finnemann and
Raum* introduced the nodal expansion method
(NEM), which uses polynomial expansions of the
fluxes and currents to determine the flux-current
coupling terms. Smith® extended the analytical nodal
method, similar to NEM, to three-dimensional ge-
ometry and showed that the computational efficiency
can be at least two orders of magnitude greater
than that of the conventional finite difference
method.

It is felt, however, that much more efficiency
needs to be attained for the method to be applicable
to design calculations. The method would be prac-
tical if the time required in a neutronics model
for simulating core behavior is within 20 times
of real time by a standard large computer, e.g.,
an IBM 3033.

The FLARE model,® widely used as a steady-
state BWR simulator, employs crude approximation
but has some adjustable parameters such as albedos
and mixing kernels. With these parameters properly
chosen, it simulates core performance fairly satis-
factorily.” Furthermore, this model can be applied
to core management purposes that require hundreds
of three-dimensional power distribution calculations

2M. R. WAGNER, “Current Trend in Multi Dimensional
Static Reactor Calculations,” Proc. Conf. Computing Methods
in Nuclear Engineering, Charleston, South Carolina, April
15-17, 1975, CONF-750413, 1, 1, U.S. Energy Research
and Development Administration (1975).

3R. W. BOWRING et al., “MEKIN: MIT-EPRI Nuclear
Reactor Kinetics Code,” EPRI CCM-1, Electric Power Re-
search Institute (1975).

“H. FINNEMANN and H. RAUM, “Nodal Expansion
Method for the Analysis of Space-Time Effects in LWRs,”
Proc. NEACRP Specialists' Mtg. Calculation of Three-Dimen-
sional Rating Distribution in Operating Reactors, Paris, France,
November 1979, Nuclear Energy Agency Committee on
Reactor Physics (1980).

5K. S. SMITH, “An Analytic Nodal Method for Solving
the Two-Group, Multidimensional, Static and Transient Neu-
tron Diffusion Equations,” Thesis, Massachusetts Institute of
Technology (Mar. 1979).

SD. L. DELP et al., “FLARE: A Three-Dimensional
Boiling Water Reactor Simulator,” GEAP-4598, General Elec-
tric Company (1964).

’T. KIGUCHI and T. KAWAI, Nucl. Technol., 27, 315
(1975).

649

to optimize operating strategy because of its effi-
ciency.®® The FLARE-type nodal coupling method
also provides effective core-averaged properties for
use in the point Kinetics equations.!°

Extension of the FLARE model to dynamics
problems for transients with time constants larger
than the neutron slowing down and diffusion time
(~2 X 10 s) is straightforward. However, it is
still time consuming and impractical even by this
model to solve transient behavior of three-dimen-
sional nodal power distribution. Some spatial collapse
over the radial direction is required for the method
to be practical.

The aim of this paper is to develop a multi-
region neutronics model based on a coarse mesh
nodal coupling method (FLARE) for transient anal-
yses of BWRs (Ref. 11). Derivation of equations,
method of numerical solutions, and application- re-
sults to a commercial BWR are given.

II. NEUTRONICS MODEL BASED ON COARSE
MESH NODAL COUPLING METHOD

1L A. Steady-State Equation and Importance

The steady-state neutron balance equation of
the FLARE model is given by

Keoi
S,':TI(Z; WﬁSj'f' WS,'S,') , (n
J
where

S; = neutron source, number of neutrons pro-
duced per node {

W;; = neutron transport kernel, probability that
a neutron born at node j is finally absorbed
at node i

WS; = self-transport kernel, probability that a
neutron born at node i is finally absorbed
at the same node i

k. ;= infinite neutron multiplication factor at
node i

A = eigenvalue, effective neutron multiplication
factor.

The self-transport kernel WS; is related to the
neutron transport kernel by

8T. HAYASE and H. MOTODA, Nucl. Technol., 48,
91 (1980).

%Y. BESSHO et al., J. Nucl Sci. Technol., 18, 697
(1981).

9] K. PARK and M. BECKER, Trans. Am. Nucl. Soc.,
35, 581 (1980).

"H. MOTODA et al., Trans. Am. Nucl. Soc., 38, 352
(1981).
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WS;=1- 23 Wy~ ? (=)W , (2
]
where

a;; = albedo, reflection rate of a neutron going
to node j from node i (defined as zero
for nodes having six existing neighbors)

!
E = summation over existing neighbor node j
i
”"
Z} = summation over missing neighbor node j.
J
The eigenvalue A can be obtained by taking
a summation over all nodes i in Eq. (1) as

) (;} W;iS; + ws;s,-)

i
5
Keoi

A=
i

23585i- 25 2" (1 - o)Wy
i i j

- 5 -9
k

T Kooi

The physical meaning of Eq. (3) is the ratio (pro-
duction-leakage)/absorption.
The equation adjoint to Eq. (1) is given by

§,~ = %( E kec] W,-,@,- + koo,' WS,STI) . )
]

The variable 3", physically means the importance
of a neutron produced and is hereafter designated
source importance. Note that the external bound-
ary condition is automatically incorporated into
Eq. (4). This is evident by interpreting Eq. (4)
as an importance balance.

Importance is phenomena dependent and is not
uniquely required. Importance of an absorbed neu-
tron can be conceivable. The equation that this
importance, designated absorption importance, sat-
isfies is given by

Koni
st =zl (;} Wy Sj+ ws,-S,-) : ()

Equation (5) is shown to be adjoint to Eq. (6),
the balance of absorption rate 4;:

A;= '7l( (E keoiWiiAj + kooiWSiAi) : (6)
i

The following relation holds for the above var-
iables:

S;S; = A;S* )

MOTODA et al.

and the eigenvalues of Egs. (1), (4), (5), and (6)
are the same.

The two kinds of importance can be derived
from a different viewpoint. The eigenvalue A of
Eq. (1) can also be obtained in two other ways
introducing a weighting function w; as

2 OJ,(E Wj,'Sj + WS,'S,')
AW)

{

A= 8
> wiS; (8)
i kooi
and
D w.-koo,-(Z_) W;iiS; + WSi)
A== 9)

AW
2 wiSi
i
These eigenvalues are the same if §; is known
exactly. It is possible to obtain A, correct to the
first order, if the weight c; is chosen such that
Egs. (8) and (9) are stationary for any first-order
variation of S;. The variational principle gives

A

5;\=22—£'-55‘.=0—>—=0 , (10)
H

0S;
and it_is shown that w; = S for Eq. (8) and
w; = S; for Eq. (9). In other words, these two
kinds of importance have the meaning of the optimal
weighting function.

11.B. Space-Dependent Dynamics Equation

Equation (1) can be rewritten as

Z; W,‘,‘Sj'ﬁ'WS,'S,“?\kii.=0 .
i

ool

(11)

The left side of Eq. (11) is decomposed into three
terms—net inflow, production, and absorption:

[E WiiSj— 25 WySi— 23 (1- Olij)Wii]
/ i i

(net inflow)
S; _
- ?\E;; =0 .

(production) (absorption)

+5; (12)

The first term describes the net number of neutrons
coming into the node i and absorbed there. How-
ever, this term can be thought to represent the
net inflow. This is because the neutrons that come
into a node and go out of it to a neighboring
node without being absorbed are balanced by the
neutrons that take the same process in other nodes
unless the time scale of interest is in the range
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of the neutrons slowing down and diffusion time
(~2X 10 s).

Taking a dynamic balance of neutrons, the
following kinetic equation is obtained:

0S; A
ligg = 22 WS + (WSi - k_oi - ﬁ:)Si + 20 NCii
i had !
aCy;
¢ = PuSi— MG
and
S,
P; =;,;f , (13)
where

I; = neutron generation time at node

Bi; = I'th group delayed neutron precursor frac-
tionatnodei(/=1,2,...,L),

Bi=Zl>ﬁli

\; = I'th group delayed neutron precursor decay
constant

C;; =I'th group delayed neutron precursor con-
centration at node i

P; = power at node i

y; = number of neutrons emitted per fission
at node i

Ao = eigenvalue at initial steady state.

In deriving Eq. (13), time variation of /; is ignored,
but J; is allowed to vary with time in the equation.
Equation (13) is the three-dimensional kinetic equa-
tion based on a coarse mesh nodal coupling method.

Use of one-group approximation implies an in-
stantaneous change in neutron spectrum. Since the
time constant for spectrum change is estimated
to be ~10™ s, about the same for the time required
for neutron slowing down and diffusion, Eq. (13)
is thought to be valid for transients with a time
constant larger than ~2 X 107 s.

III. METHOD OF SPATIAL COLLAPSE

IIL.A. Multiregion Neutronics Model

A reactor core is divided radially into several
regions of arbitrary sizes. The concept of region
specification is shown in Fig. 1. A region can be
a set of separate subregions. A region number
is denoted as ¢ (¢ = 1, 2, . . ., @). Axial nodal divi-
sion is the same as the original node i, and the
axial node isdenoted as k (k =1, 2,...,K).

651

Let §; and Cj; be factored into two functions
as

S; = figx Vi
and
a4)

where 7igx and my, p are new variables that are
assumed to be constant within region ¢ for axial
node k, representing regionwise behavior. The var-
iables §; and Kj; are considered to be correction
functions, and their changes in space and time
are assumed to be small.

The following normalization is imposed to make
this split unique:

Ci =mpgx Ki;

Tigx = {W;Spiegk
and
(15)

Here, the variables w; and w;; are yet unknown
weights and ( ),,x designates the summation over
all nodes i that are in region ¢ at axial node k.
From Egs. (14) and (15), the following constraints
are derived:

migr = {w1iCridiegk -

((.J,- J/i)isq,k =1.0
and
(16)

Furthermore, introducing a new variable Rgk
defined as

(wl,' Kli>ieq,k= 1.0 .

_ Tgal®) _ ga®¥i _ Si(0)

the following initial conditions are derived:
S:(0)

v;i(0) = k)

a7

nq,k(o) = 1'0 ’

Mgk (0) = ’)Il;'(wiﬁlisi(o))ieq,k s

N
O

{a) (b}

©
OO
©

Fig. 1. Concept of region specification: (a) two-region
specification and (b) six-region specification.
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and

_ BuS0)
(iBiSi(0ieqr ~

To determine the optimal weights c; and wy;:

1. Equation (14) is substituted into §; and Cj
in Eq. (13).

2. The first equation is multiplied by w; and
the second by wy;.

Ki(0) = (18)

3. These are integrated over all nodes as

2 gkl Vidieq e Pig e (0)]
gk
+ 27 [ngrtooid; j/i)l'eq,k fgx(0)]
a9k

=25 {wi 25 Wii"q".kﬁq".k(o)\ffi>
a.k i ieq.k

+ E ["q k <‘°’ (WS" - t B i) Jli>f“’”‘ :

+ Z; E A imig i Ky ieq.k)
q.k

and

2 PugaloniKidieqr) + 37 (migplwriKiidieqi)
q.k q.k

= 3 [ngatwriBiiVidieq i g x(0)]
qk

= 2 migréeniKidiegr) (19)
q.k

where ¢'’ means a region number in which
the nodej belongs.

Since an approximation is made that ; and
K;; remain unchanged in the multiregion model,
the optimal weights w; and «y; can be determined
by the condition that Eq. (19) is stgtionary for
any first-order variation of y; and Kj;: 8{; and 8K;.

The first-order perturbation of Eq. (19) with
respect to y; and Kj; leads to

2 U ueoili® Uidieq g 1(0)]
qk
+ ng (n2g,4 il & ‘i’i)ieq,k figr(0)]
a
= E wj E Wjing .k ig" x(0) 5J’J’>.

ieq.k

+ E [nqk<w, (WS.' - : - i)ﬁ'j/i)ieq.k i

+ 25 25 (g 18wib K dieq 1)

gk 1

MOTODA et al.

and

2 U pdwii8Kdicqr] + E (M1g {18 Kiieg )
q.k

= 23 nguwiBiid ¥diegr fig i (0)]
q.k

= 20 Wiy peidKdiegi) - 2n
q.k
From Eq. (16), we obtain
(@i Updieqr = 0
and
(w1i6Kidiegr = 0 . (22)

Using Eq. (22), the following relations are derived:
(il Uieqre = 0

. _ awi <
(w;il;§ wi>ieq.k = < or 115¢i> ieqk ’

and

. dwy;
(wri8K1idieq = = Wh 5K1i>ieq'k . (23)
Here, /; is assumed to be nearly constant in space
and time. The assumption of spatial uniformity
of J; within a region ¢ for a specified height &
is justified because a region is a set of nodes
having similar nuclear properties. The assumption
of ; ~ 0 may not hold for some transients be-
cause /; is sensitive to spectrum change, e.g., Al/l ~
0.4% for a 1% change of void. This assumption,
however, is used only for deriving the optimal
weights.

The following equation is obtained by adding
Eqs. (20) and (21) after using the above relations
and exchanging i and j of the first term of the
right side of Eq. (20):

% {nqk<[ dw; +E Wij wj + (WS ,:; ﬁ,)w,

q.k

+ Z) 31{6011']5@,-). Pgk (0)}
ieq.k
252 CCRRWIDSY L0

24

Here, (w;i6K)dicqr is retained in the second term
since this has no influence on Eq. (24) because
of the condition in Eq. (22). The stationary con-
dition, therefore, leads to

0w;
=l atl = Z; wr’jwj (WSi - - ﬁl)wl + E Biiwr;
7
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and

awl,- _

Since the time variations of shape ¥; and Kj;
are assumed to be small, it is reasonable to approx-
imate the solutions of Egq. (25) by the initial
state values:

Z Wijw;i + (WS
i

R(OJI,' . (25)

A
=0
and
(26)

It is interesting to note that the optimal weights
for ; and Kj; are the same under this approximation
and are equal to the absorption importance defined
in Sec. ILA.

It should be mentioned that this stationary
expression could have been obtained directly from
Eq. (13) by assuming stationality of S; and Cj.
(Note that this assumption is only for obtaining
the optimal weights.)

The equations that ngz and mygx satisfy can
be obtained by taking a summation over only i
values within ¢ and & (not over all nodes) in

Eq. (19):
(SFLS ieqrgk =<Si* 2 Wii5i°"¢r',k>
j

wp = Wi .

ieqk
* . [ - *ﬂ 0
+\ (Si WS;S; >ieq,k Si k S;
L ieqk
- (Si*ﬁisi°>ieq,k)nq,k + 27 Nimyg
[

ang
tigk = SFBS ieqi gk ~ Niigi - 27
Here S* and S; are substituted in w;, wy and
k(O)\l/,, respectively, and Eq. (16) is used.
The summation over j of the first term of

the right side of the first equation of Eq. (27)
can be split into four terms:

<Si* 2 Wiislp"q".k>
7

= 1]
= (S,-*W,‘jS,-o>,-,,-€q’knq,k + (S,-*W,-,-S,- ),:Eq,z
Jeq,

ieq,k

ES 0
+SFWip , 1iSi 1 ieq Mgk +1

+(SHWip L iSH_ gk Pgk-1 > (28)
where j € ¢'',k is divided into two sets—j € g,k
(inside region g) and j € ¢’k (outside region ¢q),
and where i, means the node directly above i
and jg_, the node directly below i.

Final equations for ng; and myg are written as
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loxtigr = 2 WHyaxng it Warsifgaer + War-1g4-1
q‘

A
+ (wq,k + WSq = ,?‘;k - ﬁq,,,) Mgk
+ 27 Nimygk
!
and
Mgk = Bigxgr =~ NiMigr (29)
with the initial conditions
har(0)=1.0
and 8
_Plgk
m1q'k(0 = TI (30)
The coefficients are defined as
le= 25 S*LSP
ieq,k
WHpae= 2o 25 SiWuSP
ieq.k jeq'k
Wé:k— E S’k— ”k— S b
ieq,k
w&:k = 2 1k+1 “k+1Si0 ’
IEQ.
War= 2 2o SiWyS?,
ieq,k  jeq,k
WSex = 20 SHWS:S? ,
ieq,k
koogi =1/ 25 (SFSPIkei)
ieq,k
Bigi= 2 SiBusSy
ieq.k
and
Bak =23 Bigk - b
!

Equation (29) is the multiregion kinetics equa-
tion based on a coarse mesh nodal coupling method.
The power P, is obtained by Eq. (32) as

P =Pyr(O)ngy , (32)
where
> P [3P0)
ieq,k 7
Pyi(0) =2 |- =1.0 (33)
q ,Ek E
1€q, bl
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IIT.B. Axial One-Dimensional Neutronics Model

Axial one-dimensional approximation requires
integration of the neutron source in the radial
direction. Taking summation over ¢ in Eq. (29),
the following equations are obtained:

Ikt = Wi ilgey + Wi gy

(Wk + WSy - & ﬁk)nk + E Ay

and
g = Bucnk ~ Mg (34)
with the initial conditions
nk(O) =1.0
and
_ B
mp(0)=5" . (35)
!
The coefficients are given below as
Ik = Z; Iq,k ’
q
Wk = E(Z; WHq',q,k + Wq,k)
9 \q
= 2( T X SPWyS )E T Wk
ieq.k jeq"k q
Wi=3 Wak s
q
We=3,Wer »
q
WSy = E WSek »
q
1 __1
kook Zq; kooq,k ’
Bix = 3 Bigr »
q
and
B =23 Bix (36)
1
Note that

20 WHy gk + Woi # Wok
q

but summation over g gives the same result. Co-
efficients other than W, are obtained from those
of the multiregion model.

Equation (34) is the one-dimensional Kkinetics

MOTODA et al.

equation based on a coarse mesh nodal coupling
method. The power P, [corresponding to Eq. (32)]
is given by Eq. (37):

Pq,k = Pq,k(O)nk .

II1.C. One-Point Neutronics Model

The one-point neutronics model is thought to
be a special case of the axial one-dimensional
model. Taking the summation over k& in Eq. (34),
the following equations are obtained:

37

ri=p/_\ﬁ n+2?\1mz
!
and
. _B
m; = KI n- Mml s (38)
with the initial conditions
n(0)=1.0
and
_B
my(0) = A (39)
Here, the coefficients are defined as
F= Z: (w";-k + WSq'k) s
q.k
0= (Wi + Wus - 222,
ai VTR Keogik ’
B1=27 BigklF .
q.k
B=2368,
!
and
A=1/F , (40)
where Wg is related to Wy, Wi, and Wi by
Z; Wt';'.k = Z; Wiy + W’:—-l +Wo
gk k
(41)

=qzk;( > Es*w,,s>

ieq,k

In deriving Eq. (38), the following normalization
is imposed on §*:

E Ik = Z: S,’*liSio =1.0 .
k i
The definition of F in Eq. (40) is different from

the usual definition in diffusion theory.!? According
to diffusion theory, F should be given as

(42)

2A.F. HENRY, Nucl. Sci. Eng., 3, 52 (1958).
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F=3%, 3, S¥s? .

q.k leqk

(43)

Although this definition is more natural in defining
B; and the reactivity p, using this introduces an
inconsistency between p and X of Eq. (3), namely,
p is not equal to (A — 1)/A. This is because the
definition of A is not consistent with that used
in diffusion theory: production/(absorption + leak-
age). However, this definition does not influence
(o — B)/A and B/A.

Equation (38) is the one-point kinetics equation
based on a coarse mesh nodal coupling method.
The power P,; [corresponding to Eq. (32)] is
given by Eq. (44) as

Pow=Pyr(O)n . (44)
HI.D. Two-Dimensional Cylindrical Coordinates
Neutronics Model

The foregoing modeling was with respect to
rectangular coordinates. It is possible to reformulate
the original three-dimensional kinetic equations [Eq.
(13)] in two-dimensional cylindrical coordinates.

An assumption is made that the coefficients
of Eq. (13) are constant in the circular node
shown in Fig. 2. Equation (13) is integrated over
each node. Approximating that the summation over j
in the radial direction is proportional to the area
of the cylindrical node boundary, the following
equations are obtained:

lnSr;,k = WRn—l,kSr't-l,k + WLn+1,kSr;+1,k

+ Wr;:kﬂS;z.kn + Wr:,k—lS;z,k—l

) ,
(2ot + WSk = 22 Bus) S

+ 23 MCink
7

and

Cingk = BingkSnk ~ MCing -

(45)

n-1 ] n+1

Fig. 2. Node specification for cylindrical coordinates.
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Here S,; means the number of neutrons that
are born in the node »n,k (not the source density
in unit volume) and the following approximation
is further introduced:

(rn £ 0.58)rp =17 T (46)
n+1
where
r, = radius at the center of node n
A = node width.
The coefficients of Eq. (45) are given as
WRn k= wn k:n+1,k (1 + A)
1 Ky » 2rn b
A
WLy k= Whnkon-1k (l - E) s
and
Wok=Wnk=Wninisr - 47

Equation (45) is the two-dimensional cylindrical
coordinate kinetics equations based on a coarse
mesh nodal coupling method. The power P, is
given by Eq. (48) as

Snkd

21 @

P nk =
As a special case, the steady-state, one-dimen-
sional cylindrical equation is given:

WR -1 Sp-1 + WL 41Sn44
+ (2Wy ey + 2W, NLP + WS,)S,
(49)

where NLP is the nonleakage probability for axial
direction.

IV. METHOD OF SOLUTION

IV . A. Simple Expression of Collapsed
Nuclear Constants

The coefficients of kinetics equations derived
in Secs. IILA, III.LB, and III.C are all defined
as integrals over all nodes within region g at
axial node k. Since the steady-state, three-dimen-
sional neutron source and absorption importance
distributions can be calculated in advance, these
coefficients can also be prepared as functions of
moderator density u# and fuel temperature T for
each combination of ¢ and k% considering the op-
erating history and control rod configuration.

The following expressions are found to give
a good approximation:
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You = Youll + Yo a(ugr —ug ) + Y2 xuugs — ud)?]
and
Koogk = kooqie[1 + Agltiq = udx)
+ By lugy — ugi)? 1
X AL+ [Cop + Dy i(uigr — udp)]

X UT )2 = (Th)'1 (50

Here, all coefficients other than k., are denoted
as Y,p for simplicity. The variable uQ; is the
average value of steady-state moderator density in
region ¢ at axial node k, and the variable Té’, k is the
average value in region ¢ at axial node & of the
base temperature at which nuclear constants are
calculated. Since there are no constraints on the
normalization of S/ in the previous formulation
except for the one-point model, both S,-o and S;*
are normalized such that their core average values
are 1.0. For the one-point model, the constraint
of Eq. (42) can be treated by redefining A as

2 Ik/F.
k

Note that these coefficients are fitted as func-
tions of ugy - uqo'k, not as functions of u,; alone.
This is to accommodate possible differences in
the steady-state moderator density distribution of
the FLARE and any transient thermal-hydraulics
model to be coupled with this neutronics model. Any
differences in steady-state temperature distribution
must be accommodated by another method (see
Sec. IV.D).

It has been assumed in deriving the kinetics
equations that the control rod pattern remains
unchanged after the transient is initiated. However,
it is possible to treat approximately the problem
in which control rods move during the transients.
In this case, these coefficients must be prepared
for each of the control rod patterns, assuming the
quasi-steady states of the corresponding S? and SF.
Coefficients are then selected for use in accordance
with the control rod pattern change during the
transients.

IV.B. Application of Quasi-Static Approximation
and Prompt Jump Approximations

Two approximations can be used in a prompt sub-
critical slow transient—quasi-static'®»'*" and prompt
jump. In general, the following discussion is based
on Eq. (13).

BK. 0. OTT and D. A. MENELEY, Nucl. Sci. Eng.,
36,402 (1969).

“D. A. MENELEY and K. O. OTT, “Fast Reactor
Kinetics—QX1 Code,” ANL-7769, Argonne National Labora-
tory (1971).
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The neutron source S; is factorized into an
amplitude function n(¢) and a shape function Vi(e):

S; = n()yi(e) ,
n(0)=1.0 ,
and
¥i(0) = S;(0) . (51)

Splitting of S; into two functions implies splitting
of Eq. (13) into two coupled equations, one for
the amplitude n(r) and the other for the shape
¥i(#). Equation (51) is substituted into Eq. (13),
multiplied by the yet unknown weighting function
w;, and integrated over all nodes i:

(wiliypn + (wfligi/;)rz

= <wi[]2 Wiy + (WSz' - % - Bf) \MJ >n
+ ;} Ml Crp

and
(wiC";,-) = (Wi ¥idn — Mlw; Gp) . (52)

The following constraint is imposed on w; to
make the split unique:

(0),'1,'ll/,')= 1.0 . (53)

This constraint implies that n(f) contains the main
time dependence and y;(¢) accounts only for slow
space variations. (Note the similarity to the method
of Sec. lII.C.)

Assuming the quasi-static nature of w; and
very slow variation of /; in space and time, the
following equations are obtained for the amplitude:

ﬁ=p—;ﬁn+27\1q
!

l A II’

where

F= <‘—0:‘(; Wiid; + WSiWi)) ,

o= <wi[§; Wil + (WS,- - %:,) ll/,]>/F ,

Br = (wiBiw)(F
A=1/F ,
and

C[ = (w,-C,,-) . (55)
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Equations for the shape are given by
. A
Wi =25 Wi + (WSx‘ - k_oi - Bi) ¥
j ]
2 NG

Lin ]
e —
b+

"
and
Ci =Buivin — NGy (56)

The quasi-static approximation takes full ad-
vantage of the fact that the time variation of the
shape function is of lesser importance than the
time variation of the amplitude function. Time
derivative of ; is therefore neglected:

A
2 Wity + (WS- 22 - Bi) i
] (=]
. 2> NG
Lin

_._wi+1— =0 .

n n (37)

The prompt jump approximation is applied to Eq.
(54). This approximation neglects the very rapid
change of n(t), in the order of A s and assumes
that n(¢) promptly follows the reactivity change.

Under these approximations, the following set
of equations is derived for the amplitude and
the shape:

B
G =ﬁ—_ﬁ 27 MG~ NG
m
and
n=g=5 D NG (58)
and
N E N G
Z}wji¢,+(wsi——‘{— i)ll’i’* ' =0
7 Keoi n
and
Cii =Brivin — NGy« (59)

Accordingly, the constraint of Eq. (53) is relaxed
and it is only required that the right side be
constant. Since this constant can be 1.0, Eq. (53)
is also considered valid for the prompt jump ap-
proximation.

The optimal weight w; can be obtained in
two different ways. In both cases, w; is optimal
in that some integral is stationary with respect
to any first-order variation of the shape function.
The first case is to derive the conditions for which
the reactivity p of Eq. (55) becomes stationary
with respect to §;:
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00

9
59=Z_>5"‘l%5\1/i=0"a_%=0 (60)

and

ap 1 Ao
a—\}/; =(§> W,-,-w,-+WS,~w,-)X—awi : (61)

In deriving Eq. (61), p = (A — 1)/\ is used. The
stationary condition gives

Ao

Ve =0

ool

2 Wijew; +(ws,- -
]

[p(0)=0, MO)=1.0] . (62)

The second case derives the conditions for which
Eq. (52) becomes stationary with respect to 8.
Using the technique similar to that in Sec. IIL.A,
the following equation is obtained:
A
2 Wi, + (ws,. -
J

- al,-)w,- =0, (63)

ool
where « is an asymptotic inverse period.

Both Egs. (62) and (63) mean that the optimal
weight is the quasi-static solution of absorption
importance, and it can be approximated by the
initial steady-state value S;*.

IV.C. Method of Numerical Calculation

The quasi-static approximation makes it possible
to solve the amplitude n(¢) and the shape y; in
different time steps. The amplitude is integrated
in every At, time step and the shape in every
At,, time step, the latter being several times as
large as the former. The time mesh specifications
are shown in Fig. 3.

Since calculation of p and f of Eq. (55)
requires y; and calculation of {; of Eq. (59)
requires n(t) of Eq. (58), which is determined
by p and §;, some iterative scheme is required.
The numerical calculation proceeds in accordance
with the following steps:

} |
| | . Time
; Atm —] | i'-— Atp
m: m-1 m ! m+1
n: ‘ 1T..... Nm—"
1 1., n R+l Nm
t: t

Fig. 3. Time mesh specifications used in the quasi-static
approximation.
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n=n+1
Aty = At + Aty
r=r+1
m=m+1 n=1
r=0 Atr=0 Yes Extrapolate
< using ¥j, 4 and ;.
r=1
Repeat Repeat Interpolate y;
u:til final H:sf;t,y wl)ile.recaltfulation No using &g and Yime
time has has converged. criteria of ¥ are
been reached. satisfied. Calculate
nand C;
Control of Contro! of
m loop n loop Nm=n Yes Calculate
Atm = Aty Cjiforr=1.
r=1
Calculate
shape function No C?:I;:iuflao:e r> 1.

Fig. 4. Iterative scheme for solving the neutronics model by quasi-static approximation.

1. Advance A¢,.

2. Extrapolate ;, from Vip,_, and y; for
the first iteration, and interpolate ¥;, from
Yi,, and ¢; . for the succeeding iteration
(Y iteration).

3. Solve n and (.
4. Solve Cy;.

5. Check recalculation criteria of ¥, (described

later), and either repeat from step 1 or
recalculate y; from n and Cp;, and set it

equal to 1,{1,-m+1.
6. Go back to the time when U’im was calculated,

and repeat steps 1 through 5 until Vi . is
converged,

7. Repeat from step 1.

This iterative scheme is shown by the problem
analysis diagram!S in Fig. 4. The parameter vy is
explained later.

IV.C.1. Amplitude Function n

Discretizing the first equation of Eq. (58) at
time ¢ + LA¢,, the following first-order simultaneous
equation is obtained:

L L
Z; Plvmcmnﬂ = E
m m

I,

! 2

Ql.mCm,, s
-

. L, (64)

Y. FUTAMURA et al., “Development of Computer
Programs by PAD (Problem Analysis Diagram),” Proc. Sth
Int. Conf. Software Engineering, San Diego, California, March
12,1981, p. 325 (1981).

where
At At, B
P = (1 + 520 o - S22 S0,
and
At At, B
Qim = (1 - —2—'%)61,”. St . (69)

where §;, is the Kronecker delta. The reactivity
p in Eq. (65) is defined as the average at time ¢,
and ¢4, (= ¢, + At,):

p=5(bn* puni) - (66)

The delayed neutron precursor fractions § and £
can be assumed as the values at time ¢,,.
The amplitude 7, is obtained by

An+l

Nper =
Bu+1 = Prwr

is the solution of Eq. (64).
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n+1 °?

where Gy, |

IV.C.2. Delayed Neutron Precursor Cy;

Integrating the second equation of Eq. (59)
over the time interval (¢,,¢,,,), the precursor con-
centration at time ¢,,, is given as

Clip .y = Cliexp(—NAtLy)
+ [ Bune ey

Xexp[-N(r —t"]dt" . (68)

Since f;; is assumed to be constant during At,,
and ¢; is assumed to change linearly, Eq. (68)
is approximated as

Clin+l =DI.nC“n +ﬁlinn(Al,n‘]/i,, +BI,I1 l‘binﬂ) 3 (69)
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where
Biinn = % Bli,,(nn +yer)

Dy, = exp(-NAty)

=L = exn(- 1 )_
Aln )\1[1 exp(—NAL,)] <1+)\1At,,> 1,

and

=1y -1
&M‘N* NAT,

Repeating Eq. (69) forn =1, 2, ..., Ny, the pre-
cursor concentration at time ¢y, is given as

-exp(-NAtn)]} . (70)

Nm-1

Nm-1f/Nm-1
n Dy nCi, + H IT Duj)\BiinnArnvi,

j=n+1

Nm-1 [ Nm-i
+ 35 T1 Dui)BinnBin iy, - (71)
n=1 \j=n+1

Here, ¥;, and y; . must be extrapolated from
Vi, and y; for the first  iteration, and in-
terpolated from y;  and l[}f’;:'_l for the r’th ¢
iteration. The final expression of Cliyy 1, thus,
given as

le

H DimCiy + 25

n=1

Nm-1/ Nm-1

I Dl,j)mz
J=n+1

At, (At,+ Aty
XKAM+0mm+ Atm

Nm- 1(Nm-l

+ I)Bl,n] Vi

B E Il Dl.i)g;"_"

J=n+1
Aty ALt AL,
(et = a

forr=1

BI n) ‘l’:m -1
(72)

and

Nm-1 f Nm-1
Cll.]Vm

Nm-1
n Dy, nC11|+ E n Dl,))ﬁltnn
j=n+1

o)A (
X [(1 Aty Al,n+ !
Nm-l(Nm—l

<5 T Dz,,)m

n=1 \j=n+1

At,+At,,) ]
- Atm-l-l BI,II wlm

At, At, + Aty
— +_—.——-
X (AtmﬂAI'n Aty

forr=2 ,

Bl,n) ‘]/;,:,lﬂ
(73)
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where

IV.C.3. Reactivity p),

Reactivity p, is calculated by Eq. (55). Since
it is time consuming to recalculate Eq. (55) for
each  iteration, the same approximation as used
in Ref. 14 is employed:

( Nm—me) H (74)

At,

Pp=ppt(n-1) At

where p), means the reactivity at time ¢, in the

r'th ¢ iteration. This approximation can apply
also to 3, 8, and A.

: r
1V.C.4. Shape Function Y;

The shape function at time ¢,,, for the r'th
iteration is obtained by the first equation of Eq. (59)
using ny, and Cj;, ~ as fixed sources. Note that

the constraint of Eq. (53) can be automatically
satisfied if dl' v Hiym, and C{, are all correctly

calculated. Thus, introducing a parameter ¥" (Ref
14), which is a measure of convergence, \b,mﬂ is
obtained as

1
l‘l/irmﬂ Ao Z; wiiwl'rm+1
E_'Y +6l /
2 )\’C{imﬂ

+ lnr— s 73)

Nm
where

=(S*Ly] (76)

l+l

Introduction of <" helps stabilize the numerical
calculation for a large reactivity insertion in which
case the source term becomes very small in Eq. (75).

The shape function should be recalculated when
one of the following two relations becomes un-
satisfied:

Max |Y;, — ¥;,| <€y
12

and

107" 0en) ::_': < 10Ven (77)

Convergence criterion of the  iteration is, as

stated earlier,

v - 1l<e . (78)
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1V .D. Special Consideration for Spatial Collapse

1V.D.1. Optimal Weighting Function for
Multiregion and Axial One-Dimensional
Neutronics Models

The steady-state solutions of Egs. (29) and
(34) are ngi(0) = nzx(0) = 1.0, and they satisfy
Eqgs. (79) and (80), respectively. Here, the variables
are changed from » to S for clarification as

Koogk
Sqk =52 [2; WHy 4 1S4k

+ Woke1Squer + Wak-18gk1

+ (W + wsq,k)s,,,k] (79)

and

Koo
Sk = _:[wk_-flsk+l + wl:-—lsk-l + (wk + WSk)Sk] #

A
(80)

The absorption importances corresponding to
Sg.x and S satisfy

koo Kk
S = 5% [z WHag 1S3k + Wik S
ql

* WS e+ ok + WSpo53
@81

and

k
Sp = ﬁ‘[w;,ggﬂ + Wi Sk + (Wy + WSSE] .
(82)

It is evident that the solutions of Egs. (81) and
(82) are SJ% = S& = 1.0. Therefore, the optimal
weighting functions to be used in the quasi-static
approximation of Egs. (29) and (34) are constant.
Physically, this means that spatial distribution of
importance is already considered in preparing the
collapsed nuclear constants.

IV.D.2. Some Means to Account for Introduction
of Numerical Errors

Imbalance of reactivity at the initial steady
state is inevitable partly due to inconsistency of
the fuel heat transfer model (see Sec. IV.A) and
partly due to round-off error. Therefore, it cannot
be expected that solutions of Egs. (79) through
(82) are perfectly flat.

Eigenvalue A, of the initial steady state is
modified by taking the neutron balance in each
of the collapsed models, and correction terms egx
and e are introduced and added to Wgx and Wy
to force the solutions to be flat.

MOTODA et al.

1. Multiregion neutronics model:
Ao

2 (E WHy gk + Waker + Wogmy + WSgx + wq,k)
_4k\¢q

1

ak kooq,k
Ao
Ok Kook (%? WHy, gk + Wagen

* Whieoy + WSy + wq,k) :
and
wq,k <« wq,k + €k - (83)
2. Axial one-dimensional neutronics model:
?(Wk—ﬂ + wic*—l + WSk + W)

R0= 1 b

7 Kook

A
€ = k_(; =~ Wi + Wi + WS + W)
and

Wy < Wy + e (; ek=0) : (84)

3. One-point neutronics model:

E (wsq,k + wq,k)
q.k
Ao =

1 (85)

gk Keoak

V. EXAMPLE OF NUMERICAL CALCULATIONS

The models described in previous sections were
implemented into computer programs. A collapsed
nuclear constant generating program was also pre-
pared separately.

A reference BWR core of 1100 MW(electric)
was simulated to verify the effectiveness of the
proposed models. Since this paper deals only with
the neutronics part, artificial disturbances are im-
posed on the moderator density and the corre-
sponding neutronics responses are calculated. The
initial steady state is a typical low flow-high power
condition of BWR (40% flow and 60% power).

Region specifications and a control rod pattern
are shown in Fig. 5. The reactor core was radially
divided into three regions (Q = 3) into two different
ways, one by an irregular boundary and the other
by a circular boundary, and axially into 24 nodes
(K = 24).
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Fig. 5. Region specifications and control rod pattern of reference BWR core.

Steady-state power distributions in these two
cases are shown in Fig. 6. The power is peaked
in the middle due to the many shallow rods.
Two kinds of importance (source importance and
absorption importance) are compared in Fig. 7
with source for two selected bundles, A without
control rod and B with control rod. The location
of these two bundles is given in Fig. 5. It is interesting
to note that there is a dip in the source importance
around the control rod tip due to its strong ab-
sorption characteristics. Since Eq. (1) is not self-
adjoint, there is a need to distinguish the importance
from the source. It is also important to distinguish
the difference of the two kinds of importance.

The collapsed nuclear constants are fitted for
the range of Au = +0.05 and AT = +£15°C around
the value of the initial steady state. Here, A means
the difference from the steady state. A total of
3 X 24 = 72 sets of nuclear constants were prepared,
each set containing constants defined in Eq. (31)
and following in the form of Eq. (50). The accuracy
of the fitting was within +1073% and satisfactory.

The three disturbances imposed were all sinu-

soidal with time, but different with space:
1. uniform throughout core Au = 0.01 sin (7?)
2. uniform in radial direction

Au = 0.01 sin (1—”2—"3) sin(at)

3. nonuniform in both axial and radial directions

Au=0.01 sin (%) sin[m—g(q— 1)] .

The principal purpose of these numerical ex-
amples is to show the model’s capability of treating
spatial effect. For this reason, sinusoidal disturbances
with a single frequency were selected, although
these cannot analyze the cases where the periodicity
of the response is not forced by the perturbation
and where substantial variation in instantaneous
period is possible. The amplitude of the perturba-
tion was set at 1.0% simply because this results
in the reactivity of ~20%. These do not indicate
the limitation of the model.
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Fig. 6. Axial power distributions at initial steady state: (a) irregular region and (b) circular region.
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The transient calculations were performed under
the following conditions: Az, = 20 ms, €y, = 0.005,
€, = 10, ¢, = 0.0001, and L = 6. The results are
given below for each type of the disturbance.

1. Uniform disturbance throughout core. This is
the simplest case. The transient behavior is shown in
Fig. 8 for the scatter region. All three models (multi-
region, axial one-dimensional, and one point) give
essentially the same responses for reactivity and
power level. However, the power distribution is
periodically distorted along the axial direction due to
the void dependency of the infinite multiplication
factor (0k/ou becomes smaller for larger u values).
The degree of distortion is ~3%. The results obtained
for the circular region are the same. How the core is
radially divided does not affect the results for this
type of disturbance.

2. Uniform disturbance in radial direction. In
this case axial distortion of the power distribution

.o

g5

£
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géq -1+

s - L L s ' B
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p (X103
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Fig. 8. Transient behavior:
region specification — scatter
— uniform throughout core
Au =0.01 sin(wr).

disturbance
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is accentuated more and amounts to as much as
8% as shown in Fig. 9. There is a noticeable dif-
ference in both reactivity (1%) and power level
(2%) between the one-point model and the other
two models. The power distribution behaves the
same in the radial direction (see shape function
of the multiregion model). These results demonstrate
that the axial one-dimensional model is a good
approximation for uniform disturbance in the radial
direction. The results obtained for the circular
region are also the same, as in the previous case.

3. Nonuniform disturbance in both axial and
radial directions. This is the case where the net
reactivity insertion is small, but the disturbances
are nonuniform throughout the core. The results
obtained for the irregular region are shown in
Figs. 10 and 11, and those for the circular region
in Figs. 12 and 13.
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Fig. 9. Transient behavior:
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Since the net reactivity change is small in
this example, there is not much difference in power
level between the one-point model and the other
two (no difference is seen between the axial one-
dimensional and the multiregion models). However,
there is a noticeable difference in power distributions
among the three models. The power distributions
change out of phase in regions 1, 2, and 3. The
regional difference is ~4%.

Note that the scatter region is more closely
coupled than the circular region, i.e., the contri-
bution of the

2 WH, q.qkNq k
7

term is much larger for the former in Eq. (29).
Therefore, the power distributions in regions 1
and 2 behave more similarily in the scatter region
than in the circular region.

These results indicate that the axial one-dimen-
sional model is only good to predict power level.
Multiregion treatment is necessary to predict power
distributions for this type of nonuniform disturbance.

The results of these examples are reasonable.
Computing time required is on the average of 6 s
CPU on an IBM 3033 for simulation of a I-s
pl.onomenon, and it is thought to be practical.

As another example to show the usefulness
of this model, a steady-state power distribution
of the cylindrical coordinates model [Eq. (49)]
is compared to that of the two-dimensional rect-
angular coordinates model in Fig. 14. The results
are in good agreement.

IV. CONCLUSION

A multiregion neutronics model based on a
coarse mesh nodal coupling method is developed
for use in transient analysis of a BWR. The method
approximates a three-dimensional power distribu-
tion by multiregion representation, each region made
up of several hundred nodes, and solves its time-
dependent characteristics. The axially one-dimen-
sional model, as a special case, and the one-point
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. Fig. 14. Comparison of power distributions obtained by
cylindrical one-dimensional model (—) and rectangular two-
dimensional model (C®).

model, as a further special case of the former,
are also formulated.

Two approximations are employed to facilitate
numerical calculation—quasi-static and prompt jump.
It is proven that the optimal weighting function
necessary for the special collapse and for the quasi-
static approximation is the steady-state neutron
absorption importance and that the use of this
function cancels out the effect of the first-order
perturbation of the shape function in an integral
sense.

These models are implemented into computer
programs, and their usefulness is verified by nu-
merical examples applied to a reference BWR core.
The results indicate that the axial one-dimensional
model is adequate in predicting power level, but
inadequate in predicting power distribution for non-
uniform disturbances, and the necessity for multi-
region neutronics treatment is demonstrated.
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