
Decision Tree Construction by Chunkingless
Graph-Based Induction for Graph-Structured Data

Phu Chien Nguyen, Akira Mogi, Kouzou Ohara, Hiroshi Motoda, Takashi Washio

Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

{chien,mogi,ohara,motoda,washio}@ar.sanken.osaka-u.ac.jp

Abstract. A decision tree is an effective means of data classification from which
one can obtain rules that are easy to understand. However, decision trees cannot be
conventionally constructed for data which are not explicitly expressed with attribute-
value pairs such as graph-structured data. We have proposed a novel algorithm,
named Chunkingless Graph-Based Induction (Cl-GBI), for extracting typical pat-
terns from graph-structured data. Cl-GBI is an improved version of Graph-Based
Induction (GBI) which employs stepwise pair expansion (pairwise chunking) to ex-
tract typical patterns from graph-structured data, and can find overlapping patterns
that could not be found by GBI. In this paper, we further propose an algorithm for
constructing a decision tree for graph-structured data using Cl-GBI. This decision
tree construction algorithm, now called Decision Tree Chunkingless Graph-Based In-
duction (DT-ClGBI), can construct a decision tree from graph-structured data while
simultaneously constructing attributes useful for classification using Cl-GBI inter-
nally. Since patterns (subgraphs) extracted by Cl-GBI are considered as attributes of
a graph, and their existence/non-existence are used as attribute values in DT-ClGBI,
DT-ClGBI can be conceived as a tree generator equipped with feature construction
capability. Experiments were conducted showing the usefulness and effectiveness of
the algorithm.

1 Introduction

Over the last few years there has been much research work on data mining in seeking
for better performance. Better performance includes mining from structured data, which
is a new challenge. Since structure is represented by proper relations and a graph can
easily represent relations, knowledge discovery from graph-structured data poses a general
problem for mining from structured data.

On one hand, from this background, discovering frequent patterns of graph-structured
data, i.e., frequent subgraph mining or simply graph mining, has attracted much research
interest in recent years. AGM [7] and a number of other methods (AcGM [8], FSG [10],
gSpan [18], etc.) have been developed for the purpose of enumerating all frequent subgraphs
of a graph database. However, the computation time increases exponentially with input
graph size and minimum support. This is because the kernel of frequent subgraph mining
is subgraph isomorphism, which is known to be NP-complete [4].

To avoid the complex subgraph isomorphism problem, heuristic algorithms, which are
not guaranteed to find the complete set of frequent subgraphs, such as SUBDUE [3] and
GBI (Graph-Based Induction) [19] have also been proposed. They tend to find an ex-
tremely small number of patterns based on greedy search. GBI extracts typical patterns



2 Nguyen, et al.

from graph-structured data by recursively chunking two adjoining nodes. Later an improved
version called B-GBI (Beam-wise Graph-Based Induction) [12] adopting the beam search
was proposed to increase the search space, thus extracting more discriminative patterns
while keeping the computational complexity within a tolerant level. Since the search in
GBI is greedy and no backtracking is made, which patterns are extracted by GBI depends
on which pairs are selected for chunking. This means that a pattern that overlaps each
other can no longer been extracted, and thus there can be many patterns which are not
extracted by GBI. B-GBI can help alleviate this problem, but cannot solve it completely
because the chunking process is still involved.

To overcome the problem of overlapping patterns imposed on GBI and B-GBI, we
have proposed an algorithm to extract typical patterns from graph-structured data, called
Chunkingless Graph-Based Induction (Cl-GBI)[15]. Although Cl-GBI is an improved ver-
sion of B-GBI, it does not employ the pair-wise chunking strategy. Instead, the most fre-
quent pairs are regarded as new nodes and given new node labels in the subsequent steps
but none of them is chunked. In other words, they are used as pseudo nodes, thus allowing
extraction of overlapping subgraphs. It was experimentally shown that Cl-GBI can extract
more typical substructures than B-GBI [15].

On the other hand, a majority of methods widely used for data mining are for data that
do not have structure and that are represented by attribute-value pairs. Decision tree [16,
17], and induction rules [13, 2] relate attribute values to target classes. Association rules
often used in data mining also uses this attribute-value pair representation. These methods
can induce rules such that they are easy to understand. However, the attribute-value pair
representation is not suitable to represent a more general data structure such as graph-
structured data. This means that most of useful methods in data mining are not directly
applicable to graph-structured data.

In the domain of Inductive Logic Programming (ILP) [14], there are two systems which
can construct a decision tree from structured data: Tilde [1] and S-CART [9]. Although
they were developed independently, they share the same theoretical framework and can
construct a first order logical decision tree, which is a binary tree where each node in the
tree is associated with either a literal or a conjunction of literals. Namely each node can
represent a relational or structured data. They can utilize a substructure represented by
one or more literals to generate a new node in a decision tree, but available structures are
limited to those that are predefined.

In this paper, we propose an algorithm to construct a decision tree for graph struc-
tured data using Cl-GBI. This decision tree construction algorithm, called Decision Tree
Chunkingless Graph-Based Induction (DT-ClGBI), is a revised version of our previous al-
gorithm called Decision Tree Graph-Based Induction (DT-GBI) [5, 6], and can construct
a decision tree for graph-structured data while simultaneously constructing substructures
used as attributes for classification task by means of Cl-GBI instead of B-GBI adopted
in DT-GBI. In this context, substructures means subgraphs or patterns that appear in a
given graph database. Patterns extracted by Cl-GBI are regarded as attributes of graphs
and their existence/non-existence is used as attribute values. Namely, in contrast to Tilde
and S-CART, DT-ClGBI does not require the user to define available substructures in
advance. Since attributes (features) are constructed while a classifier is being constructed,
DT-ClGBI can be conceived as a method for feature construction. Using synthetic datasets,
we experimentally show DT-ClGBI can construct decision trees from graph-structured data
that achieve reasonably good predictive accuracy.



Decision Tree Construction by Cl-GBI 3

A

B D

C

A

B D

(a) (b)

Fig. 1. Missing patterns due to chunking order

D

A B

C D

A B

C

B

(a) (b)

Fig. 2. A pattern is found in one input graph
but not in the other

This paper is organized as follows: Section 2 briefly describes the framework of GBI,
the problem caused by the nature of chunking in GBI, and the summary of the Cl-GBI
algorithm. Section 3 explains DT-ClGBI and its working mechanism of how a decision tree
is constructed using a simple example. The performance of DT-ClGBI is experimentally
evaluated on some synthetic datasets and reported in Section 4. Finally, Section 5 concludes
the paper.

2 Graph-Based Induction Revisited

2.1 Graph-Based Induction (GBI)

GBI contracts the graph by chunking the most frequent patterns into single nodes. However,
this process is not executed in one step, rather it follows a pairwise chunking (stepwise pair
expansion) strategy. In the original GBI, an assumption is made that typical patterns
represent some concepts/substructures and “typicality” is characterized by the pattern’s
frequency or the value of some evaluation function of its frequency. We can use statistical
indices as an evaluation function, such as frequency itself, Information Gain [16], Gain
Ratio [17], all of which are based on frequency. It is of interest to note that GBI was
improved later to use two criteria, one for frequency measure for chunking and the other
for finding discriminative patterns after chunking.

It is possible to extract typical patterns of various sizes by repeating this chunking
process. Note that the search is greedy and no backtracking is allowed. This means that
in enumerating pairs no pattern which has been chunked into one node is restored to the
original pattern. Because of this, all the “typical patterns” that exist in the input graph
are not necessarily extracted and patterns that partially overlap are never generated, i.e.,
any two patterns are either disjoint or perfect inclusion. The problem of extracting all the
isomorphic subgraphs is known to be NP-complete. Thus, GBI aims at extracting only
meaningful typical patterns of a certain size. Its objective is not finding all the typical
patterns nor finding all the frequent patterns.

2.2 Problem Caused by Chunking in GBI

Since the search in GBI is greedy and no backtracking is made, which patterns (subgraphs)
are extracted by GBI depends on which pair is selected for chunking. There can be many
patterns which are not extracted by GBI. In Fig. 1, if the pair B–C is selected for chunking
beforehand, there is no way to extract the substructure A–B–D even if it is a typical pattern.



4 Nguyen, et al.

Moreover, any subgraph that GBI can find is along the way in the chunking process. Thus,
it happens that a pattern found in one input graph is unable to be found in the other input
graph even if it does exist in the graph. An example is shown in Fig. 2, where even if the
pair A – B is selected for chunking and the substructure D – A – B – C exists in the input
graphs, we may not find that substructure because an unexpected pair A – B is chunked
(see Fig. 2(b)). This causes a serious problem in counting the frequency of a pattern.

An improved version of GBI, called Beam-wise Graph-Based Induction (B-GBI), adopt-
ing a beam search was proposed to relax the problem of overlapping subgraphs mentioned
above [12]. Though the beam search helps increase the search space, thus resulting in more
discriminative patterns extracted by B-GBI than GBI, it cannot help solve this problem
completely because the chunking process is still involved.

We have introduced an algorithm, named Chunkingless Graph-Based Induction (Cl-
GBI) [15], to cope with the problem of overlapping subgraphs imposed on both GBI and
B-GBI. Cl-GBI employs a “chunkingless chunking” strategy, where frequent pairs are never
chunked but used as pseudo nodes in the subsequent steps, thus allowing extraction of
overlapping subgraphs. As in B-GBI, the Cl-GBI approach can handle both directed and
undirected graphs as well as both general and induced subgraphs. It can also extract typical
patterns in either a single large graph or a graph database.

2.3 Chunkingless Graph-Based Induction (Cl-GBI)

Given a graph database, two natural numbers b (beam width) and Ne, and a frequency
threshold θ, the new “chunkingless chunking” strategy repeats the following three steps Ne

times, each of which is referred to as a level. Ne is thus the number of levels.

Step 1 Extract all the pairs consisting of two connected nodes in the graphs, register their
positions using node id (identifier) sets, and count their frequencies. From the 2nd level
on, extract all the pairs consisting of two connected nodes with at least one node being
a new pseudo node.

Step 2 Select the b most frequent pairs from among the pairs extracted at Step 1 (from
the 2nd level on, from among the unselected pairs in the previous levels and the newly
extracted pairs). Each of the b selected pairs is registered as a new node. If either or both
nodes of the selected pair are not original nodes but pseudo nodes, they are restored to
the original patterns before registration.

Step 3 Assign a new label to each pair selected at Step 2 but do not rewrite the graphs.
Go back to Step 1.

All the pairs extracted at Step 1 in all the levels (i.e. level 1 to level Ne), including
those that are not used as pseudo nodes, are ranked based on a typicality criterion using
a discriminative function such as Information Gain or Gain Ratio. Those pairs that have
frequency count below θ are eliminated, which means that there are three parameters b,
Ne, θ to control the search in Cl-GBI.

GBI assigns a new label to each newly chunked pair. Because it recursively chunks pairs,
it happens that the new pairs that have different labels happen to be the same pattern as
illustrated in Fig. 3. B-GBI identifies if different pairs represent the same pattern using
canonical label [4]. Two pairs are regarded identical only when their labels are the same.
Unlike B-GBI, to count the number of occurrences of a pattern in a graph transaction, not
only the canonical labeling but also the node id set is employed in Cl-GBI. If both the



Decision Tree Construction by Cl-GBI 5

A

A

A A

A

A

Fig. 3. Two different pairs representing identi-
cal patterns

B

A

B B

A

B

N N2N1

(a) (b)

Fig. 4. Example of frequency counting

1
3

4
5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

1
3

4
5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

1
3

4
5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

4
5

6

7 8

5

1

1
7

2

2

9

3

3 41
3

2

Class A
Class A

Class B
Class C

Graph data

class A class B

class C class A class B class C

Y N

1
32

4
6

6 3
2

4

3
2

4

3
6

1

4
Y N Y N

Y N Y N

Decision tree

Fig. 5. Decision tree for classifying graph-structured data

canonical label and the node id set are identical for two subgraphs, we regard that they
are the same and count once. Without information on the node id set, it happens that the
substructure N → B in Fig. 4(a) is incorrectly counted twice as shown in Fig. 4(b) due to
the presence of two pseudo nodes N1 and N2.

The output of Cl-GBI algorithm is a set of ranked typical patterns, each of which comes
together with the positions of every occurrence of the pattern in each transaction of the
graph database (given by the node id sets) as well as the number of occurrences.

3 Decision Tree Chunkingless Graph-Based Induction
(DT-ClGBI)

3.1 Decision Tree for Graph-Structured Data

As mentioned in Section 1, the attribute-value pair representation is not suitable for graph-
structured data, although both attributes and their values are essential for a classification
or prediction task because a class is related to some attribute values in most cases. In a
decision tree, each node and a branch connecting the node to its child node correspond to an
attribute and one of its attribute values, respectively. Thus, to formulate the construction
of a decision tree for graph-structured data, we define attributes and their values as follows:

– attribute: a pattern/subgraph in graph-structured data,
– value of an attribute: existence/non-existence of the pattern in each graph.

Since the value of an attribute is either yes (the pattern corresponding to the attribute
exists in the graph) or no (the pattern does not exist), the resulting decision tree is rep-
resented as a binary tree. Namely, data (graphs) are divided into two groups: one consists
of graphs with the pattern, and the other consists of graphs without it. Fig. 5 illustrates



6 Nguyen, et al.

DT-ClGBI(D)
INPUT
D: a graph database
begin

Create a node DT for D
if termination condition reached

return DT
else

P := Cl-GBI(D) (with b, Ne, and θ specified)
Select the most discriminative pattern p from P
Divide D into Dy (with p) and Dn (without p)
for Di := Dy, Dn

DTi := DT-ClGBI(Di)
Augment DT by attaching DTi as its child along yes/no branch

return DT
end

Fig. 6. Algorithm of DT-ClGBI

the decision tree constructed based on this approach. One remaining question is how to
determine patterns which are used as attributes for graph-structured data. Our approach
to this question is described in the next subsection.

3.2 Feature Construction by Cl-GBI

The algorithm we propose here, called Decision Tree Chunkingless Graph-Based Induction
(DT-ClGBI), utilizes Cl-GBI to extract patterns from graph-structured data and uses them
as attributes for classification task, whereas our previous algorithm, Decision Tree Graph-
Based Induction (DT-GBI), adopted B-GBI to extract patterns. Namely, DT-ClGBI invokes
Cl-GBI at each node of a decision tree, and selects the most discriminative pattern from
those which were extracted by Cl-GBI. Then the data (graphs) are divided into two groups,
i.e., one with the pattern and the other without the pattern as described above. For each
group, the same process is recursively applied until the group contains graphs of a single
class like the ordinary decision tree construction method such as C4.5 [17]. The algorithm
of DT-ClGBI is summarized in Fig. 6.

In DT-ClGBI, each of the parameters of Cl-GBI, b, Ne, and θ, can be set to different
values at different nodes in a decision tree. All patterns extracted at a node are inherited to
its descendant nodes to prevent a pattern that has already been extracted in the node from
being extracted again in its descendants. This means that, as the construction of a decision
tree progresses, the number of patterns to be considered at a node progressively increases,
and the size of a pattern newly extracted can be larger than existing patterns. Thus,
although initial patterns at the start of search consist of two nodes and the link between
them, attributes useful for classification task can be gradually grown up into larger patterns
(subgraphs) by applying Cl-GBI recursively. In this sense, DT-ClGBI can be conceived
as a method for feature construction, since features, i.e., attributes (patterns) useful for
classification task, are constructed during the application of DT-ClGBI.

However, recursive partitioning of data until each subset in the partition contains data
of a single class often results in overfitting to the training data and thus degrades the



Decision Tree Construction by Cl-GBI 7

(a�a)=e

(a�d)=f

Y N
a�a

class Ca�a�d
NY

class Bclass A

a�a

a a d

d b c

a a c

b d a

b b

ad a

b b a

c

Graph1(class A)
c

a a d

d b c

a a c

b d a

b b

ad a

b b a

c

c

a a d

d b c a a c

b d ab b

ad a

c

e

e

ef

f

e

ee

f

Graph2(class B)

Graph3(class A) Graph4(class C) Graph3(class A)

Graph1(class A) Graph2(class B)

Graph4(class C)

Graph1(class A)

Graph3(class A)

Graph2(class B)

Fig. 7. Example of decision tree construction by DT-ClGBI

1
0
0

0

0
1
1

0

0
1
0

0

1
0
0

0

0
0
1

1

0
0
1

1

0
0
1

0

1
1
1

0

0
1
1

0

1
1
0

1

1
1
1

0

1 (class A)
2 (class B)
3 (class A)

4 (class C)

Graph a�a a�b a�c a�d b�a b�b b�c b�d d�a d�b d�c

Fig. 8. Attribute-value pairs at the first step

predictive accuracy of resulting decision trees. To avoid overfitting, and improve predictive
accuracy, DT-ClGBI incorporates “pessimistic pruning” used in C4.5 [17] that prunes an
overfitted tree based on the confidence interval for binomial distribution. This pruning is a
postprocess that follows the algorithm in Fig. 6.

Note that the criterion for selecting a pair that becomes a pseudo node in Cl-GBI and
the criterion for selecting a discriminative pattern in DT-ClGBI can be different. In the
following experiments, frequency of a pair is used as the former criterion, and information
gain of a pattern is used as the latter criterion1.

3.3 Working Example of DT-ClGBI

Suppose DT-ClGBI receives a set of 4 graphs in the upper left-hand side of Fig. 7. Both the
beam width b and the number of levels Ne of Cl-GBI are set to 1 at every node of a decision
tree to simplify the working of DT-ClGBI in this example, and the frequency threshold θ
is set to 0%. Cl-GBI called inside of DT-ClGBI enumerates all the pairs in these graphs
and extracts 11 kinds of pairs from the data. These pairs are: a→a, a→b, a→c, a→d, b→a,
b→b, b→c, b→d, d→a, d→b, d→c. The existence/non-existence of the pairs in each graph
is converted into the ordinary table representation of attribute-value pairs, as shown in
Fig. 8. For instance, graph 1, graph 2 and graph 3 have the pair a→a but graph 4 does not
have it. This is shown in the first column in Fig. 8.

Then Cl-GBI selects the most frequent pair “a→a”, assigns new label “e” to it to
generate a pseudo node as shown in the upper right-hand side of Fig. 7, and terminates. It
1 We did not use information gain ratio because DT-ClGBI constructs a binary tree.



8 Nguyen, et al.

1
0
0

0
1
1

0
1
0

1
0
0

0
0
1

0
0
1

0
0
1

1
1
1

0
1
1

1
1
0

1 (class A)
2 (class B)
3 (class A)

Graph a�b a�c a�d b�a b�b b�c b�d d�a d�b d�c

0
1

0

0
0

1

1
0

1

0
1

1

1
1

0

e�b e�c e�d b�e d�e

Fig. 9. Attribute-value pairs at the second step

is worth noting that Cl-GBI can calculate frequency of a pattern based on either the number
of graphs that include the pattern (document frequency) or the total number of occurrences
of the pattern in all the graphs (total frequency). In this example, document frequency is
employed. Next, DT-ClGBI selects the discriminative pattern, i.e., the pattern (pair) with
the highest evaluation for classification (i.e., information gain) from the enumerated pairs,
and uses it to divide the data into two groups at the root node. In this example, the pair
“a→a” is selected. As a result, the input data is divided into two groups: one consisting of
graph 1, graph 2, and graph 3, and the other consisting of only graph 4.

The above process is recursively applied at each node to grow up the decision tree while
constructing attributes (patterns) useful for classification task at the same time. In this
example, since the former group consists of graphs belonging to different classes, again Cl-
GBI is applied to it, while the latter group is no longer divided because it contains a single
graph of class C. For the former group, pairs in graph 1, graph 2 and graph 3 are enumerated
and the attribute-value table is updated as shown in Fig. 9. Note that the pairs included
in the table for the parent node are inherited. In this case, the pair “a→d” is selected by
Cl-GBI as the most frequent pair to be a pseudo node “f”, while the pair “e→d” is selected
as the most discriminative pattern by DT-ClGBI. Consequently, the graphs are separated
into two partitions, each of which contains graphs of a single class as shown in the lower
left-hand side of Fig. 7. The constructed decision tree is shown in the lower right-hand side
of Fig. 7.

3.4 Classification using the Constructed Decision Tree

Unseen new graph data must be classified once the decision tree has been constructed.
Here again, the problem of subgraph isomorphism arises to test if the input graph contains
the pattern (subgraph) specified in the test node of the tree. To alleviate this problem, we
utilize Cl-GBI again. Theoretically, if the test pattern actually exists in the input graph,
Cl-GBI can find it by setting the beam width b and the number of levels Ne large enough
and by setting the frequency threshold to 0. However, note that nodes and links that never
appear in the test pattern are never used to form the test pattern in Cl-GBI. Therefore, we
can remove such nodes and links from the input graph before applying Cl-GBI to reduce
its running time. This approach is summarized as follows:

Step 1 Remove nodes and links that never appear in the test pattern from the input graph.
Step 2 Apply Cl-GBI to the resulting input graph setting the parameters b and Ne large

enough, while setting the parameter θ to 0.



Decision Tree Construction by Cl-GBI 9

A B

C D

f

c

h

a

a

E

E

D

C

D

c

b a

i

ee
d

D

A

B

C

E

g

i

c

d

b

b

g
C D

D C

c

b

j

h

i

d

Fig. 10. Example of 4 basic subgraphs

Step 3 Test if one of the canonical labels of extracted patterns with the same size as the
test pattern is equal to the canonical label of the test pattern.

In general, Step 1 results in a small graph and Cl-GBI can run very quickly without any
constraints on N and b. However, if we need to set these constraints, we may not be able
to obtain the correct answer because we don’t know how large these parameters should be.
In that sense, this procedure can be regarded as an approximate solution to the subgraph
isomorphism problem.

4 Experimental Evaluation of DT-ClGBI

4.1 Data Preparation

The primary performance of the proposing method was examined using the graph-structured
transactions that were artificially generated in a random manner. The number of nodes in a
graph, is determined by the gaussian distribution having the average of T and the standard
deviation of 1. The links are attached randomly with the probability of p. The node labels
and link labels are randomly determined with equal probability. The number of node labels
and the number of link labels are denoted as LV and LE , respectively. The total number
of transactions is kept fixed as GD.

A dataset of directed graphs which has GD = 300, T = 30, LV = 5, LE = 10, p = 20%
was generated and is represented as GD300T30LV 5LE10p20. This dataset was equally
divided into two classes, namely “active” and “inactive”. Similarly, L basic patterns of
connected subgraphs having the average size of I, where L = 4 and I = 4, were generated.
The number of basic patterns to be embedded in a transaction Gt of the class “active”, Nt,
was randomly selected in the range between 1 and L. Each of these Nt basic patterns was in
turn chosen from the set of L basic patterns by equal probability, i.e. 1/L, and overlaid on
that transaction. This means that each transaction of the class “active” includes from 1 to
L basic subgraphs, some of them may happen to be the same. We also check if there is any
basic subgraph included in a transaction of the class “inactive” by Cl-GBI as described in
Section 3.4. If there is, the involved node and link labels are changed in a way that the basic
pattern no longer exists in the transaction. In other words, basic subgraphs are those which
discriminate the two classes. Fig. 10 shows the 4 basic subgraphs which are embedded in
the transactions of the class “active”.

In addition, another dataset which has the same parameters as the aforementioned
dataset except T = 40 was created in the same manner. We represent this dataset as
GD300T40LV 5LE10p20.



10 Nguyen, et al.

Table 1. Comparisons of different settings for DT-ClGBI

Setting 1 Setting 2
Dataset Training error Test error Average of Training error Test error Average of

tree sizes tree sizes

GD300T30LV 5LE10p20 0.22% 1.33% 17.2 0% 0% 9
GD300T40LV 5LE10p20 0.37% 5% 18 0.15% 3.33% 12.8

4.2 Experimental Results

Two experiments were conducted on both of the synthetic datasets to evaluate the per-
formance of DT-ClGBI. The classification task here is to classify two classes “active” and
“inactive” using DT-ClGBI by a single run of 10-fold cross validation (CV). The final pre-
diction error rate was evaluated by the average of 10 estimates of the prediction error (a
total of 10 decision trees).

In the first experiment, our goal is to confirm that the most discriminative patterns can
be extracted by Cl-GBI not only at the root node, but also at each internal node itself. To
this end, we compared the predictive accuracy and the tree size obtained by two different
settings for DT-ClGBI described as follows. In the first setting, i.e. setting 1, a decision
tree is constructed by applying Cl-GBI at the root node only, with Ne = 2. At the other
nodes, what we need is to simply recalculate information gain for those patterns that have
already been discovered at the root node. On the other hand, Cl-GBI is invoked at the
root node with Ne = 2 and other nodes with Ne = 1 in the second setting, i.e. setting 2.
In addition, the total number of levels of Cl-GBI in the second setting is limited to 6 to
keep the computation time at a tolerant level. Whenever the total number of levels reaches
this limitation, Cl-GBI is no longer used for extracting patterns. Instead, only the existing
patterns are employed for constructing the decision tree thereafter. Note that beam width
is set to 5 in both settings.

Results of the first experiment are summarized in Table 1, and it is shown that the
second setting obtains higher predictive accuracy. Moreover, we observe that the decision
trees constructed by the second setting have smaller sizes in most of 10 CVs for both
datasets. The result reveals that the invoking of Cl-GBI at internal nodes is needed to
improve the predictive accuracy of DT-ClGBI, as well as to reduce the tree size. Intuitively,
the search space is increased by applying Cl-GBI at the internal nodes in addition to the
root node. As a result, more discriminative patterns are discovered at these nodes, and some
of the extracted patterns have not been previously discovered. In other words, applying Cl-
GBI at only the root node cannot help enumerate all the necessary patterns. For example,
in the decision tree constructed for the first CV of the dataset GD300T30LV 5LE10p20 by
the second setting, the classifying pattern for tree node 3 was found at the root node, while
the classifying pattern for tree node 7 was found at tree node 3. If Ne is set large enough,
the necessary pattern should be able to be found at the root node. This pattern, if found
at the root node, should give smaller information gain at the root node but Cl-GBI retains
this and passes down to the lower node. The question is how to find this pattern where it
is needed without running Cl-GBI using all the dataset.

The second experiment focused on the comparisons between DT-ClGBI and DT-GBI
[5, 6], also in terms of the predictive accuracy and the tree size. Here beam width is also set
to 5 in both cases. For DT-GBI, the number of levels of B-GBI at any node of a decision



Decision Tree Construction by Cl-GBI 11

Table 2. Comparisons of DT-ClGBI and DT-GBI

DT-GBI DT-ClGBI
Dataset Training error Test error Average of Training error Test error Average of

tree sizes tree sizes

GD300T30LV 5LE10p20 1.41% 7.67% 24 0% 0% 9
GD300T40LV 5LE10p20 3.15% 7.67% 18.2 0% 0.67% 9

tree is kept fixed as 4. It should be noted that, whenever being invoked for constructing
a decision tree by DT-GBI, B-GBI starts extracting typical patterns from the beginning,
i.e. no inheritance is employed, because the graphs that pass down to the yes branch have
been chunked by the test pattern. On the other hand, the number of levels of Cl-GBI is
4 at the root node and 1 at other nodes of a decision tree in the case of DT-ClGBI. In
addition, the total number of levels of Cl-GBI is limited to 8, which means that the number
of levels performed by the feature construction tool in DT-ClGBI is much less than that in
DT-GBI. As mentioned earlier, this limitation helps reduce the computation time required
for constructing the decision trees by DT-ClGBI, however, at the expenses of the decrease
of the search space in Cl-GBI.

Results of the second experiment are reported in Table 2. It is shown that DT-ClGBI
achieves lower prediction error while evaluating on both datasets. We also observe that,
for each dataset, the decision trees constructed by DT-ClGBI have smaller sizes in most
of 10 CVs. The higher predictive accuracy of DT-ClGBI and the simpler decision trees
obtained by this method can be explained by the improvement of Cl-GBI over B-GBI, and
the inheritance of previously extracted patterns at an internal node (in a decision tree)
from its predecessors. It is known that Cl-GBI resolves the problem of overlapping patterns
imposed on B-GBI, thus resulting in more typical patterns extracted by Cl-GBI.

Additionally, it should be noted that the size of the embedded graphs in these two
datasets is 4 or 5. Setting Ne = 2 as in the first experiment means that the maximum size
of patterns we can get at the root node is 4. Considering the beam width, it is unlikely that
the embedded patterns are found at the root node. Even Ne = 4 as in the second experiment,
these basic patterns cannot be found. However, the substructures of the embedded graphs
are discriminative enough.

Our ongoing work includes examining the proposing DT-ClGBI using real world graph-
structured data, and applying the method to some application domain such as the hepatitis
datasets provided by Chiba University[6].

5 Conclusions

In this paper, we have proposed an algorithm called DT-ClGBI, which can construct a
decision tree for graph-structured data using Cl-GBI. In DT-ClGBI, substructures, or pat-
terns useful for classification task are constructed on the fly by means of Cl-GBI during the
construction process of a decision tree. The experimental results against synthetic datasets
showed that decision trees constructed by DT-ClGBI achieve good predictive accuracy for
graph-structured data. The good predictive accuracy of DT-ClGBI is mainly attributed to
the fact that Cl-GBI can give the correct number of occurrences of a pattern as well as



12 Nguyen, et al.

its positions in each transaction of the graph database, which are very useful for the algo-
rithm such as DT-ClGBI that needs correct counting. Also, the inheritance of previously
extracted patterns at an internal node from its predecessors is shown helpful.

For future work, we plan to employ some heuristics to speed up the Cl-GBI algorithm
to extract larger typical subgraphs at an early stage in the search process. This could also
improve the performance of DT-ClGBI. It is also necessary to experimentally compare
DT-ClGBI with other methods, especially with ILP based ones such as TILDE and S-
CART. Moreover, experiments on real datasets should be conducted and the application of
DT-ClGBI should also be investigated.

References

1. Blockeel, H., De Raedt, L. 1998. Top-down Induction of First-Order Logical Decision Tree,
Artificial Intelligence, 101: 285–297.

2. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. 1989. The CN2 Induction Algorithm,
Machine Learning, 3: 261–283.

3. Cook, D. J. and Holder, L. B. 1994. Substructure Discovery Using Minimum Description
Length and Background Knowledge, Artificial Intelligence Ressearch, 1: 231–255.

4. Fortin, S. 1996. The Graph Isomorphism Problem, Technical Report TR96-20, Department of
Computer Science, University of Alberta, Edmonton, Canada.

5. Geamsakul, W., Matsuda, T., Yoshida, T., Motoda, M., and Washio, T. 2003. Classifier Con-
struction by Graph-Based Induction for Graph-Structured Data, In Proc. PAKDD 2003, pp.
52–62.

6. Geamsakul, W., Yoshida, T., Ohara, K., Motoda, H., Washio, T., Takabayashi, K., Yokoi, H.
2005. Constructing a Decision Tree for Graph-Structured Data and Its Applications. Funda-
menta Informaticae, 66(1-2): 131–160.

7. Inokuchi, A., Washio, T., and Motoda, H. 2003. Complete Mining of Frequent Patterns from
Graphs: Mining Graph Data, Machine Learning, 50(3): 321–354.

8. Inokuchi, A., Washio, T., Nishimura, K., and Motoda, H. 2002. A Fast Algorithm for Mining
Frequent Connected Subgraphs, IBM Research Report RT0448, Tokyo Research Laboratory.

9. Kramer, S., Windmer, G. 2001. Inducing Classification and Regression Trees in First Order
Logic, Relational Data Mining, pp. 140–159.

10. Kuramochi, M. and Karypis, G. 2004. An Efficient Algorithm for Discovering Frequent Sub-
graphs, IEEE Trans. Knowledge and Data Engineering, 16(9): 1038-1051.

11. Kuramochi, M. and Karypis, G. 2004. GREW–A Scalable Frequent Subgraph Discovery Al-
gorithm, In Proc. ICDM 2004, pp. 439–442.

12. Matsuda, T., Motoda, H., Yoshida, T., and Washio, T. 2002. Mining Patterns from Structured
Data by Beam-wise Graph-Based Induction, In Proc. DS 2002, pp. 422–429.

13. Michalski, R.S. 1990. Learning Flexible Concepts: Fundamental Ideas and a Method Based
on Two-Tiered Representation, In Machine Learning: An Artificial Intelligence Approach, 3:
63–102.

14. Muggleton, S., de Raedt, L. 1994. Inductive Logic Programming: Theory and Methods, Journal
of Logic Programming, 19(20): 629–679.

15. Nguyen, P.C., Ohara, K., Motoda, H., and Washio, T. 2005. Cl-GBI: A Novel Approach for
Extracting Typical Patterns from Graph-Structured Data, In Proc. PAKDD 2005, pp. 639–649.

16. Quinlan, J.R. 1986. Induction of Decision Trees, Machine Learning, 1: 81–106.
17. Quinlan, J.R. 1993. C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers.
18. Yan, X. and Han, J. 2002. gSpan: Graph-Based Structure Pattern Mining, In Proc. ICDM

2002, pp. 721–724.
19. Yoshida, K. and Motoda, M. 1995. CLIP: Concept Learning from Inference Patterns, Artificial

Intelligence, 75(1): 63–92.


