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INTRODUCTION

Recent development of a computer and modern control
theory has made it possible to handle, successfully, the
various problems of optimal controls in nuclear reactors.
Control-rod programming and fuel-management optimiza-
tion are very important problems, since power generating
cost is mainly determined by the hot spot factor and the
fuel burnup. Wall' treated the latter problem and Terney’
the f(grmer, both using the method of dynamic program-
ming.

I WALL and H. FENECH, Nucl. Sci. Eng., 22, 285 (1965).

*W. B. TERNEY and H. FENECH, Trans. Am. Nucl. Soc., 1,
354 (1968).

°R. BELLMAN, Dynamic Programming, Princeton Univ. Press,
Princeton, New Jersey (1957).
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The aim of this note is to try to interpret the coupled
effect of the control-rod programming and the fuel burnup,
geometrically, by the trajectory drawn in the burnup space.
Some conventional rod programmings are discussed and
compared. The problem of optimizing the control-rod pro-
gramming to maximize the fuel burnup with the constraint
imposed on the hot spot factor is formulated and solved for
a typical boiling water reactor (BWR). The method of
Maximum Principle®”® is applied to the two-region bare
reactor; and it has been assumed that the radial and the
axial power distribution are separable within the validity of
one-group diffusion approximation.

THEORY

It is convenient to introduce a mathematical concept,
‘‘burnup space,’” in discussing a relation among control-
rod programming, fuel burnup, and fuel management. A
state of nuclear reactor with K regions is uniquely deter-
mined in one-group approximation by one representative
nuclear property o, averaged over each region, assuming
one quantity is necessary and sufficient enough for this

‘L. S. PONTRYAGIN, V. G. BOLTYANSKI, R. V. GAMKRE-
LIDZE, and E. F. MISHCHENKO, The Mathematical Theory of
Optzmal Processes, Interscience Publishers, New York (1962).

L. D. BERKOVITZ, J. Math. Anal. Appl., 3, 145 (1961).
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purpose. Define Z space or burnup space as a K dimen-
sional space with 0p as its %’th coordinate. Then the
change of a reactor state Z(?) with fuel burnup can be ex-
pressed as a trajectory in this space.

Neglecting the variation of diffusion coefficient with fuel
burnup, the diffusion equation can be written in the simple
dimensionless form

Vo) + Spo(r) =0 , o<|rl<1, (1)
where S, = 0, - C,. Here, 0 and C are non-dimensional
nuclear properties which can be considered as ‘‘material
buckling’’ of fuels and control rods, respectively, but are
related to Eq. (1) only in the form of the difference
S=0-C.

Criticality condition, G(S) = 0, gives a K-1 dimensional
hyper-surface (critical surface) in the K dimensional =
space. This surface divides the space into super- and
sub-critical regions. Control-rod distribution ‘“C’’ can be
expressed as a vector in T space. It must be chosen so
that a vector § = Z - C is on the critical surface. If a point
S is determined somewhere on the critical curve, the flux
&, averaged over each region, can be uniquely determined;
and the flux time increment 6@ for the small time interval
6¢, is just ®6¢, which causes the corresponding nuclear
property change 6Z.

The dynamics of this system is given as

Z = H(©)
do _

§=Z-C
G(S)=0 .

The farther the point Z is located above the critical sur-
face, the more degrees of freedom for operation can be
obtained because the possible operationable region be-
comes wider.

APPLICATION

Some Discussions on the Conventional Rod Pregrammings

For simplicity, a symmetrical bare-slab reactor with
two regions of equal volume is considered with additional
assumptions,

a. equivalence of neutron flux and power

b. linear depletion of nuclear property with fuel burnup.

In this case Eq. (1) reduces to the simplest form

k=1for 0 <x <0.5

S,¢ =0 (3)
Fr B=2for 05<x<1.0 ,

S, =0p- Cy

oy = [H*/(4D)] (vZpep - Za)a

c, =[E/4D] z, .
Criticality condition is given as Eq. (4),

V=S; tanh (0.5 V=S;) = - V= 3; coth(0.5 V=33) , (4)

from which the average flux ratio g = ¢/¢; and the hot spot
factor f = max ¢/av ¢ can be determined uniquely as
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Si[cosh(0.5V=S;) - 1]
S zcosh (0.5 V=52)
VSi
- (1+g) sin(0.5 v3;) (5)
V=51 COth(O.s V= Sl)
(1+g) sin (0.5 V'S,)

g:_

81S0 .

An example of burnup space is shown in Fig. 1.
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Fig. 1. An example of burnup space ,

1. Uniform Control Method

This is a case C, = C,, which is often assumed in burnup
calculations. Operating point § is determined by the inter-
section of a 45° line drawn from the state Z to the critical
curve. The gradient of the trajectory is determined by g
corresponding to §. Repeating this procedure, it finally
reaches the critical curve where C = 0, which means the
reactor has just burnt out. Various trajectories are de-
picted in Fig. 2.

The farther the starting point is located from the
critical curve, the greater is the change of the power shape
during operation. Because non-dimensional X is propor-
tional to the square of core size H, this control method is
not favorable for a large reactor.

2. Constant-Power Ratio Method

This is the case in which operating point § does not
change throughout the reactor life, and the trajectory is a
straight line, usually ending above the critical curve with
one of the control rods withdrawn. Average burnup is
determined by the decrement of the nuclear property 6o
averaged over the whole core, giving a larger burnup for
the smaller value of 0y + 0.
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Fig. 2. Trajectories by uniform control method.

Three groups of trajectories starting from three differ-
ent initial states are illustrated in Fig. 3. The maximum
attainable region is uniquely specified for each of the
initial states, shown as the dotted curves, and each state on
these curves is meaningful in the sense that it gives the
maximum burnup for a given power ratio (hot spot factor).
One final state that gives the maximum burnup is the one
that ends on the critical curve.

3. Consistent-Power Method

It has been shown that a specific value of the power
ratio should be chosen to obtain the maximum burnup with
the above constant-power ratio method. This is a so-called
consistent power distribution. This trajectory can easily
be determined by choosing an end point on the critical
curve, first, and drawing a line in the opposite direction
with the gradient corresponding to it, which is also shown
in Fig. 3.

Whether the power shape is preferable or not, is
entirely determined by the initial state itself, and since
power ratios are not the same for reactors of different
sizes, even with the same nuclear property, some difficulty
may again be encountered in applying this method to a very
large reactor.

4. Point Burnup

In zero-dimensional treatment, distribution of the power
and the nuclear properties within a core are ignored and
only the leakage is taken into account in the form of DB®.

8 2 12 16 o

Fig. 3. Trajectories by constant-power ratio method.

This is the case 01 = 02 throughout the reactor life and the
corresponding trajectory P@Q, is illustrated in Fig. 4. The
assumption of the uniform power distribution means g = 1.
This is a special case of the constant-power ratio method,
and the trajectory must end at @2, where C; = 0.

Other trajectories are also shown in Fig. 4 for com-
parison. No limitation is imposed on the maximum allow-
able hot spot factor. The trajectory PQs that gives
maximum burnup is the boundary curve, itself, which is
explained in the next section. There are not so many
differences in burnup but it is clear that point burnup
usually overestimates fuel exposure.

It can be said for all the methods mentioned above that
the control-rod programming has great influence on power
shape in a large reactor, although there are not so many
differences in the maximum burnup. Therefore, stress
should rather be laid on the control of the power shape.

Optigial Rod Programming

It is possible to define the maximum allowable bounds of
directions of the trajectory at any point in ¥ space using
the full freedom of control, which is shown in Figs. 1 and 4
as the boundary curves. Any points within this region are
controllable. Therefore, it is possible to formulate the
optimization problem of burnup maximization with the
constraint imposed on the maximum allowable value of the
hot spot factor fax.

A typical BWR comparable to Vermont Yankee is con-
sidered. Assuming the separability of the radial- and
axial-power. distribution, the simple one dimensional
treatment, above mentioned, becomes possible. Average
fluxes are normalized so that the volume integral becomes



TECHNICAL NOTES

boundary curve

\ P

boundary
curve

: point burnup

: uniform composition
: uniform control

: consistent power

: burnup maximum

larger

/s

04 burnup
| ! L1 ]
-8 -4 9 4 8 w2 |2 16 o
-4
03
—-8

Fig. 4. Comparison of conventional rod programmings.

1.0. Two types of reactivity feedback are considered in the
axial control rod optimization. One is the feedback from
void and another is the feedback proportional to the power
itself, and the method of Maximum Principle is used as the
optimization technique.

1. Control-Rod Optimization for the
Radial Power Distribution

With the assumption previously made, the problem is

reduced to the maximization of the reactor life,
. .

J g - Jtat . (6)
Cylindrical geometry is used, and both o, - C; and ¢; are
fitted to the second-order polynominals of o, - C; for the
sake of easy computation. The requirement, f(¢) < f,.,,
C.(2) = 0 and Ca(t) = 0, gives the constraint of the form,
Ui(oy, 02) < Cy(t) < Uz(ou, 02) which can generally be written
as R(o1, o2, Cy) = 0.

The dynamics of this system and the necessary condition
for optimality are given as Eqgs. (7) and (8),

2
H=1+a¥;-¥) 25 b,(01 - C))" + 227,
n=0

do, 3H  dv, ol IR
——1 = —__ -1 = o _— —_—
at "oy, d [ao,- +ue aa,.] M

1}

o2 - C2 223 an((n - Cl)"

n=0

oH OR _ _ S
a—cl+u(t)m~0, )R =0, p=0

H[¥, o, C¥(t)] = sup H[¥, o*, C{t)] (8)
H[¥(2)), o(2)), Ci(tp] = 0

‘Il(tf) . do(t,) =0

Optimal trajectories with f,, = 1.40 and a = -34.4 are
given in Fig. 5. In order to burn out with both of the rods
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Fig. 5. Optimal trajectories for burnup maximization (radial
two-region cylindrical reactor).

withdrawn, the initial state must be within the region
C8:18: D, and the corresponding trajectory P,TQ; shows
that the inner region should be depleted as much as
possible, giving the worst hot spot factor fﬂmx at S, until
the outer rod becomes fully withdrawn, and then the power
shape gradually shifts into the inner region, while the
reactor is maintained just critical with the inner rod only.
The degree of depletion and the power shape of EOL (end
of life) depends on the value, fuax, and the initial state
Z. Corresponding optimal rod programming is shown in
Fig. 6. Trajectories within the region DS;E are not
unique, and those within the region AS; C and E S, Bshow
the constant power operation, both giving the worst hot spot
factor f_, at Si and Sz, respectively.

2. Control-Rod Optimization for the

Axial Power Distribution

Taking the two types of feedback mentioned above into
account, S, can be written as

Sp=0p-BP -yU,-Cy . 9)

Doppler and xenon feedbacks are assumed to be propor-
tional to the power. Thus B is the combined reactivity
coefficient of both effects, and y is the void coefficient.
Both of them are appropriately normalized. Void distribu-
tion #(x), therefore, its regionwise averages I—Ik, can be
calculated by using the pre-established relation between
u and quality X which can be obtained by integrating the
flux to the point x as

X = Xig + (Xgy - X)) [0 dx
ulx) = F(X) .

By considering a fictitiouf criticality relation
G'(Si,S3) = 0, where S; = S; + B¢, + yU,, the problem is

(10)
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Fig. 6. Optimal radial control-rod programming and flux ratio
(corresponds to the trajectory P17TQ: in Fig. 5).

reduced to the one with no feedback. Another constraint
added is C,(t) = C,(t) which comes from the fact that
control rods are inserted from the bottom in BWR.

Optimal trajectories with f .. = 1.80, a = -120, B = 50,
and y = 120 are given in Fig. 7. Optimal control within the
region CQ ;S84 Drequires the constant-power ratio operation
at 84, giving the worst hot spot factor f .., followed by the
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Fig. 7. Optimal trajectory for burnup maximization (axial two-
region slab reactor).

TECHNICAL NOTES

300k
C,.Cp C
g
200 ¢, S [Xe
EOL
9
100}-BOL 705
0 P‘ JT | | Q' 0
(6] | t 2

Equivalent to flux time in 103" nvt

Fig. 8. Optimal axial control-rod programming and flux ratio
(corresponds to the trajectory P17Q: in Fig. 7).

uniform control operation. Corresponding optimal rod
programming is shown in Fig. 8. Trajectories within the
region AS1QsC and DS; B show the uniform control and the
constant-power operation respectively, the latter giving the
worst hot spot factor f ... Every trajectory indicates that
the power shape of the upper part should be depleted as
badly as possible within the constraint f <jf . and
C,20C20.

CONCLUSION

By introducing a concept of phase-space analysis into
burnup problems; criticality relation, power and control-
rod distribution, and fuel burnup have been given geometri-
cal meaning. / Some methods conventional rod programming
are discussed, and the optimal rod programming to maxi-
mize the fuel burnup is obtained for a typical BWR. The
result indicates that the burnup optimization and the power
flattening are evidently contradictory, and that the power
shape should be depleted as badly as possible in the inner
and upper region of the core within the constraints imposed
on the hot spot factor and the control-rod distribution.

We should like to note, lastly, that this method can be
directly extended to find the optimal refueling scheme
associated with its optimal rod programming in an equi-
librium cycle. In this case, some relations hold between
the initial and final state, and it is better to formulate a
problem of finding the optimal rod programming that mini-
mizes the maximum hot spot factor during the refueling
interval. Some results have already been obtained with the
more realistic model by using the technique of dynamic
programming.
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