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ABSTRACT

A nonlinear programming technique was applied
to a one-dimensional wmultivegion slab reactor to
optimize control vod programming and fuel loading
pattern simultaneously.

Oviginal equations and constvaints which weve
continuous in space and time weve discvelized and
further lineavized to use lineav programming ve-
peatedly.

Numevical vesults weve confivmed by the pre-
viously developed two-vegion buvrnup space theory.
Furthermove, the move quantitative evaluation of
burnup optimization and the deteymination of move
realistic control vod programming became possible
by the increased degvee of control freedom.

I. INTRODUCTION

If it is possible to attain higher burnups of fuels dis-
charged from nuclear power reactors or to lower required
enrichment of fresh fuels by an appropriate control of
power shape by means of a control rod programming and
a fuel loading pattern, considerable economy can be
achieved in a nuclear power station which will result
in the reduction of power generating cost.

Terney and Fenech' solved the problem of determining
an optimal sequence of control rod motions in a represen-
tative pressurized water reactor using dynamic program-
ming and direct flux-synthesis. Wade and Terney® posed
the design and operation of a nuclear reactor as optimal
control problems by use of a generalized set of design
objectives and a generalized control, and worked out the
iterative algorithm by the gradient method and linear
programming approach to solve a set of equations obtained
as the necessary conditions for optimality by use of the
Pontryagin’s Maximum Principle, Mélice® developed a
method to find the enrichment of fresh fuel and the location
patterns of various assemblies of the SENA reactors by
synthesizing an optimal distribution of nuclear property
that maximizes the reactivity. There have also been

'W. B. TERNEY and H. FENECH, Nucl. Sci. Eng., 39, 109
(1970).

*D. C. WADE and W. B. TERNEY, Nucl. Sci. Eng., 45, 199
(1971).

M. MELICE, Nucl. Sci. Eng., 31, 451 (1969).
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many other contributions*™*° in this field.

The author developed a theory of optimal control-rod
programming for a two-region reactor model and several
important results have been obtained.'!'* A significant
characteristic of burnup optimization problem is that
an optimal terminal state (OTS) can be uniquely determined
depending on an initial state and a control freedom.
Suzuki and Kiyose'® examined this nature more generally
using a topological mapping theory. Therefore, the prob-
lem is focused on investigating the nature of the OTS
and synthesizing an optimal control rod programming
during one refueling interval.

The optimal terminal state satisfies the minimum
material buckling condition within the constraint of power
peaking factor, when the burnup dependence of material
buckling is nearly linear in the two-region model. The
solution of this problem shows the discontinuity in the
optimal distribution of nuclear property of fuel, and the
final state cannot be attained from any continuous, initial
fuel distribution. However, this nature is shaded off in
the two-region model, because the discrepancy of material
buckling at the interface of two regions can be thought of
as the effect of an averaging operation within a region.
It is felt necessary to clarify this point and find a more
realistic control rod programming by a more realistic
model.

It is thought almost impossible to solve an optimal
solution analytically for such a complicated system, by
using the optimal control theory such as Pontryagin’s
Maximum Principle as is done in Ref. 11. We thought
it may be useful to adopt a method of mathematical pro-
gramming after several numerical experiments. As the
first step, the analyses of a one-group, one-dimensional,
multiregion slab reactor is attempted. No feedback reac-
tivity and constraints of other than power peaking factor,
fuel burnup, control rod density, and nuclear property of
fuel are considered for simplicity.

II. STATEMENT OF THE PROBLEM

A one-dimensional, one-group neutron diffusion equation
is written as

(3 £,

where

H
M

[Ro(x) - 1 - a(x)e (x,t) - u(x,t)]d(x,2) = 0

’

(1)

width of a core
migration length
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¢(x,#) = neutron flux at location x and time ¢
e(x,t)
u(x,t) = control rod density at location x and time ¢

ko(x)

burnup at location x and time ¢

distribution of the infinite multiplication factor
of the initial state

a(x) = depletion coefficient of reactivity by the fuel

burnup process.

It is assumed that the decrease of the infinite multiplica-
tion factor with fuel burnup is linear and that the migration
area M? is constant over the entire space and time. The
boundary condition to Eq. (1) is

9¢(0,8) -0 a¢(1 t)
ox Tox

+1e(,n=0 (2)

’

where [ is an extrapolated length of the core.

The burnup e(x,f) is proportional to the accumulated
reactor power. Thus, assuming the equivalence of neutron
flux and power,

2D - gen (3)

The boundary condition to Eq. (3) is
e(x,0) =0 . (4)

As operational constraints, the total reactor power must
be constant

f’ d(x,0dx = 1.0 , (5)
0

and the power, the fuel burnup and the control rod density
should be less than the allowable values

0= ¢(xt) <f (6)
0 <elxf) <E (7
0<ulxf) =U , (8)

and finally the initial nuclear property of fuel must be
within some given range,

kuin < kolx) = kmax . (9
The average fuel burnup e at the final time # is

NI

and is proportional to the operational period #. If the
unit of time ¢ is taken as a year, a(x) means the reactivity
depletion during one year.

The optimization problem is defined here as follows: to
find the space-time variation of u(x,f) that minimizes the
amount of fuel loading while satisfying Eqs. (1) to (9)
for the given /.. Therefore, the performance index to
this problem should be

xf)dxdt = ¢ | (10)

1
J= [ holx)ax (11)
)
This problem is equivalent to maximizing the average
burnup of a given initial loading pattern if the relative
distribution of %0(x) is fixed and a(x) is independent of x
and positive as is evident by Eq. (12)
1 1
f Shi, dx = [ Skodx - ae (12)
o o
where 6k and Ok, are reactivities of fuel at time 0 and
t; respectively. However, this formulation enables us to
find an optimal loading pattern, i.e., an optimal distribution
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j’th mesh number of the i’th group be Kn(i,j).

of nuclear property of fuel, as well as an optimal control
rod programming. We call the former problem as problem
one and the latter as problem two.

The assumptions of the equivalence of neutron flux
and power and the linear depletion of the reactivity with
fuel burnup are easily removed in the method described
in the next section,

III. APPLICATION OF THE METHOD OF
APPROXIMATION PROGRAMMING

This is one of the methods of solving a nonlinear pro-
gramming problem. The original nonlinear problem is
reduced to a linear problem by expanding variables around
a feasible solution, neglecting higher order terms. An
optimal solution can be obtained by solving the linear pro-
gramming (L.P.) repeatedly, starting from some promising
initial solution, until the convergence becomes satisfied.
This method was first developed by Griffith and Stewart.*
Many have applied L.P. to nuclear reactor problems.'®~%
Frankowski®* applied the method of approximation pro-
gramming (MAP) to the optimization of the structure of a
developing system of nuclear power stations. Mélice,
Hunin, and Vielvoye® used this method to find an optimal
configuration of fuels in pressurized water reactor cores.
Wade and Terney also used this method in Ref. 2 to modify
a control to make the Hamiltonian smaller.

Let one feasible solution be kg, ¢9.n, €n.n, and u3,, and
the small change of each of these variables be kon, ¢u,m,
€,m, and u,m. Here the spatial coordinate x and the
operational period # are divided into N - 1 and M - 1 small
intervals respectively and only values at node (n,m)
(n=1,... N,m=1,... M) are considered. Furthermore,
let the number of control rod groups be Nu, the number of
mesh points assigned to the i’th group be Nd(i) and the
It is not
necessary that Kn(Z,§) is continuous in j.

Then Egs. (1) to (9), and (11) are discretized by central
difference and forward difference approximations and fur-
ther linearized to obtain a standard linear programming
of the following form.

io
Daix Zb j=1,...7
i1
1] u . .
X < x; < x/ i=1,...1% (13)
io
J =3 ¢;x; — min

i=1

The correspondence of x; to each variable is shown below.
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%, = kon n=1, . L
EN(m-1intl = Ou,m n =1, . N
m =1, .M

X(N-1)(m-1)+n+NM+L = €n,m n=1,...N-1), (14)
m =1, .M
XNu(m-1)+i+ 2NM+L-M = UKn(i, 1), m i=1, . Nu
m =1 .M

where

1 for problem one
L =
N -1 for problem two

Explicit expressions of a;;, b;, and ¢; are given in the
Appendix. The equations are numbered as they appear
in Sec. I, with m assuming its complete range of values
for fixed », then » increasing. After » has assumed its
maximum value, the expressions apply to the next equation.

It is necessary to prepare the upper and the lower
bounds for each variable other than those given by the
problem to assure the accuracy of linearization. Let these
bounds be 6k, 6¢, 6e, and du. Then the constraints for
each variable are given as the common regions. Explicit
expressions of these constraints are also given in the
Appendix.

The numbers of variables i, and constraints jo + i, are
2NM + M(Nu - 1) + L and M(4N + Nu) - M + L respec-
tively. For example, if N=6, Nu =5, M =11, and L =5,
these become 181 and 313.

All of Eqgs. (A.2) should be zeroes if each variable
satisfies the difference equations of Egs. (1) to (5). How-
ever, these are not set at zeroes to avoid the accumulation
of errors by the repeated linearizations. Thus, it is not
necessary that any intermediate solution rigorously satis-
fies the relation that the right hand sides of Egs. (A.2)
be zeroes.

The convergency of this problem strongly depends on
the nonlinearity of the diffusion equation and the initial
guess. Operation by Haling’s principle®® and/or by the
uniform control can be used as the initial solution.

IV. RESULTS AND DISCUSSIONS

This calculational method was applied to a typical
boiling water reactor of 500 MW(e). The core width was
determined so that the radial neutron leakage became
nearly equal for both the slab and the cylindrical geom-

etries. The main data used were as follows:
M? = 80 cm® | H = 200 cm a = 0.1
1 =0.0 ,  =10yr , U = 0.5
E =20 , Rmin = 0.9 ,  Rmax = 1.2

The values of Epin and kmax are rather arbitrary. They
were chosen to represent the values of fresh and burnt
fuel.

A. Conventional Control Rod Programming

The control rod programmings by Haling’s principle
and the uniform control were calculated. These were
used as the initial guesses and also as the standard for

BR. K. HALING, ‘‘Operating Strategy for Maintaining an Opti-
mal Power Distribution Throughout Life,”” Proc. ANS Topical
Meeting on Nuclear Pevformance of Power Reactor Coves, TID-
7672, U.S. Atomic Energy Commission (1964).

comparison with optimal solutions. These control rod
programmings are obtained by solving Egs. (15) and (16)
respectively.

(iI_M)z ‘%+ (o (®) - 1 - alx)t; $(x)]o(x) = 0
ulx,t) = alx)px)Ng - 8)

(15)

+ [kolx) - 1 - alx) fo Colwtydt - u(®)]ex,) =0 . (16)

The results are shown in Fig. 1. The first two rows
show the time variation of the power distribution ¢(x,?)
of the operation by Haling’s principle and the uniform
control respectively, and the last two show that of the
corresponding distribution of the control rod density u (x,).
The reactor core is divided into five meshes (N, = 5)
and the control rod density is allowed to vary at each
mesh (Nu = 5). The operational period #; is divided into
11 meshes (M = 11) and only the results at £ = 0.0, 0.5,
and 1.0 yr are shown. The shaded area indicates the net
reactivity 6k - #. It is assumed in these examples that the
fuel is loaded uniformly in the core and has flat nuclear
property at the beginning of operation.

The power distribution does not change throughout the
operational period in Haling’s principle and the control
rod density is proportional to the power density. On the
other hand, the power distribution changes considerably
in the uniform control. It becomes flatter as the fuel

burns. The required 06k, is a little larger than that of
t=00 0.5 1L.Oyr
©
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Fig. 1. Conventional control rod programming (N1 = 5, Nu = 5,
M =11).

The first and the third rows refer to Haling’s principle, and the
second and the fourth rows refer to uniform control. Shaded area
indicates net reactivity ok - u.
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Haling’s principle. This is because the higher power
density in the central region promotes the fuel burnup
in this region and the reactor has to be kept critical with
the fuel of worse nuclear property in the central region.
In both cases, the control rods are fully withdrawn at the
end of operation. The difference of 0k, is nearly equal
to 2% of fuel burnup.

B. Optimal Control Rod Programming for Uniform
Loading (Problem One)

The problem here defined is to find the OTS attainable
from an initial state.

Effect of the maximum allowable power peaking factor
f on the optimal solutions are investigated for the uniform
loading. The relation between f and 6k, is shown in Fig. 2.
The O marks refer to the optimal solutions and A and O
marks refer to Haling’s principle and the uniform control
respectively. These are calculated with N; = 5, Nu = 5,
M =11.

It is evident that the results of Haling’s principle and
the uniform control lie above the optimal 6k, - f curve.
Especially the uniform control results in 06k, which is
considerably larger than that of the optimal solution for
the same value of f. This is equivalent to the reduction
of burnup of about 8%. On the other hand, Haling’s solution
gives the close result to the optimal solution. However,

it is not optimal although the difference of 6k, is very
small and is equivalent to the burnup difference of about
1.4%. In addition, this principle does not give the smallest
power peaking factor f for the given burnup e or the
given initial nuclear property of fuel 0ko,. If the reactor

T
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x

» O Optimal Controt

o

x A Haling’s Principle
>
5 O Uuniform Control
a OISk
2
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3
€ o014}
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:?_.. I o
£
°
013 E
-]
o
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@

L 1 1 L A A A I 1 L '
.2 1.4 1.6 1.8 2.0

Maximum ollowable power
peaking factor

Fig. 2. Effect of maximum allowable power peaking factor f on
required initial nuclear property of fuel 6ko in case of the uniform
loading, N1 =5, Nu =5,M=11,U =0.5.

Optimal control rod programming is classified into three re-
gions according to the range of f.
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is designed to have a margin of power peaking over that
of Haling’s principle, the effect of optimization is worth
noting. If f is taken to be 1.4 (which seems natural for
the bare slab reactor), the difference of 6k, or e amounts
to as much as 0.0048 or 3.5%. From this figure it is
understood that the optimal solution is classified into three
regions according to the range of f:f < 1.32, 1.32 < f <
1.75, 1.75 < f.

Some examples of the time variation of the power and
the control rod density distributions are shown below for
these three regions. The results of f = 1.3 are shown in
Fig. 3 as the example of the first region. Three calcula-
tions were performed, varying the mesh spacings to see
their effects on the optimal solution. The first and the
fourth are the results of N, = 10, Nu = 10, M = 6, the
second and the fifth are of N; = 10, Nu = 5, M = 6, and
the third and the sixth are of N, = 5, Nu =5 M =11.

t=0.0 0.5 1.0yr
1.0 o -
0.0 x % %
-
> —
A
® -
© ! I Y L 011111
5 3 0.0 X 3 X
3
1<
a
0.1 - »
AN LN
Ll l\l AL )
0.0 x * x X
« F
©
> on-& N -
> \
z W
- lllll\l
I 0.0 x X X
°
14
<
SNINE :
N
0.0 P k It \
' x

X b 3

Fig. 3. Optimal control rod programming and power distribu-
tion, uniform loading, f = 1.3 (Region I).

Three results are shown. The first and the fourth rows are of
Ni1=10, Nu=10, M = 6, the second and the fifth are of M =10,
Nu = 5, M =6, and the third and the sixth are of M1 =5, Nu =5,
M =11. The optimal solution is unique and its policy is globally
inner high and locally outer high.
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The power distributions of the first two cases are
very similar and well express the local variations. The
third one is not enough to discuss the fine structure but
still indicates the characteristics of the global variations.
On the contrary, the control rod distributions seem con-
siderably different between the first two cases, because
its spatial distribution is much more irregular than the
power distribution, However, the mesh-averaged rod den-
sities are very close to each other, Thus, it is concluded
that at least 5 spatial mesh and 6 time mesh points are
required.

The ratios 06k:0¢:0e:0u are fixed at 1:5:5:1 for all
calculations in this study and 6¢ is chosen out of the
values 0.01 to 0.05. The calculations of Fig. 3 are per-
formed with 6¢ = 0.03 and the number of the iterations of
L.P. calculations are ~20. The initial guesses are the
uniform control with the relative distribution of u(x,?)
chosen to satisfy Egs. (6), (7), and (8) (modified uniform
control).

The optimal policy of this region falls in inner high
in the two-region model,'"'** i.e., the power density of the
inner region should be kept as high as possible at each
instant. Indeed it is necessary to do so to minimize the
residual control rod density at the end of operation.
However, it is seen that the effort is paid to bring the
nuclear property at the middle region as high as possible
at the end of operation by making the power density at
the outer region as high as possible. The control rod
programming of the first case well explains this situation.
The control rod density of the first three meshes is
uniquely determined so as to make the power distribution
flat, i.e., kB, = 1.0. At the next mesh the control rod
is fully withdrawn to give the maximum material buckling,
and then again inserted at the next two meshes to give the
minimum material buckling. Finally at the last four

t=0.0
1.0}
h-2
z
B _ 0.0 X
§3
. 1.0 yr
Z3 1.0} : !
a
0.0 B
0.1 \
g 0.0 | Nx
E)
2 [
>
g N —= 0.1
o
0.0b—— I\ 0.0
X X

meshes the control rod is fully withdrawn. This material
buckling distribution makes the outer high power distribu-
tion at the outer region.

The control rod should be fully inserted to make the
material buckling minimum and the optimal control rod
distribution must be bang-pang type. This is not clear,
however, in the above example. This may be because the
optimal switching points lie inside the mesh intervals,
perhaps, inside the fifth and sixth meshes. The control
policy in this region is shown as inner high in Fig. 2. This
is valid only in the global sense. We call this policy as
globally inner high and locally outer high.

Figure 4 shows two examples of the second region.
The maximum allowable power peaking factor f is set
at the value of Haling’s principle, 1.337, in the left exam-
ple, and 1.6 in the right example. The optimal solution
is degenerate and two different solutions are shown for
each example. Haling’s principle and the modified uniform
control were used as the initial guesses. The iteration
number was about 50 in these cases. The calculational
condition is N, =5, Nu =5, M =11, and 6¢ = 0.01. This
figure shows that the power density in the inner region
must not necessarily be maximized throughout the opera-
tional period to withdraw all the control rods at the end
of operation. Actually, inner high policy results in worse
nuclear property in the inner region which requires more
fuels to be loaded, and outer high policy results in better
nuclear property in the inner region which requires
some of the control rods still to remain inserted in the
core to satisfy the constraint on power peaking factor.
Thus the optimal solution must be between these two
extreme policies and, therefore, degenerate. The power
density of the central region is kept maximum and is equal
to its limitation f at the end of operation and all of the
control rods are fully withdrawn.

t=0.0

1.0

0.0
1.0 yr

T

I

1.0

It

) 0.0

0.4

0.2

0.0

0.4
—0.1 L

k\mx 0.0 m_&

X

0.2

LJ" [ 1

0.0

Fig. 4. Optimal control rod programming and power distribution, uniform loading, f = 1.337 (left), f = 1.6 (right), N1 =5, Nu =5,

M =11 (Region II).

The optimal solution is degenerate and two solutions with different initial guesses are shown, both resulting in the same terminal

states.
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Haling’s principle can be optimal in the two-region
model where there is only one freedom for operation,
but not in the multiregion model. It is optimal in the
sense?®® that the power peaking factor is maintained at the
minimum value for any given set of end conditions when
the power shape does not change during the operational
period.

The problem defined here is: to find the OTS and
its resulting better nuclear property distribution at the
end of operation than that of Haling’s principle by the
appropriate control rod programming without violating the
constraint on f. This means in other words that better
power distribution can be realized, giving the same aver-
age burnup as that of Haling’s principle; however, Haling’s
principle should be evaluated by its high practicality.

An example of approach to convergence is shown in
Fig. 5. The convergence is very slow for these degenerate
cases, although the performance index rapidly falls to
around the optimal value. The result of each iteration
satisfies all of the constraints and thus the iteration can
be terminated at any stage before the final convergence
is met if the result is acceptable.

There is no unique policy of the control rod program-
ming for this region, although it is near outer high and
therefore, it is difficult to synthesize it as a function
of the state of the reactor. Furthermore, it should be
noted that this degenerate region covers the practical
range of operational condition.

Figure 6 shows two examples of the third region. The
first and the third rows refer to the uniform loading. This
is solved for f = 1.8, but the power peaking factor never
exceeds this value during the operational period because
of the limitation of the control rod density U and thus,
this is valid for f 2 1.8. The optimal solution is unique
and its policy is theoretically outer high. The control
rods are inserted from the core center and withdrawn
from their outer surface as the time proceeds. The
second and the fourth rows refer to the nonuniform loading.
This is solved for Nu = 2, and falls under this region,
too.

0.143F 69 Guess

0.03

} Haling’s principle

Uniform control

0.135

initial nuclear property of fuel ko

Performance index

0.130

Iteration number

Fig. 5. Approach to convergence, uniform loading, f = 1.6,
Ny=5,Nu =5, M =11.
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Fig. 6. Optimal control rod programming and power distribu-
tion (Region III).

The first and the third rows refer to uniform loading,f = 1.8,
N, =5, Nu =5, M =11 and the second and the fourth rows refer to
nonuniform loading, f =1.4, N1 =6, Nu =2, M =11. The optimal
solution is unique and its policy is outer high.

The computer running time for these calculations are
about 2 min for the first L.P. calculation and thereafter,
about 9 sec for each L.P. calculation by HITAC 5020F
(equivalent to IBM 360/65). Therefore, the total running
time is about 10 min for the iteration number of 50,

C. Optimal Control Rod Progvamming for Non-Uniform
Loading (Problem One)

The optimal control rod programmings for the non-
uniform, two-region outer high loading were calculated
for f = 1.4. The discrepancy of the nuclear property
A(8ko) was varied from 0.1 to 0.2. The minimum required
value of 6k, averaged over the core increases as A(6ko)
becomes larger. The effect of the fuel loading pattern
is very large and evidently it is disadvantageous to load
better fuels in the outer region. Optimal control rod
programmings are degenerate for A(6k) S 0.15. The
control rods are fully withdrawn at the end and the power
peak moves outward as A(6k,) becomes larger. Optimal
control rod programming is unique and outer high for
A(6ky) = 0.2, and control rods still remain inserted in
the middle region at the end of operation because of the
high nuclear property at this region and the constraint

on f.

D. Comparison with the Two-Region Model

To evaluate the effect of multiregion control quantita-
tively, the same problems were solved by the two-region
control, i.e., Nu = 2, and the two-region model.”* Two
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cases of the uniform loading and the nonuniform, two-
region outer high loading with A(&ko) of 0.1 were chosen
for comparison, and f was set at 1.4 for the optimal
solution. The results are shown in Table I. The relative
difference of average 6k, of the optimal solution from
Haling’s principle is shown for each case. The results
of the two-region control and the two-region model are
in good agreement and it is shown that the effect of the
optimal control rod programming by multiregion control
is about 3 times larger than the two-region control or
the two-region model. Optimal solution for the uniform
loading is degenerate for each of the three cases but
optimal solution for the nonuniform loading is degenerate
only for the multiregion control. When the power peak
takes place in the outer region (nonuniform loading), the
difference of 6k, is smaller although the difference of
power peaking factor is larger. This result is understand-
able from the gradient of critical curve in the two-region
burnup space.

TABLE I

Comparison with the Two-Region Model,
f=14, M =11

Average 6ko T Hal .

Loading Adko

Pattern |M | N, | Haling | Optimal | Haling %

6 6 0.1419 0.1364 1.345 3.9

Uniform | 6 2 0.1400 1.3

TRMP | 0.1349 0.1328 1.335 1.6

6 [§ 0.1526 0.1477 1.249 3.2

Non- 6| 2 0.1512 0.9
uniform

TRM 0.1442 0.1430 1.310 0.8

2A6ko = [(6koHal - 6koOpt)/ SkoHal] X 100.
Two-region model M
€This is shown in Fig. 6.

E. Optimal Control Rod Programming and Optimal
Loading Pattern (Problem Two)

The optimal control rod programmings so far obtained
are for the fixed loading pattern. How should the nuclear
property be distributed in the core and how should the
control rods be withdrawn to give the maximum burnup or
to make the total amount of the fissile material minimum ?

It is conjectured that this fuel distribution may be
similar to the solution of the minimum fuel integral in
the classical problem, because the optimal terminal state
is one which gives the minimum fuel integral among
these attainable from the initial state.

The solutions of the minimum fuel integral are shown
in Fig. 7. The upper figure is a case where the variation
of the macroscopic fission cross section XZ; is assumed
to be linear to k » as Z; = 0.165 + 0.835 k« and the lower
figure is a case where it is set at 1.0 regardless of &,
which corresponds to the present treatment. Both of them
are calculated by MAP with f = 1.4, [ = 0.1, and N, = 40.

It is not necessary to bound %, because the constraint

521

o
[ ¢ = Kkmax
1.0
/ — Kmin
/ %
0.0 // ////// Z
0.0 x 1.0
§ Normalized
< distance
2
©
S
— p,¢
N (]
52 £
<3
§g — = Kmax
3 10
iﬁs = Kmin
Lz Keo /
S
3 5
asa /// J
oo J U
0.0 x 1.0
Normalized

distance

Fig. 7. Minimum fuel integral, f = 1.4, Rpin = 0.9, Bmax = 1.2,
1 =0.1, N1 =40.

The upper figure is the case where the variation of Z; with ko
is taken into account as Z; = 0.165 + 0.835 ko and the lower figure
is the case where it is set at 1.0, which corresponds to the present
treatment.

for power peaking is given; however, the same constraint
was imposed as is given at the beginning of this section.

The optimal solution is very simple and three-region
bang-pang type in the lower case. The nuclear property
ko is equal to 1.0 in the inner region, Zmax in the middle
region and £ku;, in the outer region. This solution is
modified a little when the variation of Z; with k is taken
into account as in the upper case. In this case, the
ko distribution in the inner region is not flat but is a
smoothly increasing function of x such that Z)/¢ is a
constant.

This solution is similar to that obtained by Zaritskaya
and Rudik,?* but the problem differs from theirs in that
the constraint on the power peaking factor f is not the
severest in our problem. More accurate treatment, i.e.,
multigroup treatment, will indicate the existence of the
singular solution characterized by an analytical maximum
of the Hamiltonian between regions two and three (four
region loading). The k., will decrease monotonically in
this region.

The solutions of the optimal loading pattern and the
optimal control rod programming are shown in Fig. 8.
These are calculated for f = 1.4. The first and the third
rows are the results of N; = 5, Nu = 5, M = 11, and the
second and the fourth are of Ny =9, Nu=9,M = 6.

#T.S. ZARITSKAYA and A. P. RUDIK, Soviet Atomic Energy,
22, 5 (1967).
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Fig. 8. Optimal loading pattern and optimal control rod programming, f = 1.4, Bmin = 0.9, Emax= 1.2.
The first and the third rows are of N1 =5, Nu =5, M =11 and the second and the fourth are of Ny =9, Nu =9, M = 6. The optimal
loading pattern is a three region bang-pang type and the control rod programming is unique and similar to that of Fig. 3.

It is shown that the optimal loading pattern is also
three-region bang-pang type. The power distribution and
the control rod programming are unique and very similar
to those in Fig. 3. The nuclear property of the inner
region is uniquely determined by the maximum allowable
power peaking factor f. The power density in this region
is flat and maximum, and the control rod density is also
flat giving the net nuclear property k., of 1.0 during the
whole operational period, and is reduced to zero at the
end of operation. The nuclear property of the middle and
the outer region is fixed at kmax and kmin respectively.
The control rod density at these regions is such as to
make the power distribution as outer high as possible.
Thus, the control policy can be called globally inner high
and locally outer high. The locations of the boundary of
these regions must be determined by considering the
attainability, i.e., the possibility that the reactor can be
operated for the given period without violating the opera-
tional constraints. The volumes of these three regions
are nearly equal. The optimal control rod programming
seems to be unique as far as the optimal nuclear property
required in the inner region lies between kpnax and Eyig.
The distribution of 6k, in Fig. 8 is the OTS which depends
on the limitations on the available nuclear property and
operational history and thus, this cannot be calculated
in advance without solving the burnup problem. More
accurate treatment will result in the similar distribution
of the nuclear property (four region loading) to that of the
minimum fuel integral.

The OTS is uniquely determined for every initial fuel
loading pattern and the operational constraints, but the
control rod programming is not necessarily unique. There
seems to be no practical method of finding the OTS and
synthesizing the control rod programming as a function
of the state vector, not of the time especially when the
control policy is degenerate.

Haling’s principle can be optimal for the optimal fuel
loading pattern in the two-region model but not in the
multiregion model. Haling’s solution calculated by the
time reversal analysis using the power and the nuclear
property distributions at the end of operation in Fig. 8
results in kw in the middle region larger than k.., and
violates its limitation.

The effect of the optimal loading pattern and the optimal
control rod programming was investigated and the results
are shown in Table II. Haling’s principle for the optimal
loading pattern results in only 1% reduction of the opera-
tional period or 0.0013 increment of &k,. The uniform
loading, ke of which is set at the average of the optimal
loading pattern, results in as much as 45% reduction of

TABLE II

Effect of Optimal Loading Pattern and Optimal
Control Rod Programming, f= 1.4, Bmin = 0.9,
Bmax= 1.2, N1 =5,Nu=5,M =11

Loading Rod a b
Pattern Programming Aty Ako
Optimal Optimal 0.0 0.0
Optimal Haling -0.01 0.0013
Uniform® Haling -0.45 0.0503

2Difference of the operational period (year).

bpifference of the average initial nuclear property
of fuel, #; being fixed at 1.0 yr.

€Core averaged value conserved for the optimal
solution.
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the operational period or 0.0503 increment of 6k,. This
difference is very large.

This loading effect was examined by an initial core
of an actual representative boiling water reactor using
FLARE code.?® Haling’s solutions are calculated for both
the uniform and the nonuniform three-region loading pat-
terns. The latter pattern is shown in Fig. 9. The average
nuclear property of the three-region loading is chosen
to be equal to that of the uniform loading. The results are
shown in Table III. The three-region loading results in
the burnup are about 20% larger than that of the uniform
loading, the thermal characteristics being improved a
little. The reactivity saving of 0.1% is obtained by the
three-region loading.

Needless to say, an optimal fuel management should be
discussed in the entire reactor life and it is a typical
multistage decision process. There is no reason to
justify that the same refueling schedule is repeated in
every cycle. It seems reasonable and practical to assume
that the region averaged nuclear properties be fixed at
the optimal values such as is obtained in this study. Once
this is distributed optimally, the optimal control rod
programming is unique and the optimal allocation of each
fuel assembly is rather straightforward. The methods
developed by Mélice,® Naft et al.,” and Suzuki et al.'® are
useful.

V. CONCLUSION

The optimal control rod programming and the optimal
loading pattern were determined for a one-group, one-
dimensional, multiregion slab reactor by using the method
of approximation programming. The original equations
formalized as the optimization problem of a distributed
parameter system were discretized and linearized, and

1.2 1

1.04

L]
X
N

Fig. 9. Application of the three region loading principle to a
three dimensional commercial BWR.

} Orificing

%D. L. DELP, D. L. FISHER, J. M. HARRIMAN, and M. J.
STEDWELL, ‘““FLARE ... A Three-Dimensional Boiling Water
Reactor Simulator,’’ GEAP-4598, General Electric Co. (1964).
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TABLE III

Comparison of the Fuel Loading Patterns

by FLARE Code

Uniform Three Region
Loading Loading
e (GWD/T) 5.58 6.79
ae (%) 21.7
f 2.523 2.398
MLHR? (kW/ft) 13.211 12.557
MCHFRP 3.310 3.482
By 1.0448 1.0348

Control rod programming is determined by Haling’s
principle

2Maximum linear heat rate.
bMinimum critical heat flux ratio.
€Core averaged value of the target distribution.

the standard L.P. calculations were performed repeatedly.
The numerical results were confirmed by the past two-
region burnup space study. The increased freedom of
control made it possible to cover more region than two,
and many interesting results have been obtained. Some
of the main results are summarized below.

1. The nature of the optimal control rod programming
is classified in the following three types.

a. The solution is unique when some of the control
‘rods have to remain inserted at the end of the operation.

b. The solution is unique when all of the control
rods can be fully withdrawn and the power peaking
factor is below the constraint at the end of operation.

c. The solution is degenerate when the power peaking
factor is equal to the constraint in case of type (b) in
general. This can be unique only for the optimal loading
pattern and for the special situations of the limit of
types (a) and (b).

2. Although the optimal terminal state is uniquely
determined for every initial fuel loading pattern and
operational constraints, the control rod programming is
not necessarily unique. No simple way of finding this
target distribution of nuclear property has yet been found.

3. The optimal loading pattern is a three-region bang-
pang type which is very similar to that of the minimum
fuel integral in the classical problem. The corresponding
optimal control rod programming is unique and its policy
is globally inner high and locally outer high.

4. Haling’s principle does not give an optimal solution
although it is near optimal and very useful for actual
practice.

5. The multiregion control results in a burnup gain
about three times larger than that of the two-region model.

Inclusion of the burnup dependence of the fission cross
section, or the use of the FLARE type nodal equation with
various reactivity feedbacks can further improve its prac-
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ticality. Furthermore, the use of the space-energy-modal
synthesis technique will make it possible to apply this
method to fast breeder reactor core analyses.

APPENDIX

Coefficients a;; , b;, and c;, and constraints for each
variable of Eq. (13) are given below. In the following
equations, % = (AxH/2M) and N; = N - 1. Note that the
mesh point N, is the core edge.

(4]
Am,1 = h¢1,m

Qm,N(m-1)+L+1 = h(kgl -1- aleg,m - ug,m) -1

m=1,...M

m=1,...M
A N(m-1uLs2 = 1 m=1,...M
Q m,Ny(m-1)+NM+L+1 = _hal(b?,m m=1,...M
AW{Kni, 1)~ 1), Nu(mo it 2NM+L-M = = BORn(i, 1), m

i=1,...Nu,l=1,...Nd(i), m = 1,...M
AMGr-1yamt = PPom m=1,...M, n=2,...N

1=1(GfL =1, n@fL =N,

1]

AM(r-1)+m N(m-DnrL-1 = 1 m=1,...M

n=2...N,

An-1)rm Nom-1)emel = P(BQn = 1 = @y €hm - Unm) - 2
m=1...M, n=2...N,

AM(n-1)+m Nm-1en+L+1 = 1 m=1,...M
n=2...N, (a.1)

BM(n-1)+m, N (m-DensNM+L = -ha,$5m

m=1...M, n=2...N
@t MNy NGm- D4N+L-1 = OX = 21 m=1,...M
Qi MN Nem-DeNeL = 21+ AX m=1,...M
@Y (n-1)+ MN+ 1+ MN+L = 1 n=1,...N;
AM(n-1)+m+MN,N(m-2)+n+L = =AL

m=2,,..M, n=1,,..N,
AM(n-1)+msMN.N (m-2)enseNMeL = =1
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All the aji’s except those which appeared above are
Zeroes.

b= [1-h(kS -1 - areln -u3m)]08m - 02,m

m=1,...M
bM(y1—1)+m = '¢‘r)1-1.m + [2 - h(kgn -1- aneg.m - ug.m)]
X ¢r2,m - ¢’2+1,m
m=1,...M, n=2,...N,
busttny = (20= AR m - (21 + A O} (A.2)
m=1,...M
bM(n—l)+MN+l = 'eg,l
o 0 0
bM(n—l}+m+MN = =€ym +€pm-1+ At(bn'm_l
Ny m=2,...M
bm+M(N+N1) =1-Ax 3 $m m=1,...M
n=1
ci =1 i=1,...L
(A.3)
¢ =0 i=L+1,...2NM+M®Nu-1)+1L

max(-6k,kmin - £3,) = %, = min(5k,kmax - £or)

n=1...L

max(-6¢,—¢,?,,,,,) = XN(m-D+n+L = min(6¢’ f‘ ¢?r.m)

n=1,...N,, m=1,...M

max(-éq),—f - ¢I?l,m) = XN(m-1)+N+L = min(6¢,f- ¢'gl,m)
m=1,...M

max(-0e, -E) = XN (m-1)+nenmeL =< min(de, E - e n)

n=1...N,, m=1,...M

0
max[-0u,~Ug,(;, 1)m] = XNu(m-1)+i+2NM-M+L

IA

minf6u, U = #g,(;,1,m]

i=1,...Nu, m=1,...M 1
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