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A generalized treatment for investigating the effects of various refueling
schemes on the optimal control rod programming that maximizes the average
burnup of discharged fuels in a two-region, radially one-dimensional light water
moderated nuclear reactor is presented and applied to a boiling water reactor
having uranium fuel of a single 23%U enrichment. It is assumed that the refueling
scheme has reached an equilibrium fuel cycle, and the analysis by burnup space is
applied, which helps in interpreting geometrically the coupled effect of the control
rod programming and the fuel burnup by the trajectory drawn in this space, Three
refueling schemes are considered: parallel, series out-in, and series in-out,
Scatter loading is assumed in each region and the batch number and volume frac-
tion of each region are varied as the refueling parameters.

Fuel management and poison management constitute a hierarchy relation, and
the effect of the refueling schemes on burnup maximization or enrichment minimi-
zation is several times greater than that of the control rod programmings. How-
ever, the policy of the optimal control rod programming strongly depends on the
refueling scheme, The power density of the inner region should be as high as
possible for out-in scheme (inner high policy) and vice versa for in-out scheme
(outer high policy). However, either policy can be optimal, depending on the re-
fueling parameters for parallel schemes, and in some cases the optimal control
rod programming is not unique (degenerate policy). Optimal control rod pro-
gramming increases the discharge burnup or decreases the enrichment of the feed
fuels by about 0 to 4% over the conventional constant power shape operation. The
difference is mainly determined by the reactor design and the refueling scheme,
Optimal refueling should be chosen from among parallel schemes, which have
much larger freedom than series schemes.

I. INTRODUCTION

The development of nuclear engineering has
come to the stage at which nuclear power pro-
duction is economically competitive with power
production by conventional fossil fuels. Thus,
effective use of nuclear fuels is becoming more
and more important. In bringing this about, mod-
ern control theory has been applied to the optimi-
zation of fuel management and poison management.

Wall and Fenech' showed that an alternative to a

1, WALL and H. FENECH, Nucl. Sci. Eng., 22, 285
(1965).
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dynamic programming algorithm® could be applied
to the refueling decision of a single enrichment,
three-zone 1000-MW/(e) pressurized water reactor
(PWR) core, in which the optimal decision on the
replacement and shuffling of three fuel zones was
determined to minimize the power generating cost
calculated by the absolute method.

Stover and Sesonske® used this same technique,

2R. E. BELLMAN and S. E. DREYFUS, Applied
Dynamic Progvamming, Princeton University Press,
Princeton, New Jersey (1962).

3R. L, STOVER and A, SESONSKE, J. Nucl. Energy,
23, 673 (1969).
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which was shown to be a computational accelera-
tion method of an exhaustive search called “‘elim-
ination of similar end states’’, for determining
fresh fuel loading decisions which lead to a mini-
mum fuel cost in a scatter-loaded three-zone
1000-MW(e) boiling water reactor (BWR) core.

Fagen and Sesonske® used a direct search to
determine optimal loading patterns in a scatter-
loading PWR core with fuel shuffling between
zones. A minimum fuel cycle cost was obtained by
determining shuffle patterns that maximized the
core life at each reload point in the life of the
reactor, assuming a constant fraction of replace-
ment in a 19-zone core which was in a quasi-
equilibrium cycle.

Mélice® presented a new method for optimal
core management for a PWR chemical shim reac-
tor for finding the enrichment of the fresh fuel and
the patterns of the various assemblies in the core
in the light of the minimum critical mass prob-
lem; he applied it to the analysis of the stationary
and transient cycles of the SENA reactor, with a
three-region mixed reload mode.

Tabak® used linear and quadratic program-
ming7’8 in a simplified one-point reactor model to
determine the optimum ***U mass loading which
minimized **U usage or maximized the **Pu
mass removed from the core over the life of the
reactor.

The author® showed that the variational method
can be applied to the burnup optimization of con-
tinuous scattered refueling.

No problem of poison management arose in
Refs. 5 and 9 in which the chemical shim control
and on-power refueling were employed, respec-
tively. However, the optimization of poison man-
agement was not considered in any of the other
four studies and uniform control was assumed
because it was thought that the poison management
had weak interactions with and could be separated
from fuel management.

Terney and Fenech'® applied dynamic program-
ming and direct flux synthesis to the space-time
optimization problem of determining the optimum
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sequence of control rod motions in a representa-
tive PWR, which minimized the maximum power
peaking throughout the life of the reactor.

Suzuki and Kiyose'' showed that the maximum
principle'® could be applied to the control rod pro-
gramming optimization that maximized the core
life under the constraints of a maximum allowable
power-peaking factor and control rod density.

The author' tried to interpret geometrically
the relations among criticality, power and control
rod distribution, and fuel burnup in the burnup
space, assuming that one quantity for each region
is sufficient to represent a state of a reactor.
Optimal control rod programming was obtained
for both the radial and the axial directions in a
two-region BWR by one-dimensional analyses
using the maximum principle.

No consideration was given to fuel management
in these three studies. It was tacitly recognized
that it was best to maximize the core-averaged
burnup or to minimize the maximum power
peaking during each refueling interval. Fuel man-
agement and poison management constitute a hier-
archy relation, and it may be true that the effect of
the latter on the former is small. However, the
inverse in not true, because the way in which the
particular fuels stay in and are discharged from
the core is different for each particular refueling
scheme. Therefore, the problem of control rod
programming optimization cannot be defined un-
less the refueling scheme is specified when the
maximization of the average burnup is desired.

The aim of this paper is to investigate the
effect of various refueling schemes on the optimal
policy of control rod programming that maximizes
the average burnup of discharged fuels within the
constraint of a given maximum allowable power-
peaking factor in light water moderated reactors.
The results of both Wall and Stover indicate that
the true equilibrium is not established in an opti-
mum fuel management; rather, a cyclic equilib-
rium condition is established, which means that
the optimal control rod policy may vary from
stage to stage. To facilitate treatment, it is
assumed that the refueling scheme has reached a
true equilibrium cycle.

Three refueling schemes are considered. These
are parallel, series out-in, and series in-out
schemes. Scatter loading and appropriate fuel
shuffling are assumed in each region, and the
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batch number (integer) or the inverse refueling
fraction and the volume fraction are varied as the
refueling parameters.

It was proved that the original problem of
burnup maximization is equivalent to that of mini-
mization of enrichment of feed fuels, which makes
it possible to satisfy the current operational re-
quirement of a one-year refueling interval. This
comes from the need for annual maintenance of a
reactor when refueling is performed.

The analysis by burnup space was applied to a
two-region BWR core of a single ***U enrichment
within the validity of a one-dimensional one-group
neutron diffusion equation; the results were com-
pared with the conventional constant power-shape
operation.

II. REACTOR MODEL

The following assumptions and approximations

were made to represent the characteristics of a

single-enrichment two-region BWR.

1. The reactor is cylindrically one-dimensional
and the core is divided into two homogenized
regions surrounded by a reflector.

2. Neutron distribution is described by a modi-
fied one-group neutron diffusion equation
and the slowing down property is uniform
throughout the core.

3. Neutron flux, averaged over each region, is
used to calculate fuel burnup; thus, fuel
burnup is assumed uniform in each region.

4, Criticality is maintained by the control rods
uniformly distributed in each region.

5. Two types of reactivity feedback are con-
sidered, xenon and Doppler. Their power
dependence is of the form adopted in the
FLARE code.” The space dependence of the
reactivity feedback of a void is omitted and
the nuclear characteristics of the average
void are used for the radial analysis.

6. The maximum allowable gross power-peak-
ing factor is given by the reactor design and
is used as the operational constraint. No
limitations on the local power peaking vs
exposure are considered.

7. No limitation on the minimum critical heat
flux ratio (MCHFR) is considered. This
constraint is assumed to be replaced by
assumption 6.

14D, L, DELP, D, L. FISHER, J. M. HARRIMAN, and
M. J. STEDWELL, “FLARE—A Three-Dimensional
Boiling Water Reactor Simulator,”” GEAP-4598, General
Electric Company (1964).

To satisfy assumptions 1, 3, and 6, extensive
intra-region fuel shuffling is required, which, in
many cases, could be undesirable. However,
interchange of the rod patterns will help rational-
ize assumption 4. For assumption 7, MCHFR and
the maximum allowable power peak do not neces-
sarily coincide in a given BWR. MCHFR could be
more restrictive than the allowable peak. How-
ever, as long as only radial peaking is considered
and the axial shape is assumed fixed, the restric-
tion on peaking is probably reasonable. All these
assumptions limit the usefulness of the present
study in actual design practice but are necessary
for the present model.

The two-group neutron diffusion equation with-
out reactivity feedbacks is written in one-dimen-
sional cylindrical geometry with the notation
commonly used:

dz
D/<d’}?2[ +

1 doy
;W> - (Zs + Zapdf + vEpedy =0

d’ 1d
D,(dT“’zw—ﬂ) - Tar by + Ty =0 .

0 <7 <R (1)

The diffusion coefficient of the thermal-neutron
group is neglected in the modified one-group
model. This is permissible, because the slowing
down area of neutrons is about ten times as great
as the diffusion area in a BWR. With this approxi-
mation, Eq. (1) is reduced to the simpler form,

<d2¢/ 1d¢s
"\are *rar

>+(koo‘1)¢f=0 ,
0<7 <R (2)

where 7 is the slowing down area (or Fermi age)
and kwis the infinite neutron multiplication factor
Dy VZft2Zs€
Zs + Zaf Zat(Zs + Z:a/) ’
spectively. Replacing 7 by M® (the migration
area) in order to account for the neutron diffusion
effect in the thermal-energy group, the following
equation for the fast flux is obtained:

da’¢; 1des
2 — —
M (dr2 *tyar

defined by 7 = and Ry = re-

) +(koo_ 1)¢/:0 .
0 <r<R (3)

Changing the scale of the coordinate such that
¥ =1 at the surface of the reactor R, and using
the nondimensional material buckling o defined by

= k°;\’4; 1 R?, Eq. (3) is further reduced to
2
Cfifz"+%,%+c¢/=0 0 s7 =<1 (4)
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The value of ¢ is averaged over each region by
assumptions 1 and 3. Thus, replacing ¢; and ¢,
the following final equations are obtained.

2
% + %—Z—i +01$ =0 0s7rsr inner region
2
% + %% +020=0 L SY <K outer region
2
%+%%'K¢=0 7 s7 sl reflector .
(5)
The solution of Eq. (5) can easily be obtained
analytically.

For the reactor to be critical, the following
criticality relation is required:

‘[I?[AJO(‘/E_Z ¥2) - BYo(Vo, 7’2)] ‘
X [KO(&—) 11(‘/? 72) - Io(‘/z) Kl(\/—K_ 1’2)]
+ Vo, [AJ\(Vo, 75) - BY (Voo 75)]

X [Ko(fl?) 10(‘/E 72) +Io(\/;) Ko(‘/? 7’2)] =0 ,
(6)
where
Voo Jo(Vo171) Yi(Voo71) - Vo, J1(Vo171) Yo(Voary)
0'1>O

g, =0

A = Vo, Y1(Vo, 71)

Voo I(Vo,71) Y1 (Vou 71) + Vo I1(Vo,71) Yo(Voory)
g1 <0

Voo Jo(Vor7 ) Ji(Vo,71) - Voo Ji(Vor71) Jo(Voe 71)
0'1>0
B = ‘[(;2 Jl(‘/a_Z 71)

0120

Voo Io(Vor71) (Yo, 71) + Vo, Ii(Vo,71) Jo( Vo, 71)
(oX] <0 .

It is assumed that the material buckling of the
outer region 0; is positive for the practical range
of the power distribution.

The effect of the reactivity feedback and of the
control rods can be approximately incorporated in
Eq. (5) by separating the value of o0, into each
component as

k=12, (7)

where 0Oqel x is the nondimensional material buck-
ling of the fuel, which is a function of fuel burnup
e; Aop, and Aox, are feedback reactivities of

Ok = Ofel p ~A0p, - AOX, - Uy

Doppler and xenon and # is the reactivity sup-
pressed by control rods.

The power density P can be expressed in terms
of the fast flux ¢; as

[

P=cSpd ==L 5.4, . (8)

Zat
Noting that € Z;/(Z,;) can be replaced by k/v in
one-group theory and using assumption 2, the
power density is found to be proportional to the
product of the infinite multiplication factor 2, and
the fast flux ¢;. Further, using the relation 2, =
1 + M?B® between the material buckling B® = 0/ R?
and the infinite multiplication factor %, Eq. (8)
can be approximated as

P= c(1+M*B¥¢ |, (9)

where ¢ is a normalization coefficient. The reac-
tor power is normalized in this study such that the
average power density is unity

[ Pav/Vee =1 . (10)

Therefore, the average power density of each
region is written as

_ 1
= —
Uy + &oVy
P2:g0P1 ) (11)
where
1+ M°B} %
g0_1+M2B21g, g_(bl ’

¢, is the average neutron flux in each region and
v is the volume fraction of each region (v; +ve =
1).

Now the feedback reactivities due to the Dop-
pler effect and to xenon are explicitly expressed
using Eq. (11) as

Aop, = BP;
6(1 +y)
AOxk :—')/ +Pk P y (12)

where B, 6, and y are some given constants and
their meanings are self-evident.

The net value op of each region must satisfy
the criticality relation in Eq. (6). This relation
gives a ‘‘zero-power critical curve’’ in the two-
dimensional burnup space with o, and o, as its
coordinates. The concept of the burnup space is
given in Ref. 13.

The value of ¢, and consequently P,, is de-
fined at each point on the critical curve. There-
fore, the vector Aop and Aoycan be constructed on
this curve and the new critical curve is defined,
which can be called the ‘‘high-power critical
curve’’. This relation is shown in Fig. 1. If the
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Ado=BP  (Doppler)

Alx = % P (xenon)

Fig. 1. Treatment of feedback reactivities in burnup
space,

fuel, originally at A,, has been depleted to the
state A,, the reactor can be made critical by the
proper insertion of the control rods which brings
the state A; to S, somewhere on the high-power
critical curve. The net ¢ is brought to So on the
zero-power critical curve by the feedback reac-
tivities calculated by the power at S;, which is
also equal to the power at So. Using this power
shape, the next gradient of the trajectory is de-
termined. This procedure is continued until the
fuel characteristic reaches the high-power critical
curve.

Maximum flux ¥, in each region is also de-
termined by specifying a point on the zero-power
critical curve or a corresponding point on the
high-power critical curve. Therefore, the power-
peaking factor f is also determined at any point on
the high-power critical curve

max

Fo—klwal+ BEMO]
E ¢, (1 + By M*)vx

(13)

It is noted that the average power density as
well as the average neutron flux is determined
regardless of the burnup history of the fuels in
this model. This is, of course, an approximation.

The two-region reactor model is pictured in Fig.
2, and the characteristics of the reactor are given
in Table I.

It is time consuming to perform criticality cal-
culations for the control rod optimization at every
instant. Therefore, the main quantities character-
izing the critical reactor state are calculated in
advance and fitted to each other by the quadratic
functions. Neutron flux is used rather than reac-
tor power in the burnup equation. The reason is
explained in Sec. IV. The average neutron flux ¢,
consistent with the power P, satisfying the con-
straint of Eq. (10) is given as

1

¢ =
! vi(1 + BiM?) + v.g(1 + B3 M?)

P2 =g 1 .

U&\

PN

(14)

-
¢.
inner outer
region region
0 N rz |
r
o]l
G2
W
Uz
= A6x: » X
- X
a's) Ado. :
AGo2
0 T r T2 |

Fig. 2. Two-region reactor model.
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TABLE I
Characteristics of a Typical Reactor

Thermal power Py | 1650 MW
Fuel inventory w 88 ton
Load factor L 0.85
Down time A 20 days/year
Core radius Rc 165 cm
Core height 365 cm
Reflector thickness d 12 cm
Migration area 2 80 cm?
Constants for the
feedback reactivities

Doppler B 2.42

Xenon Y 0.70

6 7.51

Maximum allowable radial
power-peaking factor f 1.40

The constant ¢ in Eq. (9) is set at 1.0. The follow-
ing five equations are fitted by the least-squares
method on the high power critical curve:

2
02(01) = 25 Ao}
i=0

2 .
gloy) = Z)O B;oi

1

¢1(01) = 25 CiUf

i-0

-

3

flg)=23 D;g*

i=0

2
oi(g) = Z}) E; g’ . (15)
1=
These coefficients must be determined for each
value of the volume fraction »;(0.2 — 0.8) deter-
mined by the refueling scheme. The relative
error introduced in these fittings is within 2% for
f <1.5, which is thought satisfactory for the
present purpose.

III. REFUELING SCHEMES

In general, a line of region numbers can repre-
sent the history of the fuel assembly irradiation.
For example, 2 1111 means that this assembly
spends the first refueling interval in the outer
region, the next four succeeding intervals in the
inner region, and is then discharged. In equilib-
rium, each assembly follows this rule: one-fourth

of the assemblies are removed from the inner
region, a corresponding number are moved from
the outer region to replace them, and new ones fill
the outer region. It is also possible for some
assemblies of another line to be in the core at the
same time. In general, a description like

21111...20 assem- ,..100 assem-

blies per blies in
refueling the core total 220
assemblies
112 ..40 assem- ...120 assem-
blies per blies in
refueling the core

can completely specify a refueling scheme.

It can be seen that even for a two-region reac-
tor more than several thousand different schemes
exist. It is obvious that a too complicated scheme
is not desirable and generally is no more satis-
factory; therefore, refueling schemes of a maxi-
mum of two lines are used in this paper. Such
history as 112 12 calls for many replacements
within the core other than loading and discharging
and usually has a relatively large local power
peaking factor. Thus, only those refueling
schemes with one or two lines are selected. Ex-
amples are:

one line 111222

one line 222111

twolines 111,222

twolines 1112,22110or1111,
1222 etc.

The last one may more nearly represent the
actual refueling practice but is rather complicated
and is omitted. Only the following three refueling
schemes are considered:

1. J=0 Parallel
(111,22 N, =3, N, =2, for example)

2. J=1 Series out-in
2111 N, =3,

3. J = -1 Series in-out
(1122 N =2,

N; =1, for example)

N, = 2, for example).

Refueled or replaced assemblies are scattered
and shuffled in each region. The refueling frac-
tions are 1/N, and 1/N., the inverse of the batch
numbers (integers) in each region. When N, =
N: = 1, the series method reduces to the well-
known zone shuffling. For fuel assemblies to be
transferred neither more nor less for series
schemes, the batch numbers and the volume frac-
tions must satisfy these relations: v, = N,/(N; +
N:) and vz = N»/(N:1 + N3), whereas no such rela-
tions are necessary for parallel schemes.
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We distinguish these parallel refueling schemes
in which the batch number of each region is the
same (N, = N;) and the volume fraction v, is dif-
ferent. The difference in v, defines the difference
in the range of the fuel shuffling within the region,
which is necessary to reduce the local power
peaking caused by the spatial irregularity in fuel
burnup. Schematic diagrams of these three re-
fueling schemes are shown in Fig. 3.

The refueling interval T is determined in an
equilibrium cycle by the following five quantities:

1. average burnup of the discharged fuels e
2. average refueling fraction of the core D
3. specific power S,

4. load factor L,

5. availability L,.

eD
T=—"—
Sy LiL- (16)
where
e y—l + €2 ;)V—z
——1 "2 nparallel
B B
E = Nl Nz
e out-in
e, in-out
;)v—l + ;)\,—2 parallel
1 2
D =
1 series
N1 + Nz .
P
So=Ww
L.~ actual power
!~ rated power
and
L. - operation period
? ~ refueling interval
___eb | (17)

ZD +AS, L,

The discharge burnup of each region is denoted as
e1, e; and the meaning of the other notations is
given in Table 1.

It is the current operational requirement that
the refueling interval must be one year, which
comes from the necessity for reactor mainte-
nance, and the refueling is carried out during this
downtime. Using the values in Table I, this con-

J Scheme Parameters

O| Parallel N, N, Vi

| \ Qut-in N
—1 Series Ni, N2, Ui=

- In- out Ni +N.

&

J=0 | -1

N1, No Batch Number; inverse
Refueling Fraction

v Volume Fraction of the inner
Region

Fig., 3. Variety of refueling schemes considered,

dition requires that

eD = 5500 MWd/T . (18)

This means that the average fuel burnup incre-
ment in one year is required to be constant.
Therefore, the object of the control rod program-
ming optimization should be to minimize the re-
quired enrichment of feed fuels rather than to
maximize the average burnup of discharge fuels.
These two optimization problems, however, are
shown to be equivalent in Sec. VI. There are many
refueling schemes even if the type of the refueling
is restricted to the three mentioned above. We
restrict the value of D to 0.25 and 0.2, and thus the
corresponding discharge burnups become 22000
MWd/T and 27500 MWd/T, respectively. Thirty
refueling schemes satisfying this condition are
considered. These are listed in Table II.

IV. BURNUP CHARACTERISTICS AND
EQUILIBRIUM CONDITIONS

There exist N groups of fuels in each region
which have different burnup histories and thus dif-
ferent nuclear characteristics. However, all of
them can be thought to be exposed in an approxi-
mately common flux field in each region. There-
fore, the neutron-flux time increment in one
refueling interval is thought to be common for all
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TABLE II

Proposed Refueling Schemes Satisfying the
Condition of One-Year Refueling Interval

2 = 22000 MWd/T 2 = 27500 MWd/T

D=0.25 D =0.20
No J |Ni1| N2 vy No. | J [Ni [Nz 2
1 0|6 ] 3 1/2 16 0| 6 4| 3/5
2 0|6 | 2| 34| 17 o 6 | 3| 4/5
3 0|5| 38| 5/8 | 18 0|5 ] 51| 1/3
4 0|4 4 1/3 19 0] 5 5| 1/2
5 0|41 4 1/2 | 20 0|5 | 5| 2/3
6 04| 4] 2/3| 21 0| 4| 6| 2/5
7 03] 6| 1/2 22 0| 3 6| 1/5
8 0|3 5| 38| 23 1|4 | 1] 4/5
9 02] 6| 1/4 | 24 1|13 | 2] 3/5
10 1({3 (1| 3/4] 25 1|2 | 3| 2/5
11 12| 2| 2/4 | 26 11| 4] 1/5
12 1 (1] 38| 1/4 ] 27| -1| 4| 1| 4/5
13| -1|13| 1] 34| 28| -1|3]| 2] 8/5
14 | -1 ]2 | 2| 2/4] 29| -1 2| 3| 2/5
15| -1 |1 38| 1/4| 8| -1 1| 4] 1/5

the assemblies in each region, although the burnup
increment is not. It is, therefore, convenient to
use neutron-flux time 6 rather than fuel burnup e
to express the fuel characteristics.

The fuel characteristics o and the fuel burnup e
can be approximated by the polynominals of the
fast neutron-flux time 6.

No
c=2,a,0"
n=0

Mo
e=2, b,o"”

m=1

(19)

These equations are dependent on each other. In
fact, the second equation can be derived from the
first by integrating Eq. (20), obtained from Egq. (9),
and, consequently, Mo = No + 1
N

de M2 & ,,

%— C<1 +Ez—”zz;oa,,9 (20)
It was assumed, however, that the above relation
has been obtained independently by a more de-
" tailed burnup calculation, in which case there is

no relation between Ny and Mo.
Let ©, be the flux time increment during one

refueling interval, 6 the flux time accumulated
from the latest refueling in each region (k=1,2),
and 6;; Kronecker’s delta. The flux time of the
i’th group of fuels in the k’th region (6;) can be
expressed as

9[:=(i- 1)®k+®+9k

~

© =08y,108, 1 N2O; + 6,102 N1O; . (21)

The nuclear characteristic o, averaged over each
region, is obtained by the following operation

Ng , Ng No ~
o,zz.z;la(e,;)/zv,e =Z’1 Z}oa,,[(z'- 1)0; + 0+ 6] /N, .
1= i=1 n=

(22)
Therefore, the burnup equation, i.e., the system
equation, is given by differentiating Eq. (22)

Nr  No ~
b, =23 2y nag[(i- 1)0, +0+ 01" 0,/ N,

i=1 n=1

Op = br k=12 . (23)
The initial and final conditions are
Oi =0 , Opy =0
N No ~n
Oki :Z; Z an[(i-1)®k+®] /Nk
1=1 n=0
Ng  Ng ~
Orf = E Z; Qn ( Z@k + @)n /Nk (24)
1=1 n=0

Using the first of Eq. (17), the discharge burnup
is given by

M
S___ NiN,  [o; SR m
€= Nivs + Nav, [N1 nglb’” (N161)
v Mo m
+ Vz 2 bn (Nsz)] parallel
2 m=1
Mo
€= 2, by (N\O1 + N2©»)" series
m=1
(25)

Note that the discharge burnups expressed in
terms of the flux time are the same for out-in and
in-out schemes.

It is evidently disadvantageous to terminate the
the operation while some of the control rods are
still in the core, except for the situations in which
it becomes impossible to continue the operation
without violating the constraint on the power peak-
ing. Therefore, the trajectories must terminate
on the target curve shown in Fig. 4. At points B
and C the power-peaking factors are equal to the
design limit. The flux time increments ©; can be
obtained at any point on the target curve by the
last of Eqgs. (24); with this O, the initial states
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Fig. 4. Target curve on which the trajectories must
terminate, and the range of the admissible control,

op; and the discharge burnup e are uniquely deter-
mined by the second part of Egs. (24) and (25)

Ok
e .

The reactor must be made critical by the non-
negative elements of control rods u; that can bring
the reactor state somewhere on the target curve
BC. The average flux in the inner region ¢, in-
creases monotonically along the curve from B(¢ir)
to C(¢1y). Therefore, the range of the admissible
control u; can be expressed in terms of the ad-

120 1
100

Nondimensional material buckling

. x 10%
Flux Time ©

missible range of ¢;. This range can be written
using Eq. (15) separately for the four cases, de-
pending on the situation of the fuel characteristics
(01, 02), as shown in Fig. 4.

b1 <P1 <d1y Region I
1L < ¢y s¢u(01) Region II
¢1[07(02)] <é1 <diy Region III
¢1[07%(02)] <¢1 <d1(0))  Region IV . (26)
This range generally can be written as
G(oy, 03, 1) =0 . (27)

The average flux in the outer region ¢, can be
determined by ¢;; i.e., ¢ = g(d1) - 1.

The problem is now completely defined: to
maximize the discharge burnup of Eq. (25) while
satisfying Eq. (23), the boundary conditions of
Eq. (24) and the constraint of Eq. (26).

Burnup characteristics of a typical BWR (Ta-
ble I) were calculated by the three-group point
burnup code for the two kinds of fuels with differ-
ent enrichments. The void fraction was set at
30%. The results are shown in Fig. 5. These re-
lations can be well fitted by the quadratic func-
tions. However, the actual calculations were
performed by approximating these relations to be
linear to facilitate manipulation of the equations.
This treatment will introduce the quantitative
error in the calculated burnup or enrichment, but
will not affect the nature of the optimal policy of
control rod programming. The effect of the en-
richment is also taken in linear form

og=ab+0, , Oo=7yn +0
6 = (an + Ble (28)
[
N
o
5
301 N=265%
® 20 \
TN =2.28%
a 101
=
o
|-
p=J
@
o] ' 2 4 6
|°2l
Flux Time ©

Fig. 5. Burnup characteristics of fuel assemblies (void fraction = 30%).
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The value of the neutron flux ¢,, calculated from
Eq. (14), is not consistent with the actual power
used in the calculation of Fig. 5. This can be
accommodated by suitably choosing the depletion
coefficient a, but this selection only serves to
change the time scale and does not affect the tra-
jectory itself. It is sufficient to specify the rela-
tion between ¢ and e (MWd/T)

g=a(an+Be +yn+9o (29)
The coefficients are
aa = -0.000147 |
Yy = 46.0 ,

Using Egs. (28) and (29), the following equations
characterizing the system are obtained corres-
ponding to Egs. (23) through (25)

aB =-0.00535
6 =-1.8

bk = ad)k (30)
Uki:CZ(Nkz_l@k-f-é)-}-O'o
Okf =a<Nk2+1@)k+6> + 0o (31)

2
O = TS [0gf - 04, 10k, 105 + b5, -1 64, 203

- (64, 16k, 2 + 0y, 10k, 1 + 04, 0) Oo]

2N, N, -1

0-—-_
Gk - Nk+ 1 Ok/ + Nk +1 Go (32)
= 2NN V1
€ “aN,v: + N2 vi)(an + B) [N1 +1 (017 - 00)

Vg
*N,+ 1 (02 - Go)] parallel

- 2 _ No(N, - 1)
€ =a(N,+ Dlan+ B [N‘“‘/ N.+1
Nl +N2 .
TN a1 00] out-in
_ 2 B NN, - 1)
€ =4V, + D(an + B) [N2°2/ N,+1 Y
Ni+ N:
- N+ 1 00] in-out
(33)

V. OPTIMAL TERMINAL STATE AND OPTIMAL
CONTROL ROD PROGRAMMING

The optimal control rod programming without
refueling was obtained in Ref. 13 by using the
maximum principle where the optimal trajectories
were calculated by the time-reversal analysis

such that the inverse time trajectory passed
through the initial state. The results obtained
correspond to the special case of the parallel re-
fueling schemes with N; =N, = 1. For reference,
the optimal trajectories from various initial
states are shown in Fig. 6. Optimal policy depends
on the position of the initial state. The initial
state must be within the region GBCF to be able
to terminate the operation with all the rods with-
drawn. The state C on the critical curve gives the
minimum total buckling where the burnup is maxi-
mum. Therefore, it is best to try to arrive at this
point as nearly as possible. Initial states within
the region EHACF can reach the optimal terminal
state C and the optimal trajectory is not unique
and degenerate except for those on the trajec-
tories EHC and FC. We call this policy the de-
generate policy. The power density of the outer
region should be as high as possible for these
initial states within the region ABCHE. Let the
power distribution at the state B and C be denoted
as maximum allowable outer high distribution
(MAOHD) and maximum allowable inner high dis-
tribution (MAIHD). The power distribution is
MAOHD throughout the reactor life for the initial
states within the region ABG. However, for the
initial states within the region GBCHE, the power
distribution is MAOHD until the trajectory reaches
the line BH where the outer rods are completely
withdrawn (for the initial states within the region

F

outer region J2

4

Inner High

D
o \ / larger 9
inner
burnup region

Fig, 6. Synthesis of optimal trajectories (no re-
fueling, v; = 0.5).
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GBHE only), and then the power peak is gradually
shifted into the inner region, the reactor being
critical with only the inner rods inserted. We call
these policies outer high policy. For these initial
states within the region FCD, the power density of
the inner region should be as high as possible and
its distribution is MAIHD through the reactor life.
We call this policy inner high policy.

A characteristic of the present problem with
refueling is that the initial state, which is the
average of the N, groups of fuels, is not given al-
though the nuclear characteristic of the new fuel
0o is. This state can be expressed in terms of the
average final state which must be somewhere on
the target curve

o N Oyf + G
17 N1 11[ N1 1 0
No-1 parallel
XN, 1 TN, 1
oy =-ls . AN, o
YEN 1 YT N s DN + 1)
2(N: - 1) i
"M DN+ D out-in
N -1 2
O =, 1% TN, 1%
oy=M-1, 2_,
S A I A R
Ooj = 4N, o +N2—10 in-out
4N s DN+ D) Y TN, 1Y
20N = 1) o (34)

T (Ny+ D(Nz + 1)

This is illustrated for the simplest case of the
out-in zone shuffling (N1 = N2 = 1) in Fig. 7. The
final state of the outer region must be equal to the
initial state of the inner region (0z; = 0y;) and the
contour of the discharge burnup is parallel to the
0, axis (E ={1/[alan + B)}Hoyy - 00)). The state C is
no more an optimal terminal state because the
burnup at 8 is greater than at a. It could be easily
shown that the burnup at o is greater than at g8 for
the in-out zone shuffling. Another characteristic
of this problem is that the average discharge
burnup, expressed in terms of the flux time, is
equal for both out-in and in-out schemes, as shown
in Eq. (25). Therefore, the formal treatment by
the maximum principle cannot distinguish the dif-
ference in the optimal controls for the two op-
posite series schemes. However, this problem
can be solved directly knowing that the discharge
burnup is uniquely determined at any point on the
target curve as shown in Eq. (33). In other words,
this is a terminal control problem. The optimal
terminal state or the direction in which the
average discharge burnup increases is determined

outer region
o2

A
(sz’ 06) a’ B '
= Gy
= 0y Feed
discharge
D
- Out -in 1=
€ | larger V, =05
(8 xoo -0it)

\inner region o

Fig. 7. Initial and final states in equilibrium (out-in
zone shuffling).

by Eq. (33). Contours of the discharge burnup
are a group of lines with the negative gradient
-vy(N, + 1)/[v2(N; + 1)] for the parallel scheme
and the positive gradients Ni(N; + 1)/[Nz(N, - 1)]
and Ny(Nz - 1)/[N2(N1 + 1)] for the out-in and in-
out schemes, respectively. These lines are shown
in Fig. 8. It is evident that the discharge burnup
increases monotonically along the target curve
from D to A for an out-in scheme and from A to
D for an in-out scheme. When N,= N: = 1, the
values for the out-in scheme on the line AB are
equal to each other; likewise, those for the in-out
scheme on the line CD are equal. Therefore, the
optimal terminal states for series schemes are
the points S, at which the values of the nuclear
characteristics of the outer region (out-in) and the
inner region (in-out) at the final states are equal
to that of the new fuel oo. It is noted that the con-
trol rods should remain in one or the other region
at these points. There are three situations in the
parallel scheme depending on the values of the
refueling parameters N, N2, vi. Let the point at
which the contour of the burnup is tangent to the
critical curve be denoted as E(oir, 027). This
point is obtained by Egs. (15) and (33) as

o _ W1+W2A2
T =" TOWL A,

JoT =A10'21T+A20'1T+A3 s (35)
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Fig, 8. Contours of the discharge burnup and optimal
terminal state,

where

_ 2”13
k" a(N, + D)(an + B)

When the tangent point E is to the left of B, the
burnup increases along the target curve from A to
C and from D to C, and C is the optimal terminal
state (Case 1). When it is to the right of C, the
burnup increases along the target curve from A to
B and from Dto B, and B is the optimal terminal
state (Case 2). When it is between B and C, the
burnup increases along the target curve from A to
B, from E to B, from E to C and from D to C, and
either B or C becomes the optimal terminal state
(Case 3). Among the candidates in Table II, two
(Nos. 9 and 22) belong to Case 2, one (No. 7) to
Case 3, and the others to Case 1 for the maximum
allowable power-peaking factor f = 1.4.

The nature of the optimal terminal state is
now clear and the problem is to find the best
terminal state o; attainable from the initial state
0; defined by Eq. (31) or Eq. (34). If the optimal

terminal state is attainable from its correspond-
ing initial state, this set gives the optimal solution
and the control rod programmings that combine
these states are usually not unique and are degen-
erate. This situation will occur only in the paral-
lel scheme, because it is impossible to transfer
the state without being at least partly exposed in
either region, which is required for the series
schemes. If the optimal terminal state is not
attainable, the optimal solution can be shown to be
on one of the boundary curves by examining the
nature of the attainable region and the relation be-
tween the initial and the final states.

In Ref. 13 the control rod density #; was chosen
as the control variable. However, it is convenient
to regard the average flux in the inner region ¢,
as the control variable because the right side of
Eq. (30) does not contain ¢ and is a function of ¢,
only, and the constraint on #; can be replaced by
the constraint on ¢; as shown in Eq. (26). The set
of initial states that can attain the given final state
0/ on the target curve is defined as I'. This set
covers a certain range in the burnup space and is
calculated by the time-reversal analysis. The
range of the control variable ¢; monotonically in-
creases starting from one permissible value until
the upper and the lower limit become fixed by the
constraint on the power-peaking factor. The flux
ratio g monotonically decreases toward the lower
right of the critical curve. From Egs. (26) and
(30), the gradient of the trajectory can be ex-
pressed as

g(0) < 2% < g0 (36)

do,
Integration of Eq. (36) defines the attainable region
T" and the trajectories by the boundary value con-
trol G(oy, 0z, ¢1) = 0 give the two boundary curves.
The gradient of the upper boundary curve mono-
tonically increases and that of the lower boundary
curve monotonically decreases until they are fixed
by the constraint on the power-peaking factor.
These attainable regions I' are illustrated in Fig.
9 for five final states in case of the out-in 3-2
scheme. Any initial state inside the region I' can
attain the final state and the trajectories are not
unique. The trajectory is unique only when the
initial state is on the boundary curves. An initial
state outside the region I' can not attain the final
state by any means. In general, we call the policy
of operation along the upper boundary curve as
outer high policy and that along the lower bound-
ary curve as inner high policy. The same argu-
ment leads to the definition of the attainable
region from a given initial state. In this case, the
role of the upper and the lower boundary curves
should be interchanged. When the final state
moves on the target curve, the upper and lower

02)] g(0p)
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Fig. 9. Attainable region and optimal trajectory

(out-in 3-2, 1 = 2,65%).

boundary curves move in parallel both hori-
zontally and vertically. This is because the maxi-
mum gradient of the trajectory is determined only
by 0, and the minimum gradient only by o, until
each becomes a constant determined by the con-
straint on the power-peaking factor. Therefore,
boundary curves (upper or lower) entering into
different final states do not intersect each other,
and the entire space of the supercritical region is
completely covered with these boundary curves.
We can now prove the following facts:

1. The policy of the optimal control rod pro-
gramming is inner high for the out-in
scheme.

2. The policy of the optimal control rod pro-
gramming is outer high for the in-out
scheme.

3. The policy of the optimal control rod pro-
gramming is either outer high or inner high
for the parallel scheme, unless the optimal
terminal state is attainable. Otherwise, it is
degenerate.

MOTODA

Proof: The nature of the boundary trajectories
and that of the variational equations of Eqs. (34)
are used.

1. Out-in scheme. Assume that a set of the
initial state of and the final state of is exactly on
some lower boundary curve and that this set is not
optimal. This assumption requires that for the
state of to become optimal it must move along the
target curve so that 80, =0 and/or 8027 = 0 hold.
The effect of the changes of the final state on the
changes of the initial state in equilibrium is given

Ni-1 4N,
6 = — —_—
Ou =N 31 OV L T D, 5 ) 0%
No - 1
80,; = N"; I 80/ (37)

The lower boundary curves are divided into three
cases depending on the position of the final state.
This is shown in Fig. 10. From Egq. (37) the fol-
lowing relations are obtained:

801; >0, 0 <00y < b0y Case a
60y < 80y, 60y <0, 0< 60y <b0yy Caseb
601/ < 60,;, <0, 60 =0 Case c.

The range of the variations of the initial state is
shown as shaded regions of lines with a negative
gradient

region yaof6 Casea
region yapBd Case b
region @0} Casec .

It becomes a line for Case c. It is evident for
Cases a and c¢ that each region is outside the
attainable region I' by the relation ofa = ofof. For

Case b, let @ be chosen such that ¢la = 0}’7 and
let ¢ and ¢’ be the states on the lower boundary
curve starting from o; at which the first coordi-
nates are equal to ¢, and 0}’1, respectively. Then

e = 0/¢’ because ofe = 0jc’. The gradient of the
lower boundary curve at ¢’ is greater than at .
Therefore this region is always outside the attain-
able region T

Thus, any final state oy which gives larger
burnup is proved to be unattainable from its initial
state o0;. This contradicts the assumption, and 0;’
is the optimal final state and the optimal policy is
inner high.

2. In-out scheme. Only the necessary rela-
tions are given below, as the method of the proof
is completely the same as for the out-in scheme
except that the region numbers are interchanged
and the control policy is reversed.
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Fig. 10, Explanation of optimal trajectory for out-in scheme.

Variational equation:

1
4N, N, -1
o 4N, Np-1 . (38
002 (N1 + D(Nz + 1) 004 + Ne +1 00z (38)

The range of the variations of the initial state:
601 =0, 06025 < 00 <0 Case a
0 < 60y; < d0yy, 00y <O02; , 002y <0 Caseb

0 <80y < 601y, 0< b0y Case ¢

The corresponding region:

region oja Case a
region  yapd Case b
region yaoid Casec .

These relations are shown in Fig. 11.

3. Pavallel scheme. The upper and the lower
boundary curves are divided in two cases each de-
pending on the way the burnup increases along the
target curve. This is shown in Fig. 12. Only the
necessary relations are given below, as the meth-
od of the proof is essentially the same as with
series schemes.

Variational equation:

(39)

The range of the variations of the initial state:

60y1; =0, 80y < 60y <0 Case a
60, < 60,; <0, O < 60p; < 00y Case b
0 < 60y; < b0y, 602f<602,-<0 Case ¢
801y <003, <0, 0603 =0 Cased .

The corresponding region:

region  o%a Cases a and d

yapBo; Casesbandc .

When 0}) is the optimal terminal state and this is
attainable, the policy is degenerate except for the
special case in which o} is on one of the boundary
curves.

An example of the optimal trajectories is shown
in Fig. 9. With these results, the optimal control
rod programming and the corresponding optimal
trajectories can be synthesized in the burnup
space. These are shown in Figs. 13, 14 and 15.
In Fig. 15, @ is the state at which the discharge
burnup is equal to that at C (Case 3) and B(Case
4).

The trajectories determined by the conventional
constant power shape operation are shown in Fig.
16 as reference. These are obtained by choosing
a final state on the critical curve first and then
drawing a line in the opposite direction with the
gradient corresponding. The control policy of this
operation is to make the flux ratio g constant
throughout the life of a reactor such that Eq. (40)
holds

region

g = ©,/0, (40)
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Fig. 11, Explanation of optimal trajectory for in-out scheme,

< $di0
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. Explanation of optimal trajectory for parallel scheme.
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Synthesis of optimal control for in-out

VI. EQUIVALENCE OF BURNUP MAXIMIZATION
AND ENRICHMENT MINIMIZATION

The problem so far formulated is to maximize
the average discharge burnup when enrichment of
the feed fuel is assumed fixed. This formulation

is meaningful and natural to see the effect of the
optimal control rod programming. However, this
is not suitable to see its effect under the require-
ment that the refueling interval should be one year
(or some other fixed period of time). It is neces-
sary to fix the average discharge burnup and
minimize the enrichment of the feed fuel. In the
following discussion, similar to that in Sec. V,
however, the above two problems are shown to be
equivalent.

It is assumed that the enrichment dependence of
the depletion coefficient of the fuel characteristics
is small compared to that of the initial fuel char-
acteristics. This is justified by the fact that
laa | <y (Sec. IV).

Let the initial and the final states correspond-
ing to the optimal control rod programming for a
fixed enrichment be denoted as ¢} and 0}’. Assume
that the same discharge burnup can be attained by
the smaller enrichment. From Egs. (33) and (34),
and with the above assumption, the following vari-
ational equations must hold

1. out-in scheme

4N,

N, -

004 = N———i b0y + 80y
1+ (N1 + 1)(N2 + 1)
- (leij\g(;v: )+ R
002i = %Z 7 00 + N22y+ 107
N160y, - % 502/ - Nwlli:l%yon -0 (41)

2. in-out scheme

L Ni - 2y
601’_N1+1 601/+N1+16
4N, N, -1
00 = N v (Mo v D) O YN, w1 0%
2(N, - 1)
- 5
(N + D(N, + 1) 77
- N+ N
N260z; - %I—Q 501, -T”—l—zyon 0 (42)
3. parallel scheme
L N, - 1 2'}/
00w = 51 0 T, w1 07
__Nz 1 2'}’
002 =57 0%+, 51 07
V1 Vi1 Vo
Ni+1 5°1f+N2 1 0% - <N1+ 17, +1>
Xydn =0 . (43)
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Fig. 15, Synthesis of optimal control for parallel scheme.
The third equation of each refueling scheme 801, >0, 00y <80z, &0y >0
shows that the final state must move along the region yap Ca
target curve toward larger burnup which is given gion ya sea
in case of the fixed enrichment. The method of the
proof is essentially the same as that given in 601 <801;, 601y <0, b0z <00y, 8025 >0
Sec. V. An added condition is that 67 < 0. From recion d& Case b
Eqgs. (41) through (43), the following relations are glony
obtained which determine the range of the varia-
tions of the initial states 601y <d01y, 6017<0, 602 <O
1. out-in scheme region yapB Case ¢
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Fig. 16. Synthesis of control by constant power shape
operation,

2. in-out scheme

80y1; <0, 005 <0024, 060z <0
region yaf Case a

60’1,’ <60’1/, 60’1/>0, 602]’ <60’2,‘, 602,‘ <0
region ya ¢ Case b

50’1,‘ < 60'1,', 60’1/ > O, (50'2,' >0
region yap Case ¢

3. parallel scheme
601; <0, 00y <b0z; <0

region yao;8 Case a

60’1/ <601i <0, 50'2,‘ <602/, 60'2,' >0

region{ya§ Caseb

60y; <00y, 080y >0, B0y <b80y; <0

region{ya & Casec

60’1/ <60’1i <0,

region yaoj{f Case d .

809 <0

The following relations are used for the par-
allel scheme in deriving the above inequalities

50, = vl(Nl + 1)(N2 + 1) + Uz(Nl + 1)(N1 - 1)
YT 0N+ DN + 1) + 02(Ny + 1)2

. 20V,
V1(Ne +1) + 02Ny + 1)

60’1/

502,‘

5G0: = Ul<N2 + 1)(N2- 1) + ’Uz(N1 + 1)(N2 + 1)
2= Ul(N2+l)2+Uz(N1+1)(N2+1)

+ 2’01
’Ul(Nz + 1) + Uz(N1 + 1)

These regions are shown in Figs. 10 through 13
as the sum of the two shaded regions of lines with
negative and positive gradients. It is evident that
these regions are outside the attainable region I
When o} is the optimal terminal state, the third
expression of Eq. (43) cannot be satisfied unless
the constraint on the power-peaking factor is
moderated. Thus, it is proved for each scheme
that the same discharge burnup cannot be attained
by the smaller enrichment and the problems are
equivalent.

602/

60'1/

VII. RESULTS

Numerical calculations were performed for
each proposed refueling scheme listed in Table II.
Although it is possible to find the solution satisfy-
ing an equilibrium condition directly, an alterna-
tive method is adopted here. The optimal policy
was applied repeatedly as a synthesis problem
starting from an initial core using synthesis tra-
jectories in Figs. 13, 14, and 15, until the equilib-
rium condition was satisfied. These trajectories
are optimal only when applied in the equilibrium
cycle. Therefore, the calculated trajectories in
the transient cycles have no definite meaning, nor
are they optimal. However, this procedure is
useful in understanding how equilibrium is estab-
lished. Optimal control rod programming in an
equilibrium fuel cycle was obtained first by as-
suming an enrichment and, next, minimum enrich-
ment was obtained so that the maximum discharge
burnup obtained became equal to the required
value. The same process was taken for a constant
power shape operation and both results were
compared.

The maximum allowable power-peaking factor
was set at 1.40 for all refueling schemes. This
value is probably large as a gross radial power-
peaking factor compared with the actual design
limit; however, the one-group treatment requires
this large a value to obtain the freedom of con-
trolling the power shape.

The results are listed in Tables III and IV. The
refueling schemes are arranged in order of in-
creasing enrichment of the first ten refueling
schemes for each refueling fraction. Table IO
refers to the refueling fraction 0.25 or the average
discharge burnup of 22 GWA4/T and Table IV
refers to that of 0.2 or 27.5 GWd/T. The maxi-
mum discharge burnup is also shown when the
enrichment is fixed at 2.65% for reference. Tra-
jectories in burnup space corresponding to the
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TABLE III
Comparison of Results (Refueling Fraction = 0.25)
e =22.0 GW4/T n=2.65%
J | M| N2 vy m N2 An a e Rod® | Policy a 2 AT
0 4 4 1/3 2.159 2.184 0.025 24.02 20.90 out O-H 27.91 217.65 0.26
0 3 5 3/8 2.191 2.191 0.000 22.06 21.93 1in I-H 27.82 27.82 0.00
(~0)
0 4 4 1/2 2.213 2.243 0.030 24.48 19.51 out D 27.34 26.91 0.43
1 3 1 3/4 2.262 2.279 0.017 out I-H 26.68 25.98 0.70
0 4 4 2/3 2.326 2.326 0.000 25.86 14.58 1 in I-H 25.96 25.96 0.00
(~0)
0 5 3 5/8 2.411 2.450 0.039 28.63 15.40 out O-H 24.77 24.30 0.47
1 2 2 1/2 2.432 2.515 0.083 2 in I-H 23.95 23.14 0.81
0 3 6 1/2 2.460 2.460 0.000 20.08 24.30 1in I-H 24,22 24,22 0.00
0 6 3 1/2 2.525 2.525 0.000 33.30 16.37 2 in O-H 23.03 23.03 0.00
0 2 6 1/4 2.542 2.542 0.000 15.52 28.50 1in I-H 23.08 23.08 0.00

m = enrichment % (optimal control)
me = enrichment % (constant shape)
An=1nz-m

e1 = discharge burnup of the inner region GWd/T (optimal control)
e2 = discharge burnup of the outer region GWd/T (optimal control)
e, = average discharge burnup GWd/T (optimal control)

2 = average discharge burnup GWd/ T (constant shape)

Ne=@e - e
2Control rod at the final state.

optimal control rod programming and the constant
power shape operation are shown in Fig. 17, a
through e, for some of the refueling schemes, and
the effect of the refueling and the control rod pro-
gramming on the required enrichment is illus-
trated in Fig. 18.

As made clear in Sec. V, the optimal control
rod programming depends on the refueling scheme
in question. Numerical results for parallel
schemes show that the optimal policy is degener-
ate for three schemes [4-4(1/2), 4-6(2/5),
5-5(1/2)], outer high for five schemes [4-4(1/3),
5-3(5/8), 6-3(1/2), 5-5(1/3), 6-4(3/5)], and inner
high for seven schemes [3-5(3/8), 3-6(1/2),
4-4(2/3), 2-6(1/4), 5-5(2/3), 3-6(1/5), 6-3(4/5)].
Control rods are fully withdrawn for the first two
policies except for the 6-3(1/2) scheme which
ranks next to last, and the inner rods are still in-
serted for the third policy.

Therefore, it is concluded that it is best for the

practical range of parallel schemes to try to
reach the optimal terminal state C at which the
reactor can be critical with minimum total buck-
ling and the power distribution is MAIHD, although
the true optimal terminal state, defined as the
state where the average discharge burnup is max-
imum, may occur at B(Fig. 15). In other words,
the region around the state B on the target curve
is unattainable in equilibrium.

Power distribution is kept constant throughout
the reactor life for some refueling schemes. This
occurs when the converged initial state is within
the regions ABG and FCD in Figs. 13, 14, and 15,
and the control rod of either region still has to be
inserted at the end state. In this case there is no
difference between the operation by optimal con-
trol rod programming and by constant power
shape. The eight schemes fall in this case: one
parallel 6-3(1/2) with outer high policy and seven
parallel schemes with inner high policy. Among
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TABLE IV
Comparison of Results (Refueling Fraction = 0.20)
¢ =27.5 GW4d/T n = 2.65%
J ©M N2 1 1 ne An e e2 Rod Policy e ez Ae
0 4 [§ 2/5 2.510 2.522 0.012 28.19 26.84 out D 29.25 29.08 0.17
0 5 5 1/3 2.525 2.546 0.021 29.92 26.30 out O-H 29.05 28.80 0.25
0 5 5 1/2 2.571 2.607 0.036 30.07 24.95 out D 28.48 28.02 0.46
0 5 5 2/3 2.685 2.685 0.000 31.69 19.13 1in I-H 27.05 27.05 0.00
(~0)
0 3 6 1/5 2.698 2.698 0.000 25.60 34.90 1in I-H 26.87 26.87 0.00
0 6 4 3/5 2.743 2.7177 0.034 34.03 20.98 out O-H 26.36 25.93 0.43
1 4 1 4/5 2.762 2.762 0.000 out I-H 19.98 19.98 0.00
1 3 2 3/5 2.782 2.905 0.123 2 in I-H 26.19 25.10 1.09
1 2 3 2/5 3.129 3.226 0.097 2 in O-H 23.36 22.72 0.64
0 6 3 4/5 3.179 3.179 0.000 39.66 10.81 1in I-H 10.00 10.00 0.00

them, parallel 3-5(3/8) ranks second. Although
the rods are still inserted at the end in this
scheme, they are almost withdrawn, as seen in
Fig.17c. From these results, it cannot be con-
cluded that the operation of constant power shape
is always behind the optimal solution.

In general, it is disadvantageous to terminate
the operation while the control rods are still in
the core. However, whether all the control rods
can be fully withdrawn or not is mainly deter-
mined by the refueling scheme rather than by the
control rod programming.

In series schemes, it is better that the control
rods remain inserted even at the end (outer rods
‘or out-in scheme and inner rods for in-out
scheme), as explained in Sec. V, contrary to com-
non sense. However, the power shape is not
:onstant in this case. The three schemes out-in
1-2(1/2), 3-2(3/5), 2-3(2/5) fall in this case.

The differences between the optimal solution
ind the operation of constant power shape range
1 to 4% in the necessary enrichment or the at-
ained burnup for the refueling schemes con-
idered in the present study, but most of them are
rithin 2%.

Note that the refueling schemes with degenerate
olicy rank high and are promising. These are
arallel 4-4(1/2), 4-6(2/5), and 5-5(1/2). No unique
olicy exists in this case. For an operator, this
olicy can be thought preferable to other unique

optimal policies and the policy of constant power
shape operation, because the freedom of operation
is left in this policy and the control rod program-
ming can be corrected when the trajectory devi-
ates from the planned course. In other unique
policies, however small the deviation may be, it is
impossible to put the trajectory back on its right
course. Moreover, it is also possible to optimize
other performance indexes using this freedom.
Trajectories of this policy, shown in Figs. 17b
and c, are selected such that they are tangent to
the upper boundary curve entering into the optimal
terminal state C. The operation along these tra-
jectories is similar to the outer high policy in that
the power shape is constant until the outer rods
are fully withdrawn. This selected operation, of
course, gives a larger burnup than the operation
of constant power shape.

Tables III and IV and Fig. 18 show, in general,
that the differences in enrichment or burnup
among the different refueling schemes are much
larger than those among the rod programmings.

The difference between the refueling schemes
that rank first and second is 1.5% in enrichment
and 0.31% in burnup in Table OI and 0.6% and
0.7% in Table IV. This difference is small and
comparable to that introduced by control rod pro-
gramming. However, the difference between the
the first and the fifth amounts to about 7% in Ta-
ble III and 8% in Table IV, both in enrichment and
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Fig. 18. Effect of refueling and rod programming.

burnup; the difference between the first and the
tenth (the last) amounts to as much as 20% in both
in Table III; 25% in enrichment, and 65% in burnup
in Table IV.

The differences in enrichment or burnup among
the different control rod programmings are com-
parable only to those of the first three refueling
schemes and the difference of the first and fifth is
about four times larger than the differences intro-
duced by the control rod programmings. This re-
sult is natural from the hierarchy relation of
these two problems. Therefore, the refueling
scheme should be first optimized as done in pre-
vious works, *°

The optimal control rod programming was
compared only with the operation at constant
power shape. It is possible to compare it with
other rod programmings such as uniform control;
however, this programming is worse than the rod
programming of constant power shape operation,
as shown in Ref. 13.

The present analysis indicates that the promis-
ing refueling schemes are parallel 4-4(1/3) and
3-5(3/8) for a refueling fraction of 0.25 and paral-
lel 4-6(2/5) and 5-5(1/3) for a refueling fraction
of 0.20. It is shown that the uniform scatter load-
ing is not optimal in Stover’s® paper where the
core is divided into three regions. The purpose of
the present paper is to find the policy of optimal
control rod programming and not to discuss in

detail the features of optimal refueling schemes,
for which the present model has to be greatly im-
proved. However, the following conclusion can be
drawn. The batch number of the outer region
should not be less than that of the inner region
(N, = N,), which increases the uniformity of the
discharge burnup of both regions. This charac-
teristic will hold even when the constraint on the
maximum allowable discharge burnup is accounted
for, which is not done in this study. Also note that
the refueling schemes with the smaller volume
fraction of the inner region rank higher when the
batch numbers of both regions are equal. This
means that a more uniform burnup distribution is
obtained when the shuffling region in the outer
region is wider. This effect is seen in Tables III
and IV.

The out-in schemes are not as promising as
expected. This scheme is unfavorable from a
viewpoint of fuel importance because the new fuels
are always loaded in the outer region where the
fuel importance is generally smaller than in the
inner region. Moreover, it seems that series
schemes are intrinsically inferior to parallel
schemes in that the higher burnup is attained when
the reactor terminates operation with the control
rods still in the core.

No in-out schemes are listed in Tables III and
IV. No equilibrium condition exists for these
schemes. This is mainly because the limit of the
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power-peaking factor of 1.4 is too severe for these
schemes, considering that the new fuels are loaded
in the inner region, which necessitates a higher
power density of the inner region. In almost all
cases it turns out that o,; <o,y Therefore, this
scheme is neither good nor practical.

The difference between the optimal control rod
programming and the constant power shape opera-
tion is large for out-in schemes where the outer
rods still have to be inserted in the core at the
end. This is because the control freedom of power
distribution is fully used from MAIHD to MAOHD
in the optimal solution, whereas the power distri-
bution is fixed at MAOHD in the constant power
shape operation.

The equivalent relation proved in Sec. VI does
not necessarily mean that for every specified rod
programming the ranking of the refueling schemes
when the enrichment is fixed is always equal to
the ranking when the discharge burnup is fixed. In
other words, the ranking is affected by the re-
quired discharge burnup or by the enrichment of
the feed fuel. This comes from the fact that the
enrichment dependence of the discharge burnup is
different from each refueling scheme and each rod
programming. Actually, the parallel schemes
4-4(1/3) and 3-5(3/8) in Table III are reversed in
order of burnup for constant power shape op-
eration. This comes from the difference in the
value of the power-peaking factor. Operation at
constant power shape, in which all of the control
rods can be withdrawn at the end, is optimal in the
sense that the worst power-peaking factor during
the operation period is minimum as far as the
two-region model is valid. The peaking factor of
the parallel scheme 4-4(1/3) is 1.37, while in the
parallel scheme 3-5(3/8) it is 1.40. From a dif-
ferent standpoint, the former scheme can be
thought to be under a more severe constraint on
the power-peaking factor. The out-in 4-1(4/5)
scheme in Table IV should rank next to the last in
order of burnup. Control rods in the inner region
are still inserted when the enrichment is 2.65%,
while they are completely withdrawn when it is
2.762%. In this range of the enrichment, Ae/An is
very large for this scheme. Similar consideration
is applied to other refueling schemes. Therefore,
the rankings may be used as a guide for fuel man-
agement evaluations.

The approach to equilibrium is shown in Fig.
17a for parallel scheme 5-5(1/3). Only the initial
states of selected cycles are plotted. At least
several cycles, i.e., several years, are necessary
to reach equilibrium within the error of several
percent. The optimization of the transient cycles
is also an important subject, but it is outside of
this work.

MOTODA

VIII. CONCLUSIONS

The nature of the optimal control rod program-
ming in various refueling schemes is investigated
for a single enrichment two-region BWR. It is
very convenient to interpret the relations among
power shape, fuel burnup, criticality, and control
rod programming as the geometical relation in the
burnup space.

First, optimal control programming was solved
to maximize the average discharge burnup in an
equilibrium fuel cycle for a reactor with fixed fuel
enrichment. This problem was then shown to be
equivalent to minimizing the enrichment of the
feed fuels for a reactor with fixed discharge burn-
up. This facilitates incorporating the requirement
of a one-year refueling interval. The following
conclusions are obtained by these analyses:

1. The policy of optimal control rod program-
ming is made clear. It strongly depends on the
refueling scheme adopted; for example

refueling scheme optimal policy

out-in inner high
refueling

parallel parameters degenerate
N1, N2, v1

in-out outer high

2. All the control rods should be fully with-
drawn at the end of the operation for the parallel
scheme. However, some of the control rods should
remain in the core for the series scheme: outer
rods for the out-in scheme and inner rods for the
in-out scheme. Whether this condition is satisfied
or not is mainly determined by refueling param-
eters rather than by control rod programming.

3. The optimal refueling scheme should be
chosen from parallel schemes, which have larger
freedom than series schemes. Out-in schemes
are not as advantageous as expected. In-out
schemes are almost hopeless because of their
very poor power distribution.

4. Optimal control rod programming for the
practical range of parallel schemes is to arrive
as nearly as possible at the state at which the re-
actor becomes critical with minimum material
buckling. The power distribution at this state is
the maximum allowable in the inner high.

5. The promising refueling schemes found
among parallel schemes are

4-4(1/3), 3-5(3/8)
4-6(2/5), 5-5(1/3)

refueling fraction 0.25
refueling fraction 0.20.
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In general, batch numbers in the outer region
should not be less than those in the inner region,
and fuel assemblies should be shuffled or mixed in
the wider outer region.

6. The difference in the required enrichment or
the attained discharge burnup amounts to more
than 20% between the best and the worst refueling
schemes, while the differences between the opti-
mal control rod programming and nonoptimal one
(constant power shape operation) is at most only
4%. This is natural in view of the hierarchy rela-
tion between the fuel management and the poison
management. However, the differences among the
promising refueling schemes are comparable to
those among control rod programmings. In gen-
eral, the refueling scheme should be optimized
first.

7. For some refueling schemes operation of
constant power shape becomes optimal. Parallel
scheme 3-5(3/8) falls in ‘this case and ranks
second. Whether this situation will occur strongly
depends on the refueling parameters.

8. A degenerate policy is optimal for some of
the promising parallel schemes: 4-4(1/2),
4-6(2/5), and 5-5(1/2). This policy has two ad-
vantages over the unique policies. One is that the
control rod programming can be modified to reach
the optimal terminal state if it happens that the
trajectory deviates from the planned course. An-
other is that is is possible to optimize other per-
formance indexes using the freedom of operation
while ensuring maximum burnup.

9. If the optimal control rod programming is
unique, it is bang pang control in which either
the power peaking takes its maximum allowable
value or the density of the control rods takes
its minimum value. In general, the optimal
condition is in conflict with the safety mar-
gin and a qualitative evaluation of the safety
criteria is necessary.

10. The ranking of refueling schemes is af-
fected by the enrichment of feed fuels or the re-
quired discharge burnup. The value of the
maximum allowable power-peaking factor is fixed
at 1.4 in this study, which can be thought as an
important design parameter. The difference be-
tween the optimal control rod programming and

the constant power shape operation is also af-
fected by this quantity, which may even result in a
different policy in parallel schemes. Therefore,
the dynamic optimization is inevitably necessary
at the design stage so that the optimal control rod
programming and the optimal refueling schedule
can be determined, as well as the optimal values
of the design parameters. The rankings obtained
in this study should be regarded as a guide for
fuel management evaluations.

The above conclusions, which are very intuitive
and clear, are based on a very simple, one-
dimensional, one-group, two-region model. This
precludes effects of void feedback, nonuniform
axial distribution of control rods in a region, local
power peaking, and fuel burnout, etc. These take
a very important place in the actual reactor oper-
ation. Extension to the three-dimensional, multi-
group multiregion core treatment, which includes
these microscopic constraints, is necessary to
make sure of the above results, to make a more
quantitative evaluation, and to find a rule for the
three-dimensional assignment of the finite num-
bers of the control rods. Direct extension of the
present method of analysis will be very difficult
because the concept of the control of the tra-
jectory will no longer be intuitive, and the appli-
cation of mathematical programming, such as the
method of approximate programming,® will be
useful.

The optimal control rod programming con-
sidered in this paper is not disadvantageous from
an operational viewpoint. It will be possible in the
near future for a process computer to take the
place of the operator and determine the optimal
sequence of withdrawal of control rods at each
instant from the present state of the reactor.
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