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A variational treatment of the burnup optimization of continuous scattered
refueling is presented and numerical solutions are given for a slab reactor, It is
made quantitatively clear how the reactor dimension, the xenon and the Doppler
feedback reactivity, the burnup dependence of fission cross section and the re-
flector performance affect the power distribution that maximizes the average dis-
charge exposure, Power flattening and burnup maximization are contradictory in
general, but are consistent if, and only if, the condition of the perfect reflection at
the core boundary is satisfied. The optimal power distribution is peaked in the
central—and depleted in the outer region; and becomes flatter as the reflector
performance is increased. The maximum average burnup depends on the burnup
dependence of fission cross section and the strength of the Doppler and the xenon
feedback reactivity, even if the average burnup calculated by the point-reactor
model is the same., The former effect on the optimal power distribution is very
small but the latter effects greatly contribute to power flattening. Both effects
reduce the maximum burnup and the effects of the latter two are of comparable
order, As the reactor becomes smaller, the maximum burnup decreases almost
linearly to the neutron leakage. Optimal refueling has an advantage of more than
10% in the average burnup over the conventional flat-refueling rate method, How-
ever the difference from the flat-burnup method is very small, considering that

the optimal refueling is handicapped by its very bad power distribution.

I. INTRODUCTION

With the arrival of economically competitive
nuclear power, it has become very important to
study the effect of the power distribution on the
fuel burnup. One of the main tasks imposed on
both designers and operators will be to make an
effort to obtain the largest fuel burnup with the
minimum fuel inventory within the various oper-
ational limitations.

The problem of finding the optimal control-rod
programming to maximize the fuel burnup has
been studied by Terney,' Suzuki,” and the author.’
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The result indicates that the burnup maximization
and the power flattening are contradictory, and
also the optimal power distribution is in general
not constant throughout the reactor life. Suda®
studied another problem of finding the optimal
control-rod distribution to produce the largest
power from the given core, showing that the power
distribution is required to be flat in the central
region of the core.

Besides these recent studies, there have been
many works on the problem of the minimum crit-
ical mass,*® and it has been shown that the neu-
tron flux (more rigorously the fuel importance
function) distribution should be kept flat to main-
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tain the criticality with the minimum fuel inven-
tory in a thermal reactor. This may suggest that
the maximum excess reactivity for fuel burnup,
or the minimum refueling rate can be achieved
by making the specific power distribution as flat
as possible. However, this is not true, because
to make a reactor critical with the minimum fuel
mass is a static problem, whereas to obtain the
maximum burnup is a dynamic one. The results
obtained in the above-mentioned studies'™® suggest
that it is required to burn the reactor fuels in
such a way that the condition of the minimum
critical mass can be attained as closely as
possible at the end of the reactor life by the
appropriate sequential withdrawal of control rods
to get the maximum burnup.?

The aim of this paper is to consider this
problem from the viewpoint of burnup maximiza-
tion and to investigate the optimal distribution of
power, flux, burnup, and refueling rate in a con-
tinuously refueled reactor, where no control rods
are inserted and the criticality is maintained by
appropriately controlling the refueling rate dis-
tribution.

Some characteristics of the continuous reactor
refueling have already been studied extensively by
Yasukawa.”™® He treated the following three types
analytically using the elliptic functions: out-in,
in-out, and bi-directional refueling. One critical
velocity must be chosen to make a reactor just
critical for a given fuel characteristic, and no
optimization problem arises in the first two
schemes. However, it was proved that the maxi-
mum burnup is obtained in the third scheme when
the rate of fuel movement is equal in the two
directions.

Another scheme of continuous refueling is here
presented. This scheme can be called ‘‘scattered’’
or ‘‘graded’’ refueling, which has much larger
freedom for optimization and is suitable for the
present purpose.

II. STATEMENT OF THE PROBLEM

The continuous scattered refueling considered
here is one which has the following property; the
new fuels are charged at each point x in the core
with the refueling rate w(x), and the burnt fuels
are discharged with the same rate and the cor-
responding burnup distribution e(x) from the core,

2This is natural, since making the critical buckling
minimum is equivalent to glvmg the maximum burnup in
the usual situation.
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and no movement or replacement of partially
burnt fuels are allowed.

The problem is to find the optimal distribution
of power p(x), neutron flux ¢(x), refueling rate
w(x), and burnup e(x) to maximize the average
burnup, which can be defined as the discharge
exposure averaged over the core, weighted with
the refueling rate. This control problem can be
put into a form suitable for the direct application
of variational method.

Before setting up the fundamental equations,
the assumptions adopted in this treatment are
given below.

1. The reactor considered is a one-dimen-
sional slab reactor.

2. Effect of a reflector is treated by the bound-
ary condition of the logarithmic derivative at the
core edge.

3. One-group diffusion equation is assumed.

4. The burnup dependence of the infinite mul-
tiplication factor kw(e) and the macroscopic-
fission cross section 2/(e) is assumed to be
linear,

5. Nuclear propertieé at each point are repre-
sented by the burnup-averaged quantities.

6. Only the xenon and the Doppler feedback are
taken into account, and their power dependences
are assumed to be of the form adopted in the
FLARE code."

7. No limitation is imposed on the maximum
value of the power peaking factor but the con-
sideration is taken to the metallurgical limit on
the maximum discharge exposure.

In view of the foregoing assumption, the infinite
multiplication factor k. and the macroscopic-
fission cross section Z;, and their averages ko
and Y, are expressed as Eq. (1):

ko (€) = k(1 - ae) Z(e) = Zy4(1 - be)
- [} kterel [} de = k1 - 3 ac)

E/ = ﬁ: Z),(e)de/j:de = Z/o(l - %be) . (1)

One-dimensional diffusion equation can therefore
be written in the non-dimensional form as
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where H is the ha¥-width of the core, 8 and &
are the Doppler and the xenon feedback reactivity

]¢(x)=0 ,  (2)

at the rated power, and y is a constant, such that

1 + y is the ratio of saturated xenon reactivity at
an infinitely large power to the average equilib-
rium value at the rated power. The reactor power
is normalized so that the volume integral and the
average rated power become 1.0,

S, plx)dx = 1.0 (3)

where p(x) = T/(c)¢(x). Migration area M® varies
with burnups but its relative change is very small
compared with that of k. - 1. Therefore, it can
be considered constant in discussing Eq. (2), but
the distinction is made between the coefficient a
and b in Eq. (1). The boundary condition of Eq. (2)
is given, assuming the symmetrical solution, as

d - -—
Eq‘;-o catx=0

%¢+a¢=0 atx =1 , (4)

where a is the reciprocal extrapolated distance.

After an equilibrium state is reached, the fol-
lowing relation must hold among the refueling rate
w(x), the reactor power p(x) and the burnup e(x)
(discharge exposure).

P(x) = wx)e(x) . (5)

Therefore, the average burnup e is calculated,
weighted with the refueling rate w as,

_ [ wetnax :

e = n = . (6)
Jrowar [ [px)/elx)]dx

The discharge exposure e(x) must satisfy the
following constraint imposed by the metallurgical
limit.

e(x) < e . (7

It is evident that the maximization of the average
burnup is equivalent to the minimization of the
total refueling rate, or the maximization of the
fuel residence time when the total power output
is fixed. :

In discussing the effect of the reactor dimen-
sion, the Doppler and the xenon feedback reac-
tivity universally the following quantities are
used:

_ 4(M/B)

A_km-ﬁ-ﬁ-l

. B
Si=p g 5-1

R
Sz-kwo_'ﬁ_é_l

2

ew=m(km-ﬁ-5-l) . (8)

The numerator of A is proportional to the reac-
tivity loss MzBZ by the leakage neutrons in a bare
reactor and the denominator is the excess reac-
tivity for fuel burnup. Thus, 4 represents the
combined effect of a reactor dimension and a fuel
characteristic. S; and S; represent the ratios of
the Doppler and the xenon feedback reactivity to
burnup reactivity, respectively. e, is the dis-
charge exposure which can be obtained in case
of an infinitely large or a perfectly reflected
reactor.

I. FORMULATION BY VARIATIONAL
METHOD

The problem is to minimize the functional

! plx)
T=ef, S5 & (9)
with the constraints of Egs. (2), (3), and (7). In
this problem it is arbitrary which variable to
choose as the control variable #(x) and here the
reciprocal of burnup distribution, e /e(x) is
selected.

Thus, the constraints of Egs. (3) and (7), and
the functional J can be written as

1
o J (1 - b/u)pdx = 1 (10)
U> Unin = €,/8, (11)
1
T=2p [ (- b)pde . (12)
The system equation is given from Eq. (2) as
a4 -
dx ¢1 e ¢2
d,_1(6 G )
dx‘pz“Ah(uz”u*C“ ,  (18)
with the boundary conditions
¢2 =0 at x = 0}
¢o+ap=0 atx=1 s (14)
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where
01=0
Cy = ~Zjb'$*(1 - S1Z/,0'9)
Cs = }(Z0 + ;b0 +v) - S1Z4,b'¢°

X (25,0 +7 - 1) - SayZy b
Cs =S510(Z7 9 - I(Zfo0 + V) + S2 07
X (Zo9 - 1) - (Zpp0 + vy
h=Zp0+vy-1/uZpbe

and
=b/2 €. (15)
Hamiltonian H can now be written as
H-= -Z),o(u - b1 + A [Z/O(l - b/ ur - 1]
C
v (3G o) 1o

where X is the Lagrange multiplier which is intro-
duced to cope with the constraint of Eq. (10), and
Y1, Y2 are adjoint variables which are subjected
to the following equations:

"—1,{/1 = Z/o(u -b" - tho(l - b'/u) - mz

1.3C, 13C, 3 _Zjp
u2 8¢1 u 8¢1 8¢1 h
x (u +C2y ca) (1 - b'/u)]

d

ar Y2 = -y (17)
The boundary condition of Eq. (17) is given from
Eq. (14) by the transversality condition as,

WI.:O atx=0}
vi=ay. atx=1 .

Necessary condition for optimality requires
that Hamiltonian be maximum with respect to
at each point of x. The u dependence of H is
complicated but it can be shown that H is a
concave function of u for the reasonable ranges
of b, S;, and S;. Thus, the maximum condition
becomes

(18)

T’ (@ - Ab") + [(E/ob ¢1 + h) Catd®

+ (Z/ob'¢1C2 +2Cih) u + Z/ob'dhcx] =0

dH
¥ 5

oH
if -51:

>0

Umin

<0 . (19)

“min

% = Umin

Six equations—(10), (13), (17), and (19) provide
the solution for six unknown variables ¢:1(x), ¢2(x),
Yi(x), Y2(x), u(x) and X.

An accurate treatment of these equations is
difficult because of the heavy nonlinearity, and
these equations are not of suitable form to gain
an insight into physical interpretation. Here some
simplifications are made to see the effect of each
parameter respectively, for which the numerical
calculations are performed.

IV. SIMPLIFICATION

The simplest case is a bare slab reactor with
no feedback. In this case a ==, § =5 =0 and
Eq. (19) reduces to

dH

“opt & - on
)\Z,ob u E/o u “min >0
U = Umin fg—;{ <0 . (20)
4min

First we will derive the equations without taking
account of the limitation on u#. By eliminating
and ¥, from Eq, (17) and the first equation of Eq.
(20), the following equations are obtained asso-
ciated with the simplified form of Eq. (13):

2

Aiz—u2 =2 -u® - [0+ (1 -3")]

dx
d2
Ayﬁh(l/u - ¢ (21)
The boundary condition of Eq. (21) is
g—xq‘):O, %u:O atx =0
¢=0, w=0b")"% atx=1 . (22)

Equations (10), (21), and (22) provide the optimal
solution. It is ev1dent that (1 - l/u)/A is the
materlal buckling and « 2 1 means ks £ 1, namely,
e(x) S e, corresponds to ke Z 1. Equatmn for =
is independent of ¢ and # is amenable to a solu-
tion of an elliptic function. The numerical solu-
tion shows that # is a monotonously decreasing
function of x. Thus, the optimal distribution of
u, considering the limitation on %, can be obtained
by combining the solution of Eq. (21) and the
second equation of Eq. (20) at the point xo, where
u attains. its minimum allowable value wun;,, if
(Ab")*% < umin. The resulting equations lead to

2
d2
AZz9= (1/u - 1)¢ for 0 <x <xo

ALY = (/i -~ 1+ AN - b i)
+ A(b' - Unin)

forxosxsl (23)

2
d—z ¢ = (1/tmin -~ 1)¢
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The boundary condition of Eq. (23) is
d d

E,Z,:o, auzo atx =0
Y= AQND' - unia)

%l{/ = -24 umin%u , U= Unmin A
=0, ¥=0 atx =1

(24)

From these equations, the effect of reactor
dimension and burnup dependence of Z; can be
examined by systematically changing the value of
A and b’ for a reasonable range,

A little more improved simplification is to
make b’ = 0. This assumes the equivalence of
neutron flux and power, which can be verified to
be adequate by the solution of the above equa-
tions. This time the following coupled equations
are obtained by the same procedure, in case that
no limitation is taken into account on .

& { Z/od Zfot
A—u®=2u-2x-4°<1+5(1-23 82[1-1 (2- ) ]
e 1 jod) + (1+y) T06 7] Tap vy
d® ) 1
Agao- [1/u 1o 8- S0 - 5 (1- Tab iy Z/o¢)]¢ (25)
The boundary condition of Eq. (25) is
d d
ax ¢ = 0 R a =0 atx =0
d =0 2 ——u =0 atx =1 (26)
a}—q)+a¢— , T Utrau= at x =
and Eq. (11) reduces to
1 .
Zio J, odx =1 (27)

S ¢ 7 Y
Equations (28), (24), and (28) provide the optimal solution. This time Eq. (28) is coupled for ¢ and z,

and analytical treatment is impossible. The

included:

2

A;7u2=2u-x-u2{l+81(l-2Zjo¢)+82 [1-(1+’)’)(2

following equations hold when the limitation on u is

) Zjod Ziod
Zpod+v] Zpd+y

a’ 1+y
A 2 [l/u -1-8(1 - Zf00) - Sz(l T ey E/o(ﬁ)](b for 0 sx <%,
a _ Zfo$ Zjod
A az¥ = {l/umm -1-5Q@ - 22/0‘;’) - S [l -(1+y) Z/o¢ Ty 2 - Tiof + ¥ ¥+ A(A - Umin)
d* 1+y
A W (p = 1/umi,, -1- Sl (1 - ZI'D¢) - Sz 1- W Z/o¢) (p for XosX < 1 . (28)

The boundary condition of Eq. (28) is
d

%qg:o’au:O atx =0
l»l/z'Auzmin 3
at x = x,
dix‘ll‘/:-zAumin%u, U = Umin
%maq,:o, %\!/+ad/=0 atx =1

(29)

Effect of the Doppler and the xenon feedback
and the reflector performance can be examined
by changing the value of S;, S;, and o systemat-
ically for a reasonable range.

In both cases, T, can be fixed at 1.0 without
loss of any generality.

V. APPROXIMATE ANALYSIS BY
MODAL EXPANSION METHOD

It is another purpose of this paper to see how
nonoptimal power distribution affects the average
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burnup. Therefore, an approximate analysis by
modal expansion method is also employed. The
constraint of Eq. (7) is not taken into account
here. Neutron flux was expanded into a Fourier
series up to 3 terms which is thought enough for

the present purpose
3

o(x) = ZZ n COS Qp X (30)
Equation (4) requires that
aptanap, =a , [n-171m<a, s(n-1/2)n] . (31)

In the case when &' can be set at 0, a; can be
expressed in terms of a; and a@; by the normal-
ization constraint of Eq. (27) with Zj0 = 1.

231

sin o, (32)

a . .
a, = (l-a—:sm az-z—:sm (13)
Thus, once a, and a; are specified, ¢ and (@*/dx®)¢
are uniquely determined and the average burnup
can be calculated by the direct integration as
expressed in Eq. (33)

-1
e 1 ¢
o= = f dx

(1+81+SZ)$ s;d) Sz 1+Y 0 +A d

+0 dxz@

(33)
It can easily be shown that the Eq. (25) is the
Euler-Lagrange equation of the functional Eq.
(29).
33
VI. METHOD OF NUMERICAL
SOLUTION

Numerical solution by a digital computer is
performed in each case. Equations (21), (23), (25),
and (28) are two-point boundary value problems
and some iterative method should be used to
obtain the complete solution satisfying the bound-
ary conditions at both sides and normalization
constraint. Here, linearized iterative procedure
is adopted.

With a given set of initial guesses ¢(0), u(0),
and A, transfer coefficients of small perturbations
in these initial guesses to the changes of boundary
condition at x =1 and normalization constraint
are calculated, and assuming that the effect of
each perturbation is linearly independent, next
improved guesses are calculated. This procedure
is repeated until the convergence criteria are met.
This method has provided good convergence, and
most of the cases converged within 10 iterations.
Integration step Ax and convergence criteria €
are set at 0.001 and 0.0005 for all cases, which
assures the accuracy of 0.01% in the maximum
average burnup e/e, and 0.03% in the power
peaking factor f. Simpson’s integral formula is
used in calculating Eq. (33) with the integration

step Ax of 0.02, which assures the accuracy of
0.05% in 2/e,,

VII. NUMERICAL RESULTS

A. Effect of the Reactor Dimension and
Burnup Dependence of Ty

As can easily be understood by the definition
of A and b', A is the reciprocal of non-dimen-
sional material buckling of a fresh fuel and 2b’
is the fraction of the decrement of fission cross
section at e = e,

Typical values of A and b' of a large ATR
(Advanced Thermal Reactor; boiling-light-water
cooled, heavy-water-moderated reactor which
employs on-power refueling) are approximately
0.02 and 0.2. Upper limit of A is (2/7)?. There-
fore, numerical calculations are performed for
0.02 ~ 0.2 0f Aand 0.0 ~ 0.3 0of o',

Some results are shown in Table I for the
maximum average burnup €/e., and the corre-
sponding power peaking factor f, together with the

maximum burnup €pax [= max e(x)], in case of the
LSS 291

bare slab reactor with no reactivity feedback and
no constraint on e, The maximum average burnup
decreases with larger value of b' for each of A.
This means that even if the average discharge
exposure is the same when calculated by the area

TABLE 1

Effect of Reactor Dimension and Burnup Dependence of
Fission Cross Section on Maximum Average Burnup
and Power Peaking Factor in Bare Slab Reactor

S1 =0, S2 =0, e =
(No limitation imposed on discharge exposure)
A b’ e/ew f emax/€e
0.02 0.0 0.9661 1.9725 w©
0.1 0.9649 1.9346 3.1051
0.2 0.9636 1.9245 2.1944
0.3 0.9622 1.9132 1.7907
0.06 0.0 0.8715 1.7415 ©
0.1 0.8696 1.7363 2.9487
0.2 0.8676 1.7403 2.0826
0.3 0.8658 1.7443 1.6987
0.10 0.0 0.7724 1.6667 w©
0.1 0.7705 1.6750 2,7755
0.2 0.7687 1.6839 1.9602
0.3 0.7670 1.6927 1.5988
0.20 0.0 0.5209 1.6075 o
0.1 0.5197 1.6164 2.2802
0.2 0.5187 1.6265 1.6099
0.3 0.5178 1.6363 1.3134
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method or the point reactor model, the actual
maximum average burnup is smaller if the rate
of fission cross-section decrease with fuel burnup
is larger, although its effect is small and less
than 1%.

Optimal distributions of power, neutron flux,
burnup, and refueling rate are shown in Figs. 1
to 3 for A = 0.02. The optimal power distribution
is peaked in the central—and depleted in the outer
region. Physically this means that a higher burnup
is attained by charging new fuels frequently in the
central region where fuel importance is higher,
Accordingly, the optimal burnup distribution
increases monotonously toward the outer region,
and vice versa for the optimal refueling-rate dis-
tribution. The degree of distortion in the power
distribution is larger for smaller value of A. It

301
----- - larger b’ S, = S220.0
\\\\\ /\\ #(x) Optimal refueling a=
5 20k 7" NS 0.0
._5_ :ZD S~ b {§.é
Lo had o
S 3
E -]
58
§=
o bS
o 1.04 \ :‘\\\
2 VA
5 \ w-const. refueling
E \ @ -const. refusting (#=0
F3

0% o oz 03 03 OF OB 07 08 03 IO
Normalized distance from the core center x
Fig. 1. Optimal power and flux distribution (Bare

slab reactor with no feedback, A = 0,02, ¢¢ = =).

3.0
§) =S2+= 00
a o
Optimal refueling
20}
larger b’
g
o
5~
£
o o
@ (R —— 3 -
el ~ AN
g T_e-const.
/ ~< . refveli
= w = const. efusling
refueling Ny
0.0 . ' " : ) . 1 ! It
00 QI 02 03 04 0S5 06 o7 08 09 10
Normalized distance from the core center X
Fig. 2. Optimal burnup distribution (Bare slab

reactor with no feedback, 4 = 0.02, eo = ).

3.0

S,=5,=200

o  lorger b a =0
2 2
o Optimal refueling
£ -
3 = .
<3 B w-const. retueling
- /
©
5
E 1.0
E ! %? e-const. refueling
o g ..
z b =% 02 V4
. 0.3 X
larger b’
1 1 1 1 1 1 I
00, 04 OS5 06 07 O08 [ei:] 10

1
00 Ol 02 03
Normalized distance from the core center x

Fig. 3. Optimal refueling-rate distribution (Bare
slab reactor with no feedback, A = 0,02, eg = *).

is evident that burnup optimization and power
flattening are contradictory.

As A increases, freedom for control becomes
smaller and in the limit where A =(2/7)°, no
freedom is left and only the cosine distribution
is allowed for power and neutron flux.

The discharge exposure near the core boundary
is very large and goes infinitely as b’ becomes
0. This indicates the necessity of the inclusion
of the limitation on the maximum allowable dis-
charge exposure. Some results are presented in
Table II, where the maximum allowable discharge
exposure eo/e, is set at 1.5 and 1.3. No great
changes can be shown compared with the values
in Table I. The power peaking factor is improved
a little, because the buckling in the outer region

TABLE I

Effect of Reactor Dimension and Burnup Dependence of
Fission Cross Section on Maximum Average Burnup and
Power Peaking Factor in Bare Slab Reactor

$; =0, S, =0, 1.3e,
(Limitation imposed on discharge exposure)

€ = 1.5e,,

e =1b5e eo = 1.3 e

A | v | e, 5 /e, f
0.02 0.0 | 0.9658 1.9417 0.9652 1.9364
0.1 | 0.9647 1.9336 0.9643 1.9280
0.2 | 0.9635 1.9239 0.9633 1.9199
0.3 | 0.9622 1.9131 0.9621 1.9110
0.10 0.0 | 0.7721 1.6643 0.7717 | 1.6628
0.1 | 0.7702 1.6746 0.7701 1.6730
0.2 | 0.7686 1.6838 0.7685 1.6830
0.3 | 0.7670 1.6927 0.7669 1.6925
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becomes constant. The reduction in the maximum
average burnup is negligible, and the considerable
changes in the burnup distribution near the core
periphery do not give a large effect on the average
burnup.

Optimal distribution of power, neutron flux, and
burnup are shown in Fig. 4, corresponding to
those in Figs. 1 and 2. No remarkable changes
can be seen except that the burnup distribution
e(x) is kept its maximum allowable value €, near
the outer edge of the core.

The effect of d' on the optimal power and
refueling-rate distribution is small, on the whole,
although considerable differences of burnup dis-
tribution are shown in the outer region when no
constraint on e(x) is taken into account. It can
be said that the assumption of the equivalence of
power and flux (b'=0) is adequate because the
optimal burnup distributions are very close to
each other and flat in the central region where
the weight of the refueling rate is large and fur-
thermore the difference of burnup distributions
in the outer region becomes much smaller for a
reflected reactor, when the constraint on e(x) is
taken into account.

Qualitatively it can be said that the convexity
of the power distribution in the outer region
greatly reduces the neutron leakage and promotes
the fuel burnup, but the detail of the optimal
power distribution cannot be explained by this
nature alone. If the neutron leakage is related
one-to-one to fuel burnup, it is best to make
(d/dx)¢ at the core edge 0. Direct integration of
Eq. (21) reads

a

[2u-u2-b’-)t(1-b')]¢-Adx

2 d .
w2 $=Co. (34)

S, =S,=00
a = oo

N
o)
]
[
/'
I}
y /o
I/ll
/
’/ /
’ /
BN
’/.—
/7 =
-4
»
—A—
[oY=Y<To
whv=0

/e,

o

Pix), ¢(x) and e(x)/ey

Normalized power, flux and burnup

0.0}

i 1 i 1 ]
[+¥] O.'3 o4 05 06 07 08 09 1.0
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Fig, 4. Optimal power, flux and burnup distribution
(Bare slab reactor with no feedback, A = 0.02, ¢4 =
1.5 ey).

Assume that (d/dx)¢(1) = 0, C, must be 0 because
¢(1) =0, then ¢ = C¢(d/dx)w’ must hold. This
leads to ¢(0) = 0 because (d/dx)u(0) =0 and is
contradictory. Thus, it is proved that (d/dx)¢(1) ¥
0 and there exists the neutron leakage even in the
optimal solution. This fact will be referred to
later in Part E,

Effect of the reactor dimension on the optimal
fuel burnup €/e_ and the corresponding power
peaking factor f is shown in Figs. 5 and 6. The
optimal burnup decreases almost linearly to the
neutron leakage for a given fuel characteristic
or to the reciprocal of burnup reactivity of a
fresh fuel for a given core size. This converges
to 1.0 when A goes to 0. It should be noted that
the variation of f is very sharp for small A con-
trary to the linear dependence of €/e., and the
effect of b' on f is reversed for small and large
A. In the limit of A =0, extrapolation suggests
that f goes up to infinity, but in fact any value
is allowed for fin this limit. This can be verified
in Eq. (21). By setting A =0, =1 and A(1 - b’) +
b' = 1 are obtained and any distribution satisfying
the boundary condition can be a solution to ¢.
The same arguments can be applied to the case
where the constraint on e is taken into account.

B. Comparison with Other Refueling Methods

Two types of other simple refueling methods
are calculated for comparison. These are refuel-
ing schemes where either distribution of burnup
or refueling rate is flat and constant.
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Fig. 5. Effect of reactor dimension on optimal fuel
burnup (Bare slab reactor with no feedback, e, = ).
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Power peaking factor ¢

Qo Ql 0.2 Q3
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Fig. 6. Effect of reactor dimension on power peaking
factor (Bare slab reactor with no feedback, ey = «),

In the former case, material buckling becomes
constant and this results in the cosine distribution
of flux and refueling rate. Criticality condition

requires that
= 2
e 7
o134

In the latter case, ¢ is subjected to the follow-
ing equation:

(35)

2
ati6+(1-Bgg-0 (36)
where B is the eigenvalue and equal to €/ e,

Characteristics of these refuelings are shown
in Figs. 1 to 3, 5 and 6. Flux distribution is
flattest in w-constant refueling, but the average
burnup is smallest of all. This situation can be
understood from the burnup distribution in Fig. 2.
The effect of burnup optimization has an advantage
of 15% in the average discharge exposure over
the conventional w-constant refueling, but the
difference from e -constant refueling is very
small. This means that the simple e-constant
refueling is near optimum and the merit of burn-
up optimization is not so great that in an actual
core design we must always be careful of the
balance among other factors such as the increase
of fuel inventory due to the bad power distribution.

C. Effect of the Doppler and the Xenon Feedback

Succeeding analyses are performed for b'=0,
and no distinction is made between power and flux.

Parameters A and y are fixed at 0.02 and 0.3,
The latter quantity takes the value ranging over
0.2 to 0.4 depending upon fuel enrichment. Ex-
trapolated distance ! is also fixed reasonably at
0.4 (¢=1/1=2.5). Standard values of S, and S:
for ATR are 0.03 and 0.2. Therefore calculations
are performed for 0.0 ~ 0.09 of S, and 0.0 ~ 0.6
of S,.

Results are shown in Table III for e/ew, f, and
€max. The maximum average burnup decreases
with larger values of S, and S;. It should be kept
in mind that to vary the values of $; and S, with-
out changing the value of A, means that the aver-
age burnup is always conserved in a point-reactor
sense by changing either fuel enrichment or core
size. Therefore, the effect of S; and S, on the
maximum average burnup is entirely due to the
effect of power distribution control. Stronger
feedback inevitably promotes better power flatten-
ing and thus decreases the maximum average
burnup. The effect of the Doppler feedback on
the optimal distribution of power, burnup, and
refueling rate is shown in Fig. 7, and the effect
of the xenon feedback is shown in Fig. 8. The
power distribution is here again larger in the
central region than in the outer region, although
both feedbacks considerably contribute to power
flattening.

TABLE HI

Effect of Doppler and Xenon Feedback on Maximum
Average Burnup and Power Peaking Factor in
Reflected Slab Reactor

A =002 a=25 1I=0.4,
(No limitation imposed on discharge exposure)

€y = o

Sy Sy Z/ew f €max
0.00 0.0 0.9810 1.6223 1.3278
0.2 0.9765 1.4581 1.2567
0.4 0.9735 1.3509 1.2151
0.6 0.9714 1.2791 1.1878
0.03 0.0 0.9752 1.4172 1.2321
0.2 0.9727 1.3259 1.1971
0.4 0.9709 1.2636 1.1741
0.6 0.9695 1.2192 1.1574
0.06 0.0 0.9719 1.3026 1.1800
0.2 0.9703 1.2487 1.1607
0.4 0.9690 1.2094 1.1466
0.6 0.9680 1.1798 1.1355
0.09 0.0 0.9697 1.2341 1.1475
0.2 0.9686 1.1996 1.1358
0.4 0.9676 1.1731 1.1264
0.6 0.9669 1.1521 1.1188
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Fig. 7. Effect of Doppler feedback on optimal flux
and burnup distribution (Reflected slab reactor, A =
0.02, o = 2,5, S,=0.2, ' =0).
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Fig. 8. Effect of xenon feedback on optimal flux and

burnup distribution (Reflected slab reactor, A = 0,02,
a =25, §;,=0.03, b'=0).

Existence of these feedbacks reduces the maxi-
mum burnup by about 1% and power peaking by
about 20% in the present ATR. The effect of both
feedbacks on the maximum average burnup and
the power peaking factor is of comparable order,
respectively, although S:is larger by an order of
magnitude than S;. This is because the xenon
feedback saturates with large power, contrary to
the fact that the Doppler feedback is approxi-
mately proportional to power. In Fig. 9, both
effects on g/e., and f are shown in contour lines.
The relation between S; and S.;, which gives the
same burnup individually, is almost linear and
both effects are additive, The constraint on e is
not necessary for /= 0.4.

Effect of Doppler and xenon feedback on

Fig. 9.
maximum average burnup and corresponding power
peaking factor (Reflected slab reactor, A = 0,02, @ = 2.5,
b= 0).

D. Effect of the Reflector Performance

In order to see the effect of the reflector per-
formance, extrapolated distance I is varied from
0 to ». S, and S; are fixed here at 0.03 and 0.2.

Numerical results are shown in Table IV for
8/ €w, f, and €nax. The maximum average burnup
monotonously increases as the reflector perform-
ance is increased and vice versa for the cor-
responding power peaking factor, both approaching
1.0.

The optimal distributions of power, burnup,
and refueling rate are shown in Figs. 10 and 11
for various values of ! (or a). Each of the three
distributions becomes flatter as ! goes to infinity
and flat distribution is obtained regardless of the
magnitude of feedbacks when the condition of the
perfect reflection is satisfied. Burnup maximiza-
tion and power flattening is consistent if, and only
if, this condition is satisfied. The effect of reflec-

TABLE IV

Effect of Reflector Performance on Maximum Average
Burnup and Power Peaking Factor

A =002 S =003 Sz =02 e ==
(No limitation imposed on discharge exposure)
o 14 ?/ew f €max
o 0.00 0.9427 1.6993 L
100.0 0.01 0.9441 1.6652 4.4137
10.0 0.10 0.9550 1.5420 1.6841
5.0 0.20 0.9629 1.4468 1.3795
2.5 0.40 0.9727 1.3259 1.1971
1.6667 0.60 0.9785 1.2541 1.1311
1.0 1.00 0.9849 1.1748 1.0774 |
0.5 2.00 0.9914 1.0971 1.0376
0.2 5.00 0.9963 1.0412 1.0147
0.0 L 1.0000 1.0000 1.0000
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Fig. 10. Effect of reflector performance on optimal
flux and burnup distribution .(Reflected slab reactor,
A=0.02, S;,=0.03, $5=0.2,8'= 0, ¢p= = and 1.5 ew).
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Fig. 11, Effect of reflector performance on optimal
refueling rate distribution (Reflected slab reactor, A =
0.02, §,=0.03, S,=0.2, 8'=0, ep= and 1.5 ew).

tor tends to saturate with ! larger than 1.0. Opti-
mal reflector performance should be decided by
taking into account those conflicting effects: the
reduction of fuel cycle cost by the better fuel
burnup and the increase of capital cost by the
improved reflector performance.

Usual analysis in the problem of minimum
critical mass has been to find the condition for
reactivity to be stationary, and it is equivalent
to maximize the total recovery of reactivity by
suitably rearranging the fuel distribution. On the
other hand, the burnup optimization requires
another condition, namely, the minimization of
the decrease in reactivity by fuel burnup as well
as the maximization of the recovery of reactivity
by refueling, and these are equivalent to the maxi-

mization of the average fuel residence time.
Therefore, the burnup decreases, if the specific
power is forced to be flat in the central region.

Table V shows the effect of the maximum
allowable discharge exposure e,/e., on the maxi-
mum average burnup &/e, and the power peaking
factor f. Here again, the decreases in €/e. and
f are very small and negligible.

TABLE V

Effect of Maximum Allowable Discharge Exposure on
Maximum Average Burnup and Power Peaking Factor

A =0.02, 8 =0.03, Sz =02
a l e,/ efe, f
© 0.0 2.0 0.9424 1.6823
w 0.0 1.5 0.9422 1.6813
i 0.0 1.4 0.9420 1.6802
© 0.0 1.3 0.9418 1.6792
o 0.0 1.2 0.9413 1.6761
10.0 0.1 1.5 0.9550 1.5418
10.0 0.1 1.4 0.9549 1.5411
10.0 0.1 1.3 0.9548 1.5395
10.0 0.1 1.2 0.9545 1.5353

E. Effect of the Power Distribution
on the Average Burnup

In this section the relation between the power
distribution and the average burnup is discussed.
Contour lines of power peaking factor for the
bare slab reactor are shown in Fig. 12 associated
with the power distributions at the typical values
of a, and ag, the coefficients of the 2nd and the

= fin*1.190

Coefficient of the 2nd mode

=508 1)

—o6 0.68

0.16
Coefficlent of the 3rd mode s

Fig. 12. Contour lines of power peaking factor and
flux distribution (Bare slab reactor,a ==, §’= 0),
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3rd mode. It can be seen that considerably wide
range of power distribution can be calculated by
only the three mode expansion. Contour lines of
the average burnup are shown in Figs. 13 and 14
for two values of A: 0.02 and 0.1 in case of no
feedback. It can be understood that the power
distribution that maximizes the average burnup is
very bad for each of A, but still worse distribu-
tion reduces the burnup conversely. As A becomes
larger, the region of negative burnups [¢ + A (d%/
dx®)¢ < 0] becomes wider and in the limit of A =
(2/m)?, only a; = a; = 0 is allowed where the power
distribution is cosine and the average burnup is 0.

The dotted curve in Fig. 13 is a trajectory
connecting the tangent points of each contour lines
of the average burnup and the power peaking fac-
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Fig. 13. Contour lines of average burnup (Bare slab
reactor, 4 =0.02, a ==, §;=5,=0,0, 5’'=0).
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Fig, 14, Contour lines of average burnup (Bare slab
reactor, A =0,10, a ==, S,=5,=0,0, 5'=0),

tor. In another word, this is a group of states
where the average burnup is maximum for the
given power peaking factor or the power peaking
factor is minimum for the given average burnup.
The optimal design point should be decided some-
where on this curve reflecting upon the balance
between the two conflicting factors of the fuel
burnup and the fuel inventory.

The situation is completely the same for a
reflected reactor with xenon and Doppler reac-
tivity feedbacks.

Comparison of modal expansion method with
variational method is made in Figs. 15 and 16
for two cases. Their agreement is fairly good
except for the burnup distribution near the core
edge.

3.0T
Method &/e 1
a — Vaorigtional |0.9661] 1.973
-]
H N Modal 09657 1.938
3 20l Non Optima!|0.9483|2467
| R ===
B¢
x
5% g
- o '\. el
3 5 _/ = elx)/e,
~N oy '~
33 19 S~
i .
z
——— V. Method \
----- M. Method \
=~—-—Non Optima! Sol. B
Q. ] ! Il i L 1 :
o0 O 02 03 04 05 06 07 08 a9 10

Normalized distence from the core center x

Fig. 15, Comparison of modal expansion method with
variational method (A = 0.02, 3’ = 0, S; = S,= 0.0,
Q = oo, go = oo),
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Fig. 16, Comparison of modal expansion method with
variational method (A =0,02, '= 0, §,=0.03, S2= 0.2,
o= 2-5’ eO = °°)-
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This large difference is understandable consider-
ing that the expansion is terminated at the third
term. An example of a nonoptimal solution by
modal expansion method is also shown in Fig. 15
for comparison. The neutron leakage from the
core is smaller in this case than the optimal
solution, but the average burnup is about 2% less.
This supports the argument discussed in Part A.

VII. CONCLUSION

The problem of the burnup optimization of con-
tinuous scattered refueling is presented. A rela-
tion between power distribution and the average
discharge exposure is formulated. The equations
that the optimal flux and burnup distributions are
subjected to are derived by variational method and
numerical solutions are given for one-dimensional
slab reactor, from which the following conclusions
are obtained:

1. The burnup optimization and the power flat-
tening are contradictory in a usual situation and
consistent if, and only if, the reflector perform-
ance is perfect.

2. Optimal power distribution is peaked in the
central—and depleted in the outer region of the
core. This nature does not change even when the
effects of the Doppler and the xenon reactivity
feedback and the reflector are taken into account.

3. Optimal burnup distribution increases mo-
notonously toward the core edge and, if the con-
straint on € is to be violated, it is kept at its upper
limit eo thereafter.

4. As the core size and/or the excess reac-
tivity for fuel burnup decreases, the maximum
average burnup decreases almost linearly to the

neutron leakage calculated by the geometrical
buckling.

5. Even if the average burnup calculated by
the point-reactor model is the same, the maxi-
mum average burnup depends on (a) the burnup
dependence of fission cross section, and (b) the
strength of the Doppler and the xenon feedback.
It becomes smaller for larger values of b', S,
and Se.

6. The effect of the reflector performance on
the maximum average burnup is remarkable, but
tends to saturate with the extrapolated length
larger than 1.0,

7. Optimal refueling has an advantage of more
than 10% in the average burnup over the conven-
tional flat-refueling rate method. However, the
difference from the flat-burnup method is very
small, considering that the serious sacrifice is
paid for the bad power distribution.

This information is useful in planning the
refueling scheme in a reactor employing on-power
refueling. However, in applying these results to
an actual core design, more detailed study on
local power peaking due to the finiteness of the
number of fuel assemblies is necessary.

It is also felt necessary to include a constraint
imposed on the maximum value of power peaking
factor f for a reactor with poor reflector per-
formance, which is left for further extension of
this study.
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