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Characteristics of an ideal cascade are analyzed by two differential equations
representing the conservation of UFg and 23 UF, flow, The controlling variables
are identified as the cut and the separation factor of centrifuges and of stages as
well as feed flow rate. The controlled variables are flow rate and enrichment of
stages, especially of the product and waste. The sensitivity of the controlled
variables to the controlling variables are analyzed by linearizing the conservation
equations, and analytic expressions are obtained. The change in the separative
work of the cascade is a sum of changes in the separative work of the constituent
centrifuges, When the flow rate is chosen to optimize the separative work of a
single centrifuge, the plant separative work is maximum and stationary at the
rated feed flow. It has been demonstrated in a few examples that these simple
relations for the ideal cascade are useful for the planning, design, and operation

of cascade plants.

I. INTRODUCTION

The work reported here is an investigation of a
uranium enriching cascade using centrifuges.

The theory of the cascade for isotope separa-
tion is well established.! Solutions for square,
tapered and ideal cascades have been investigated
for static and dynamic situations.?”® These in-
vestigations deal with the cascade which has a
unique set of deterministic system parameters.
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It is known that the steady state plant per-
formance of the cascade is governed by the cut
and the separation factor of stages as well as the
feed flow to the cascade. These parameters are
not always identical with the design values. For
example, the cut may fluctuate within the error
band of the stage flow controller. The cut and the
separation factor of centrifuges will distribute
with certain deviations caused by manufacturing
tolerances. The shut down of a centrifuge reduces
the stage separative factor. Furthermore, feed
flow rate may be controlled in order to meet the
varying demand of product enrichment.’®
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the effect of such variations on the plant per-
formances for the design and operation of the
cascade.

The ideal cascade is considered to be practical
for enriching plants composed of centrifuges. In
the present paper, the authors derive in analytic
forms the sensitivity of parameters on the per-
formances of the ideal cascade. The results are
then applied to some operational problems.

II. SYSTEM EQUATIONS

Flow Relations

Let F; and G, be the total UF; and ***UF, flow
rates into the i’th stage. Primes ' and "' denote
the enriched and depleted flow out of the stage, as
shown in Fig. 1. From the conservation of mass
flow the following equations are derived:

F; = Fio1+ Fiqa + 64,1F)
G; = Gi-1 + Git1 + 8, Ny Fy
5."[=1(i=1) , =0(i#!) ’

where N denotes enrichment and f (subscript)
denotes feed stage. The stage number is defined
in Fig. 2. For the top and the bottom stage i =
L - 1 and 1, respectively,
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Fig. 1. Interstage flow rates at the i’th stage of the
cascade.
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Fig. 2, Definition of stage number i and variable x.

Fr-y=Fl-3 , F1=F} (2a)
GL-1=GL-2 , G1=Gsr ’ (2b)

which correspond to Eqgs. (1a) and (1b) if the flow
rates are zero at the fictious stages 0 and L.

F'=F§=0 (32)
Gl =Gy=0 (3b)

Therefore, Eqs. (1a) and (1b) hold for all e[1, L-
1] with the boundary conditions (3a) and (3b). The
enrichment N; is obtained by

N; = G,'/F,' . (4)

Cut and the Separation Gain

The cut 8;, separation factor (af);, and separa-
tive gain ¢; are defined by

Fi=0,F; , F{'=6F; , 9;=1-¢; (9)

N N
1—_3,? = (aB); TN (6)
(aB); =1 +2¢ . ()]

Assumptions and Approximations

The gain ¢; is very small compared with 1, and
so the following approximations hold:

(N - N)/N; <<1 , (N; -N)/N; <<1 . (8)
Further it is assumed that
N <1 . (9)

Cut for the Ideal Cascade
The condition for the ideal cascade!

1-N+VaBN
9= 1+a ’ a=B (lo)
reduces to
1-N+(l+e)N, 1 1
8% T+(1+e) 2 4°° (1)

with approximations (8) and (9). It is assumed
that the stages are made of identical centrifuges.
Therefore, in the ideal cascade, the stage gain ¢
is constant and independent of stage number, as is
the stage cut 6. These constant values will be
denoted by €° and 6°.
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Fundamental Equations
Inserting the definition of cut, Eq. (5), into

Eq. (la), the interstage relation of flow rates
follows:
~¥Fi-1- 2F; + Fiq1) - #(Fiq1 - Fi-d)

+ 841 Figr = 0i-1F5-1= 8, | Fy (12a)

In order to derive the corresponding relation for
G, preliminary considerations are necessary.

It is shown in Appendix A that the concentra-
tions of the enriched and depleted flow are

Ni =(1+209;¢;) N;
N,{' = (1 - 20;6;) N,-

Substituting Eqs. (13), (4), and (5) into Eq. (1b), we
finally obtain

=HGi-1 - 2G; + Giz) - HGi41 - Gi-D) +0,11Gipn
- 0;-1G;-1 + 2(€80G);41 - 2(€00G) ;-1 = 64 Ny Fy .
(12b)

The stagewise Egs. (12a) and (12b) are approxi-
mately described by the continuous stage variable
x (Fig. 2) as

(13)

-%%F 4 (1 - 20)F)} = 6lx - x)F;  (14a)
;£2c+dx{( 1+ 26 + 4€08)G}
= 8(x - X)) N/F; . (14b)

The approximation is based on the assumption that
the quantities vary slowly with respect to the
stage. When the relation for the ideal cascade,
Eq. (11), is inserted, Eqs. (14a) and (14b) are
further reduced as

ld2 lod

-3 2 F -3 €= F =0 - )F) (152)
-%§G+%e°£c=a(xux.,)z\r,1«*, (15b)

Reference Solutions

The solution of Egs. (15a) and (15b) satisfying
the boundary condition F=G=0 at x=0, / and
continuous at x = x, can be readily obtained (see
Appendix B):

F = Clexple®(l - %0)] - 1}[1 - exp(-€°¥)]
0=x=x
F = Clexp[e®(l - x)] - 1}[1 - exp(-€°%0)]

Xo =x

(16a)

=]

_ 2F; exp(e°x,) .
" €%exp(e®) - 1] ’

G =C"1 - exp[-€°(l - x)]} [exp(e®%) - 1]
0=x=2x

G = C'{1 - exp[-€%(I - %)]} [exp(e®x0) - 1]
| =y 100
2N F; exp(-€°%)
€’[1 - exp(-¢°)]
From Eqgs. (16a), (16b), and (4) follows the equation
N = Nj exple’(x - x0)] o m

For later references, the outlet quantities are
represented below, as Special cases of Eq. (16):

F,=0F, =F - N

w 1 /NP N‘w (18)
Ny - N,

FP-9F1-1—F/NP N,

where subseripts P and w denote product and
waste respectively. Obviously they satisfy the
conservation laws

Fp + Fy = F/
NpFp + N,F, = NjF}

(19a)
(19b)

Stage Parameters and Centrifuge Parameters

The cut and the separative gain of a stage is
composed of the cut and the separative gain of the
constituent centrifuges. It is shown in Appendix C
that the variation of the cut 8; and the separative
gain ¢; of a stage i is the average of the variations
of the cut 6;; and the separativé gain ¢; of j’th
centrifuges belonging to the stage ¢ if their varia-
tions are small,

5¢; = (i)f)1 se,,) /J.- (20)
56; =(}Zi)1 ao,,) /.n , 21)

where J;, the number of centrifuges in a stage, is
designed to be proportional to the stage flow:

B =Fff ,
where f is the flow rate per centrifuge.

(22)

Flow and the Gain

The separative gain ¢ is a function of the flow
rate per centrifuge. Consider the separative work
of a centrifuge:

u=3ef . (23)

The operating condition will be set so that this
function is maximum with respect to the flow.
Thus the flow dependence of the separative gain is

be/e” = -8f/(2f) . (29)



66 KAWAI et al.

III. SENSITIVITY ANALYSIS

Controlling Variables and Objective Functions

Equations (14a) and (14b) show how the flows F
and G are related to 6, e and F;. The relation is
shown schematically in Fig. 3. Feed flow and
stagewise cut are the controlling variables.

The first order effects of system parameters
8;, €;, and Fy on the flow distributions F(x), G(x),
and hence N(x) can be analyzed by linearization.
These effects are additive, and we treat them
separately.

The objective function may be either the sepa-
rative work of the plant

U= FpV(Np) + F,V(N,) - F;V(Ny) (25)
or the amount of net sales
S=FPP(NP)+FwP(Nw)'F[P(Nj) ] (26)
where V is the value function
V) = (2N -1 log T2 =% -logN ,  (27)

and P is the unit price of the uranium. The
differential of U is obviously

5Np SN, oNy
6U=-FPE-FW —]Vw-+F/ ']W

N; N,
- log N—: 6Fp - log N—'/” 6F, (28)

The Effect of Separation Gain

As seen from Fig. 3, the change in separative
gain 6¢; affects the **°UF, flow, G, and hence the
enrichment, leaving the total flow F unchanged.
By linearizing Eq. (14b), the following equation for
0G is obtained:

- Lzz 6G + €° 2 5c=-2 {2Go(6e +260)} . (29)
dx dx dx

The solution for the #’th stage change b¢; is

6G = - C;[exp(e®s) - 1] 0=<x <y

8G = C; {1 - exp[-€°( - %)]} % <x S1
Ci = 2 exp(-€%;) G(x;) b¢;/[1 - exp(-€%)]

The x-dependence of 5G is similar to that of G in
the region x > max(x;,x,) and x < min(x;,x0), SO
that 6N/N does not depend on the stage for some
ranges of stages

» (30)

5N(x) € Fibe
Ni(x) - Ff[exp(e"xo) - 1] % > max(¥o, ;)
N(x) _ e F; O¢; (31)

N(x) ~ " F{1 - exp[-€°Q - xo)]}
x < min(xo,x,')

from which the change in the product and waste
enrichment is obtained. By the use of equations
(17), (20), and (22), these equations yield

NwNP f 0
6Np —N/ ~ Nw _FTE 56,‘,
oN, Ml J o4 (52
w="Np -N F ¢ %

This result shows that the effect of the separative
gain of a single centrifuge is independent of the
stage in which the centrifuge is located.

The effect on the separative work is obtained
by inserting Eq. (32) into Eq. (28). The result is
simply

8U =23 f €®be;; =25 6(3fel;) . (33)

if ij
This is the sum of the change in the separative
work of constituent centrifuges, leading to the

. ] l
3:?{;‘;:2;‘9: I controlled variables
r..__l
I Fe ,F
Ft ‘ | 4 — P, Frw
|
| L
: & 24 4 25 U
|
|
6 A | 6 Ft: feed flow F : UFe flow
| o Fp: product flow G : 235 UFe flow
! Fw: waste flow 0 : cut
EQ'N"" F etc. denote vectors ) . gepgrative work € : separative gain

Fig. 3. Relations between controlling and controlled variables,
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conclusion that the mixing loss is negligible in the
first order of ¢ in an ideal cascade.
Effect of the Feed Flow

Total flow F; is proportional to the feed flow as
readily seen from Eq. (16a);

8F(x)/F{x) = 6F; /F; = A (34)

This causes uniform changes in the separative
gain 6e¢/e® = -A/2. Equation (14b) then becomes

2
-%%G +£{(%e°+ﬁe)c}

= 8¢ - XN/ F/(1 +4) , (35)

and the solution is analogous to Eq. (16b), with the
replacements

Eo_’eo(l'A) 3 F,—'F‘/(1+A)

Assuming A << 1, the change 5G can be obtained
by differentiating the exact solution,

M- - P S €°l
G(x) = A{ € Xo 1 “—exp(e°l) -1
Eo(l - %o) e
* exple®(l - x0)] - 1 t1- exp(-e%x) ( ¥ a,
X <xo
Q(i(i‘l= - 0 . €l
G = A R G - 1
€l - x) €%, }
* exple®(l - x)] - 1 *T-exp(-etwg)f *4
X> % .
(36)

Change in 6N/N is obtained by subtracting A from
the above equations, especially at the top and
bottom,

SNY  _ [0 €1 %l-x) )
N),=1 - A(E %ot exple®D - 1 exp[e®(l-x0)]-1
M) - A( €l €% )
N fx=1-1 exp(e®) -1 exple?)) -1/ -

(37

The result looks complicated, but it is trans-
formed into simpler equations below (see Appen-
dix D),

M) =N U
w

N/, Ne- DN Ff
GN) N, Up A (38)
N Jp N; - N, Fy ?

where Ur is the total work of the centrifuges.
This equation can also be simply derived from the
previous result, Eq. (32), when it is noted that the
feed flow causes be;; = -3€¢°A for all centrifuges.

The change in the plant separative work by the -
feed flow is obtained by 8Fp, 6F,, and 8F; from
Eq. (34), 6Np and 6N, from Eq. (38),

8U=-A-U+ A[% (e°)“er]

S ( FpN, F,Np )
F\Ny - N, Np-N
=-A-U+A-(U){1}=0 , (39)

where Eqs. (18) and (D.1) have been used. This
shows that the ideal cascade is operated at the
optimum stationary condition when the rated flow
is set by the condition (24).

Effect of the Cut

The change in F due to the cut change is
obtained from Eq. (14a).

ld o ed
2 dx* 2 dx
This is the same form as Eq. (29) if we replace ¢°

in Eq. (29) by -¢°, and -2Gy6¢ by 466;F. The solu-
tion is

6F = C{[1 - exp(-¢%)] x =<x;
6F = -C{ {exple®l - x)] - 1} x; <x
Ci = -4¢%,F:66;/[explesl) - 1] .

The change in the product flow due to 86; is
expressed, using Eq. (17),

oF - 6F-2£(660F) =0 . (40)

(41)

6Fp = 66F;., = 2¢°G,66; (42)

1
Np - Nw
The conservation of flow 6 Fp + 6F,, at the outlet is
verified. The relative change of flow &F(x)/F(x)
is constant outside the region min(x,,%;) = x =
max(x,, ¥;), but varies inside, so that the flow per
centrifuge is not constant through the stages,
hence the separative gain. It seems to be difficult
to solve 6G analytically for the cut change (Appen-
dix E). However, the product and waste enrich-
ment will be analytically obtained from the
consideration of separative work. We postulate
that the separative work does not change by the
small change in the cut in an ideal cascade. Thus
using the three conservation equations (19a), (19b),
and (28) for UFs, ***UFs, and U, we can solve 6F,,
O0Np, 6N, in terms of §Fp. The results are

GFw = ‘GFp

5Np (1 Ny | ﬁ’g) 6Fp

Ne VYN -N, N,/ T (43)
8N, Np\ &F

Nw NP = Nw Nw Fw
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Thus the effect of cut on the plant output quantities
is obtained in spite of the complexity of the flow
change throughout the stages.

IV. ILLUSTRATIONS

The Model Plant

Table I shows the model plant which is chosen
as an illustrative purpose. The flow F and en-
richment are shown as functions of stage in Fig. 4.
Also in this figure are plotted by dotted lines the
corresponding quantities calculated by exact dif-
ference equations for an exactly ideal cascade [cut
determined by Eq. (11) without the approximation).

TABLE 1
Performance of a Model Cascade
Cut® ] 0.4825
Separative Gain € 0.07
Number Rectifier 22
of Stages Stripper 15
Feed 6.4425
Flow Rate® Product 1.0
Waste 5.4425
Feed 0.714
Enrichment Product 3.251
%) Waste 0.248
Separative Work® U 4.239
29 =3- %e
bproduct flow unit.

®
3 100 004
Ec ooz <
g o g
-~ [&] E
{0.02

o 3 §
b =
% 2 0.0l w
o

° A A A 3

o 6 16 26 3s°°°

Stage

Fig. 4. Total flow, 3%UF, flow and enrichment of a
‘reference plant.

Nlustrations of the Sensitivity

The calculated results of 6N;/N; by changes in
the feed flow are illustrated in Fig. 5. Effects
of cut change 66i(f = 6 ~ 31) on the flow are
illustrated in Fig. 6. Figure 7 shows the effect
of the separation gain on the enrichment. Other
trivail relations (6F; — O0F;, &¢; — 6F;) are
omitted.

SF¢
Ft

3N
N

0.0

Change in enrichment

Stage

Fig. 5. Change in the enrichment due to feed flow
variation, '
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“ 1o} -
w
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=
£ ol ]
° _
e ﬂL\
o
=
o X \l -

-lo- N N N -

o 6 s 26 36
Stage

Fig. 6. Change in the flow due to cut variation at the
i’th stage. (66 =+0.1 9°).
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Fig, 7, Change in the enrichment due to separative
gain variation at the #'th stage. (8¢ = +0,1 €°),

Optimum Operation for Varying
Demand Enrichment

The consideration in the previous chapter
showed that the separative work of an ideal
cascade is kept invariant when feed flow and cut of
the stages are varied. Cut of the stages may be
adjusted before and during the operation, but not
for controlling purposes, because there are too
many cut to be controlled in the ideal cascade.
The feed flow, on the other hand, is much simpler
to control. Its effect on the flow and enrichment
is also much simpler. It can meet the varying
enrichment demand without mixing loss, while
other methods such as outside blending, extraction
at the mid-stage, or partial shut down of the
centrifuges necessarily lose the separative value.

'UO-
o C

NS 00
g
1

¥
vg.-.
agz'
g\.:
2 2.2
[T
-— 8
% 095
wao

A comparison among the possible methods of
operation is shown in Fig. 8. The relative change
in the product enrichment (6N/N)p due to the
relative change in the feed flow A is known to be
-0.344 for the model plant.

Criterion for Replacement

According to calculated results, the response
of the separative work of the plant 6U to the
change of separative gain of one element (one
centrifuge or one set of centrifuges) 6¢ is well
approximated by the following equation®:

U N'e
where U, N, and ¢° denote the separative work of
the plant, number of the elements, and nominal
separative gain of the elements, respectively.

The economical loss of the plant §Y is repre-
sented by

(44)

(45)

where Y is the total cost for the separation work.
The deteriorated element with the separative

gain €° + 6¢ should be replaced with a new one
when

z2<8Y , (46)

where z denotes the capital cost (depreciation
account) of the element.
From Eqs. (45) and (46), the criterion for the
replacement is given by
o
€ +06€ <1- 12

€ 2Y

where Z is the whole capital cost of the elements
(= Nz). Figure 9 shows the criterion.

(47)

1'When the plant consists of one element, this equa-
tion can be obtained analytically.

A: increase feed flow rate

B: mix product with natural
uranium

C: shut down a part of
centrifuges to form a
smaller ideal cascade

Product enrichment Np (%)
Fig. 8. Comparison among operational methods for varying product enrichment,
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Fig. 9. Replacement criterion of a deteriorated

centrifuge.

V. CONCLUSIONS

The characteristics of the ideal cascade are
analyzed. The relations among the controlling
variables [stage parameters (cut and separation
gain) and feed flow rate] and the control vari-
ables (flow rate, enrichment and the separative
work) are described by two differential equations.
Then the perturbations are introduced and solved
analytically for the first order approximation.
Table II summarizes the results of the sensitivity
expressions. Of course the validity of the conclu-
sion is limited to the small perturbations owing to
the linearization.

It was shown by the present study that the
change in the feed flow and cut do not influence the
separative work of the cascade, while the change
in the separative work of a constituent centrifuge

TABLE II

Equation Numbers Relating the Controlling
and Controlled Variables

Controlled
Controlling | 6F | 6Fp | 6F,| 6N | 6Np | 0Ny | 6U
6Fy H“ | 4 34 | 36 38 88 | 89
(1:) 41 42 43 - 43 43 (1}
Se 0 0 0] 30%| 32 | 32 | 33

256G instead of 6N.

KAWAI et al.

contributes directly to the cascade system without
the mixing loss. This is one of the simplifying
features of the ideal cascade. We have illustrated
the use of these features in the considerations of a
few operational problems.

Considering the stochastic nature of the plant
performance,'® as caused by the failure of centri-
fuges, tolerance of cut, and control error, it is not
sufficient to treat the parameters deterministi-
cally.

The authors hope that the expressions for the
sensitivity analysis presented in this paper will
help better understanding of the ideal cascade for
the design and operation of the uranium enriching
centrifuge plants.

APPENDIX A
Derivation of Equation (13)
The conservation of >*UFs demands that
N;F;=N/F{ +N!'F!' (A.1)

Approximation (8) enables N’ and N’ to be written
as

N'=(1+¢&N
N'=(1-9)N
£&,n<<1

Using Eq. (5), primes are eliminated, and a

relation between £ and 5 follows:
1=61+8+1-6(-7) , or 8¢ =0n (A.2)

Another relation between £ and n comes from
Egs. (6), (7), and (9),

(1+8=(1-7{(1+2) , or £+1n=2¢ (A.3)

Solution of ¢ and 7 from Egs. (A.2) and (A.3)
proves directly Eq. (13).

APPENDIX B
Solution of Equations (15a) and (15b)

Equation (15a):

d? o d
Ex—3F+e Ex-F=0 0=x<xp , %<x=1
(B.1)
is integrated to give
F_=Ar+Crexp(-e%) 0=x<x
Fy=Az +Caexp(-€%) x,<x =I (B.2)

Here four integration constants are determined by
the boundary conditions, a continuity condition, and
a jump condition.
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F_=90 x=0

F+=0 x =

F-=F+ X = Xo (B.3)
d d
EF+'EF‘='2Ff X=Xq .

The last condition follows from integration of
Eq. (15a) in the small range (xo - 8, xo + 8),
1d ]xo+8 1, ]x0+8

2dx

where the second term vanishes as 6 tends to
zero. By a straightforward calculation the coeffi-
cients are solved and the solution (16a) is ob-
tained.

Equation (15b) is identical to Eq. (15a) if the
following substitutions are made:

= F/ ) (B.4)

60_, _eo
Fy — N Fy

Hence the solution follows from Eq. (16a) by the
above substitutions.

(B.5)

APPENDIX C
Devrivation of Equations (20) and (21)

In this Appendix symbols with the suffix j
denote the various quantities for a centrifuge
within a stage; symbols having no suffix denote the
various quantities for a stage. The relations (5)
and (13) hold for each centrifuge:

Fi' = 0; F; (C.1)
Gi=N{1 +2(1 - 6)¢;}6;F; (c.2)

The parameters and the inlet flow fluctuate around
the nominal values

6 = 6°+ 66
€ = €° + O¢; (c.3)
F;=F° +§F;

Inserting (C.3) into (C.1) and (C.2), and neglecting
higher order terms

Fj = 6°F° + F%6; + 6°6F;
G} = NF} + 2N{0°6°°F° + (1 - 26°) €F°56;
+ 0°6°F%¢; + 6°O_°e°5F,'} , (C.4)

the stage flow is obtained by summing the flow of
constituent centrifuges

F'= 6F + F(56;) + 6°F
G' = NF' + 2N{6°6%°F° + (1 - 26°) °F(66;)

+ 9°?F(Ge,') + 6°6%°6F} . (C.5)

On the other hand, stage flow is described by
stage cut and stage separative gain as

F'=(F+6F)(6 +66)
G'=N{1 +2(1-08-66)(e +0¢)} (0 +66)(F+06F)
(C.6)

Equations (C.6) and (C.5) agree if 66 and 8¢ are
defined by

80 =66, , b€ =(b¢;)
These are the equations to be derived.

(c.n

APPENDIX D
Derivation of Equation (38)

In Eq. (37), the following equalities obtained
from Eq. (17) are inserted:
Ny
N, °’
Then F,, Fp, F; are introduced from Eq. (18).
Thus

N,
€% = log €l = logN—P , etc.

5Jv‘w ol Go(l -X )
—Z = Ale® € - 1) )
N, (e %o+ exple) - 1 exple’(l - x0)] - 1
= ANp -l(F log N; - Fp log Np - F,, 1ogN,,)
NP - M F/ f 'f P P w wl] -

Noting that -log N is the value function, the
quantity in () is just the separative work of the
plant, which is related to the total number of
centrifuges by Eq. (23):

(V=3efIr=Ur . (®.1)

This is the separative work of the cascade. Thus
the first equation of Eq. (38) readily follows, and
so does the second.

APPENDIX E

On the Postulate of Separative
Work Stationarity

In the text we have postulated that the separa-
tive work is stationary in an ideal cascade, and
proceeded to find the first order change in the
product and waste isotopic assays resulting from
a small cut change §6; at stage i. However,
promoted by the referee’s suggestion, we could
prove the stationarity as follows.

Equation (28) for the separative work

5Np 6N,

6U='Fp"—"-Fw N
w

Np Ny
Np log N, 6Fp - log N, OF,

(E.1)
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is expressed in terms of 5Gp and 8Fp as

(L. 1 Ne
GU—(Nw Np) 6Gp logmﬁFp s (E.2)
where relations
y=§ ON_B8G_bF
F’* N G F (E.3)
8Fp+8F,=0 , 6Gp +6G,=0

are used. The second term in Eq. (E.2) is readily
obtained from Eq. (42). The first term, 6Gp,
consists of two terms representing direct and
indirect effects. The indirect term represents the
contribution of separative gain change, B¢;, in-
duced by stage flow change 8F; throughout the
cascade (i =0 ~1) caused by a stage cut change
66;.

The direct term, 5G&, is obtained from Eq.
(29) in a similar way as Eq. (30) was derived.

4¢°G; exp(-€¢%;)

GGl—l = 1- eXP('eol) 69;‘ ( 4)
E.
2¢°G; exp(-€%%;)
oy _ - i i
8Gp = 08G;-1 =7 exp(-€°1) %6
where approximations 6 = 6 = 3 have been used.

As for the indirect term, the change in separa-
tive gain of various stages k is obtained from
Eqgs. (24) and (41) as
Be; = Cur[1 - exp(-€°%,)] 66;
6e; = Cia{l - exple®(t - x,)]} 66;

_ 2¢° exp(e”x;)F;

Ca = Fy[exp(e®) - 1]

The contribution of 6¢, to 6Gp is expressed in
Eq. (30):

x < x;

Xr > X3 (E .5)

: €° exp(-€°%;) G, b¢,
5Gp = — - exp(-¢°l)

From Eqs. (E.5) and (E.6) the indirect term is
composed by a summation,

2(e%)” exp(e’s;) F; 86;
[1 - exp(-€°n)] [exp(e®) - 1]
( i exp(-€%,) Gi[1 - exp(-€°%)]

(E.6)

Gy =

x( 2

k=0 F,
~ 1

exp(-€°%) Gy {1 - exp[e°(l - xh)]}) . @)

kit Fy

Using the relations G; = N;F,, N; = N; exple(x; -
%0)], and replacing the summation by integration,
Eq. (E.7) is further simplified as

. 2(¢”)* G, b6;
6Gp =
[1 - exp(-¢°))] [exp(e®) - 1]

X(Z‘) [1 - exp(-€°%,)]
k=0

+ 5 {1 - exple - xm})

k=il
_ { 2¢°G; €”1
~ [1 - exp(-€°)] [exp(e®) - 1]

2¢°G (-€%;)
* 51 -iei’;lz-eil)‘ } 1 (E.8)
Adding Eqs. (E.4) and (E.8),
G < 2¢°G; €1 56
e = 11 = exp(-e*] [exp(eD - 1] )

_ 2¢"G;NpN, log(Np/N,) 56
= (NP — Nw)a 3 ’

o Ne
where €l = log N has been used.
w

Using Eqs. (E.9) and (42) for 6Gp and &8Fp,
Eq. (E.2) is finally reduced as

ou = ( 11 ) 2¢°G; NpN,, 10g(Np/N,,)
N, " Np N - N, '

) CVVP) 2¢°G;
BN/ N - N, 0% =0

which is the result to be proved.

(E.10)
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