
Multi-Structure Information Retrieval Method Based on Transformation Invariance 1

Multi-Structure Information Retrieval Method
Based on Transformation Invariance

Fuminori ADACHI, Takashi WASHIO,
Atsushi FUJIMOTO and Hiroshi MOTODA

ISIR, Osaka University
8-1 Mihogaoka, Ibarakishi, Osaka 567-0047 Japan

{adachi, washio, fujimoto, motoda}@ar.sanken.osaka-u.ac.jp
Hidemitsu HANAFUSA

INSS, Inc.
64 Sata, Mihamacho, Mikatagun, Fukui 919-1205 Japan

hanafusa@inss.co.jp

Received 11 April 2003

Abstract The needs of efficient and flexible information retrieval on
multi-structural data stored in database and network are significantly
growing. Especially, its flexibility plays one of the key roles to acquire
relevant information desired by users in retrieval process. However, most
of the existing approaches are dedicated to a single content and data struc-
ture respectively, e.g., relational database and natural text. In this work,
we propose “Multi-Structure Information Retrieval”(MSIR) approach ap-
plicable to various types of contents and data structures by adapting a
small part of the approach to data structures. The power of this ap-
proach comes from the use of the invariant feature information obtained
from byte patterns in the files through some mathematical transforma-
tion. The experimental evaluation of the proposed approach for both
artificial and real data indicates its high feasibility.

Keywords Information retrieval, Flexibility, Mathematical transfor-
mation, Invariance, Similarity.



2 Fuminori ADACHI et al.

§1 Introduction
The recent progress of information technology increases the variety of

the data structure in addition to their amount accumulated in the database
and the network. The flexible environment of information retrieval on multi-
structured data stored in the computers is crucial to acquire relevant informa-
tion for users. However, the state of the art remains within the retrieval for each
specific data structure, e.g., natural text, relational data and sequential data 1)

2) 3). Accordingly, the retrieval on mixed structured data such as multimedia
data containing documents, pictures and sounds requires the combined use of
the retrieval mechanisms where each is dedicated to a specific data type 4) 5).
Because of this nature, the current approach increases the cost and the work of
the development and the maintenance of the retrieval system. To alleviate this
difficulty, we propose a novel retrieval approach called “multi-Structure Informa-
tion Retrieval”(MSIR) to use the most basic nature of the data representation.
All real world data are represented by the sequence or the array, i.e. the orders
of bits or bytes. We assumed that the data having similar content are usually
represented by simiar sequences within a specific coding method. Thus the re-
trieval among files having entirely different coding or format is out of scope of
this study. Moreover, this assumption does not hold under some coding schemes
such as encrypted codings and some compressed codings. Encrypted codings are
also out of scope of this work because the function of the encryption is to block
this type of data retrieval. However, the most of the compressed codings can be
decomprssed to some format to meet with this assumption. According to this
assumption, a flexible retrieval method is established if a set of data which is
mutually similar on this basic representation can be appropriately searched.

The main issue on the development is the definition of the similarity in
the low level representation which appropriately corresponds to the similarity on
the content level. Though the perfect correspondence may be hardly obtained,
the following points are considered to enhance the feasibility of our proposal.
(1) Commonly seen byte portions in approximately similar length are searched.
(2) The judgment of the similarity is not significantly affected by the location of
the patterns in the byte portions.
(3) The judgment of the similarity is not significantly affected by the noise and
the slight difference in the byte portions.
(4) The mutual similarity of the entire files is evaluated by the frequency of the
similar byte portions shared among the files.



Multi-Structure Information Retrieval Method Based on Transformation Invariance 3

(5) The similar byte portions shared by most of the given files are removed to
evaluate the similarity among the files as they do not characterize the specific
similarity.

The last point addresses the matter that the excessively common pat-
terns do not provide any key information to sufficiently reduce the scope of the
retrieval. This has been also addressed in the idea of TFIDF (Term Frequency
Inversed Document Frequency) in the information retrieval 6) and the idea of
“Stop List” 7). In this work, a flexible method to retrieve similar files in terms
of the byte portions is studied. A certain mathematical transform on the byte
portions is used by treating each byte as a numeral. This can extract invari-
ant characters of the portions against many distortions which do not affect the
similarity in contents level, and the relevant files can be retrieved under the
aforementioned consideration. The basic performance of the proposed approach
is evaluated through experiments under artificial data, realistic word processor
data and real bitmap image data.

§2 Principle of Similarity Judgment and Its
Preliminary Study

The aforementioned point (1) is easily achieved by the direct comparison
among byte portions. However, the point (2) requires a type of comparison
among portions that is invariant against the shit of the portions. If the direct pair
wise comparison between all sub-portions contained in two files is applied, the
computational complexity is O(n12n22) where n1 and n2 are the numbers of bytes
in the two files. To avoid this high complexity in practical sense, our approach
applies a mathematical transformation to the byte portion in each file. The
transformation has the property of “shift invariance” where the value obtained
through the transformation is hardly changed against the shift of the portion
structure. To address the point (3), the result of the transformation should be
quite robust against the noise and slight difference in the portion. Moreover,
the transformation must be conducted within practically tractable time. One
of the representative mathematical transformation to suffice these requirements
is the Fast Fourier Transform (FFT) 8). It requires only computation time of
O(n log n) in theory where the length of the byte sequence is n, and a number of
methods for practical implementation are available. In addition, the resultant
coefficients can be compressed into 50% of the original if only their absolute
values are retained. However, when the transformation is applied to very large



4 Fuminori ADACHI et al.

portions or sub-portions contained in a large file where each part of the file
indicates a specific meaning, the characters of the local byte portion reflecting
a meaning in the contents level will be mixed with the characters of the other
local part. Accordingly, we partition the byte portion in a file into an appropriate
length, and apply the FFT to each part to derive a feature vector consisting of
the absolute values of the Fourier coefficients.

The feasibility and the characteristics of the proposed method have been
assessed through numerical experiments on pieces of byte sequences in advance
before the further study and implementation are proceeded. In the experiment,
the length of each byte sequence is chosen to be 8 bytes because it is the length of
byte sequences to represent a word in various languages in standard. A number
128 is subtracted from the value of each byte to eliminate the bias of the FFT
coefficient of order 0, while each byte takes an integer value in the range of [0,
255]. First, we shift the byte sequences to the left randomly, and the bytes out
of the left edge are relocated in the right in the same order. Thus, the byte
sequences are shifted in circular manner. Because of the mathematical nature
of FFT, i.e., shift invariance, we observed that this did not cause any change on
the absolute value of the transformed coefficients. Next, the effect of the random
replacement of some bytes is evaluated. Table 1 exemplifies the effects of the
replacement in the basic sequence “26dy10mo” on the absolute coefficients. The
distance in the table represents the Hamming distance, i.e., the number of the
different bytes from the original. The absolute coefficients from f5 to f8 are
omitted due to the symmetry of Fourier Transform. In general, only n/2 + 1
coefficients for an even number n and (n+1)/2 for an odd number n are retained.
The numbers of the absolute coefficients are quite similar within the Hamming
distance 2 in many cases. However, they can be different to some extent even
in the case of distance 2 such as “(LF)5dy10mo” where the value of “(LF)” is
quite different from that of “2”. Accordingly, some counter measure to absorb
this type of change or noise in the similarity judgment must be introduced.

The method taken to enhance the robustness against the replacement
noises in this work is the discretization of the absolute value of the FFT coef-
ficients. If the absolute coefficients are discretized in an appropriate manner,
the slight differences of the coefficient values do not affect the similarity judg-
ment of the byte sequence. An important issue is the criterion to define the
threshold values for the discretization. A reasonable and efficient way to de-
fine the thresholds of the absolute coefficients for arbitrary sequences is that



Multi-Structure Information Retrieval Method Based on Transformation Invariance 5

Table 1 Effect of byte replacements on FFT coefficients.

Sequences f0 f1 f2 f3 f4 distance

26dy10mo 144 112.9 345.6 103.8 108 0

20dy10mo 150 112.4 350.7 103.9 102 1

19dy10mo 142 113.8 343.6 103.1 112 2

(LF)5dy10mo 174 89.9 361.2 136.2 156 2

(LF)5dy11mo 178 86.6 364.4 137.3 152 3

(LF)5dy09mo 180 88.6 365.8 136.8 152 4

the absolute coefficient obtained from a randomly chosen sequence falls into an
interval under an identical probability. To define the thresholds of the absolute
coefficient in every order for a certain length of byte sequences, i.e., the length
n, we calculated the absolute coefficient value distribution for all 28n byte se-
quences for every order. This computation is not tractable in straight manner,
however in practice, this is quite easily achieved by using the symmetric and
invariant characteristics of the absolute values of the FFT coefficients on various
sequence patterns. For example, the absolute coefficients are invariant against
the aforementioned circular shift. They are also invariant against the reverse of
the portion in the byte sequence and the reverse of the positive and negative
signs of all byte numbers in the sequence. Furthermore, the absolute coefficients
of the third order are invariant against the reordering of the units consisting of
subsequent two bytes in the sequence. For example, their values do not change
among “26dy10mo” and “dy26mo10”. By combining these characteristics of the
absolute FFT coefficients, the space of the sequences consisting of 8 bytes to be
assessed for the derivation of the exact absolute coefficient value distributions
is significantly reduced, and the distributions are obtained in a few hours com-
putation. Upon the obtained absolute coefficient distribution for every order,
(m − 1) threshold values for every order are defined where every interval cov-
ers the identical probability 1/m in the appearance of a coefficient. When the
number of m is small, the character of each byte sequence does not become sig-
nificant due to the rough discretization. We tested various number m, and chose
the value m = 16 empirically which is sufficient to characterize the similarity
of the byte sequence in generic means. Through this process, the information
of a FFT coefficient for every order is compressed into 16 labels. In summary,
a feature vector consisting of n/2 + 1 or (n + 1)/2 elements for an even or odd



6 Fuminori ADACHI et al.

number n is derived where each element is one of the 16 labels.
Moreover, the moving window of a fixed byte portion is applied to gen-

erate a set of feature vectors for a file. Fig. 1 is for the case of a byte sequence
in a file. First, a feature vector of the byte sequence of a length n(= 8) at the
beginning of the file is calculated. Then another feature vector of the sequence
having the same length n but shifted with one byte toward the end of the file
is calculated. This procedure is repeated until the feature vector of the last
sequence at the end of the file is obtained. This approach also enhances the
robustness of the similarity judgment among files. For example, the feature vec-
tors of the first 8 bytes windows of “26dy10mo02yr” and “(LF)5dy10mo02yr”
are quite different as shown in Table 1. However, the feature vectors for the
8 bytes windows shifted by one byte, i.e., “6dy10mn0” and “5dy10mn0”, are
very similar to each other. Furthermore, the vectors for the windows shifted by
two bytes become identical because both byte sequences are “dy10mo02”. This
moving window approach enhances the performance of the frequency counting
of the parts having similar patterns among files. Thus, the point (4) mentioned
in the first section is addressed where the mutual similarity of the entire files
is evaluated by the frequency of the similar byte sequences shared among the
files. To address the point (5), the feature vectors which are obtained from a
given set of files more than a certain high frequency threshold are registered as
“Unusable Vectors”, and such unusable vectors are not used in the stage of the
file retrieval. In case of the other type of byte orders such as two dimensional
array order, similar moving window approach ia taken as described later.

Fig. 1 FFT on moving windows



Multi-Structure Information Retrieval Method Based on Transformation Invariance 7

§3 Fast Retrieval Algorithm
The data structure to store the feature vectors for given vast number of

files must be well organized to perform the efficient file retrieval based on the
similarity of the byte portions. The approach taken in this work is the “inversed
file indexing” method which is popular and known to be the most efficient in
terms of retrieval time 3), 12). Through the procedure described in the former sec-
tion, the correspondence of each file to a set of feature vectors is derived. Based
on this information, the inversed indexing from each feature vector to a set of
files which produced the vector is derived. The data containing this inversed
indexing information is called “inversed indexing data”. By using the inversed
correspondence in this data, all files containing patterns which are similar with
a given feature vector are enumerated efficiently. Figure. 2 outlines our retrieval
approach MSIR. The path represented by solid arrows is the aforementioned
preprocessing. The “Data Extraction” part applies the moving window extrac-
tion of byte portions to each file in a given set of data files. The extracted byte
portions are transformed by FFT in the “Mathematical Transformation” part.
The “Vector Discretization” part discretizes the resulted coefficients by the given
thresholds, and the feature vectors are generated. The “Vector Summarization”
part produces the correspondence data from each file to feature vectors while
removing the redundant feature vectors among the vectors derived from each
file. Finally, the “Inversed Indexing” part derives the inverse correspondence
data from each feature vector to files together with the “Unusable Vectors List”.

The file retrieval is conducted along the path represented by the dashed
arrows. A key file for the retrieval is given to the “Data Extraction” part,
and the identical information processing from “Data Extraction” to “Vector
Summarization” with the former paragraph derives the set of the feature vectors
of the key file. Subsequently, the unusable vectors are removed from the set in
the “Unusable Vectors Removal” part. Finally, the files whose feature vector sets
have large intersection with the feature vector set of the key file are enumerated
based on the inverse correspondence data in the “Vector Matching” part. The
size of the intersection is counted using the inverse corresponding data in this
part. Then to focus the retrieval result on only files having strong relevance with
the key file, a relevance measure of each file to the given keyfile is caluculated
based on a function of the size of the intersection and the number of feature
vectors generated from the key file and each retrieved file. This measure can be
changed depending on the objectives and the conditions of the retrieval. If the



8 Fuminori ADACHI et al.

Fig. 2 Outline of retrieval system

evaluation value is less than a given threshold value, the file is not retained in
the retrieval result. Moreover, the result is sorted in the order of the relevance
measure.

§4 Basic Performance Evaluation
A C program based on the proposed method has been developed, and its

basic performance was evaluated by using artificial data sets. The specification
of the computer used in this experiment is CPU: AMD Athlon 1400MHz, RAM:
PC2100 DDRSDRAM 384MB, HDD: Seagate ST340824A and OS: LASER5
Linux 7.1. 500 files having the normal distribution in their sizes were generated.
Their average size is 30KB and the standard deviation 10KB. Once the size of a
file is determined, the byte data in the file were generated by using the uniform
random distribution. In the next stage, 5 specific sequences in the length of



Multi-Structure Information Retrieval Method Based on Transformation Invariance 9

16 bytes, which were labeled as No.1,· · · , 5, were embedded in each file. They
were embedded not to mutually overlap, and moreover the nonexistence of the
sequences accidentally identical with these 5 sequences in the random generation
of the byte data is verified upon this data preparation. The moving window size
of 8 bytes, the 16 level of discretization of the FFT coefficients for each order
and 70% for the threshold frequency to determine the unusable vector are set
for the generation of the feature vectors along the solid line in Figure. 2.

Table 2 Retrieval by key file No.1

Sequence Threshold Retrieved Correct Precision Recall Comp.
No. Files Files Time

1.0 250 250 1.00 1.00
1 0.25 261 250 0.96 1.00 0.6sec

0.125 344 250 0.75 1.00

Table 3 Retrieval by shifted key file No.1

(a) Result by proposed method using FFT

Sequence Threshold Retrieved Correct Precision Recall Comp.
No. Files Files Time

0.66 2 2 1.00 0.01
0.55 37 37 1.00 0.15
0.44 250 250 1.00 1.00

1 0.7sec
0.33 252 250 0.99 1.00
0.22 266 250 0.94 1.00
0.11 326 250 0.77 1.00

(b) Result by conventional keyword matching

Sequence Threshold Retrieved Correct Precision Recall Comp.
No. Files Files Time

1 - 0 0 0.00 0.00 0.5sec

The performance indices used in the experiment is the precision and the
recall. In ideal situation, both values are close to 1. However, they have a trade
off relation in general. Table 2 shows the performance of the retrieval by the
key file consisting of the sequence No.1. The thresholds in the table are the



10 Fuminori ADACHI et al.

aforementioned threshold values on relevance measure to evaluate the similarity
of the files in the “Vector Matching” part in Fig. 2. Under the condition of
the high threshold values, only highly similar files are retained. The sequence
No.1 is embedded in the 250 files among 500 test files. This is reflected in the
result of the threshold equal to 1.0, i.e., the key file consisting of the sequence
No.1 is certainly included in these files as a subsequence. In the lower value of
the threshold, some files containing similar subsequence with the sequence No.1
are also retrieved. Thus, the precision decreases. In this regard, the proposed
approach has a characteristic to retrieve a specified key pattern similarly to the
conventional keyword retrieval when the threshold is high.

Table 3 (a) shows the result of the retrieval where the key sequence No.1
is shifted randomly in circular manner. Because the lengths of the embedded
sequences and the key sequence are 16 bytes, but that of the moving window for
FFT is only 8 bytes, the FFT coefficients do not remain identical even under
its shift invariance characteristics. Accordingly, the feature vectors of the key
sequence do not match with these of the embedded sequences completely. How-
ever, the coefficients of FFT reflects their partial similarity to some extent, and
thus the excellent combination of the values of the precision and the recall is
obtained under the frequency threshold values around [0.2, 0.4]. Similar results
were obtained in case of the other key sequences. In contrast, when we applied
the conventional retrieval approach based on the direct matching without using
the FFT to derive the feature vectors, the values of the precision and the recall
were zero as shown in Table 3 (b). Table 4 represents the results for noisy data.
2 bytes are randomly chosen in each original 16 bytes sequence, and they are
replaced by random numbers. Similarly to the former experiment, the excellent
combination of the precision and the recall was obtained for most of the key se-
quences under the threshold value of [0.3, 0.5]. If the distortion on the embedded
sequences by the replacement becomes larger, i.e., the increase of the number
of bytes to be replaced, the values of precision and the recall decreases. But,
the sufficient robustness of the proposed retrieval approach has been confirmed
under the random replacement of 3 or 4 bytes in the 16 bytes sequence through
the experiments.

The computation time to finish a retrieval for a given key file is around
1 second due to the efficient inverse indexing approach. Thus, the proposed
method shows practical efficiency for this size of problems. In short summary,
the basic function of our approach subsumes the function of the conventional



Multi-Structure Information Retrieval Method Based on Transformation Invariance 11

Table 4 Retrieval on Noisy Data

Sequence Threshold Retrieved Correct Precision Recall Comp.
No. Files Files Time

0.33 3 2 0.67 0.01
1 0.22 27 18 0.67 0.07 0.9sec

0.11 159 92 0.59 0.37

0.77 1 1 1.00 0.01
0.66 15 15 1.00 0.04

2 0.55 125 125 1.00 1.00 1.2sec
0.22 140 125 0.89 1.00
0.11 205 125 0.62 1.00

0.625 1 1 1.00 0.01
0.5 3 3 1.00 0.03

3 0.375 31 28 0.90 0.28 1.0sec
0.25 120 100 0.83 1.00

0.125 229 100 0.44 1.00

0.375 1 1 1.00 0.02
4 0.25 38 14 0.37 0.28 1.1sec

0.125 178 50 0.28 1.00

0.66 3 3 1.00 0.12
0.55 25 25 1.00 1.00

5 1.2sec
0.22 34 25 0.74 1.00
0.11 127 25 0.20 1.00

retrieval approach, because the retrieval equivalent to the conventional one is
performed by setting the frequency threshold value of the feature vector match-
ing at a high value as shown in Table 2. Our approach can retrieve the files
having a certain generic similarity.

§5 Evaluation on Real-World Text Documents
For the evaluation of the practicality of the proposed approach, we mea-

sured the performance of the conventional text retrieval by using a dataset con-
sisting of plain text documents. The dataset includes 2253 files of text doc-
uments written in Japanese, and each file contains sentences on the topics of
atomic power generation. Every file in the dataset has several keywords labeled



12 Fuminori ADACHI et al.

by human experts to represent the contents. Some files do not contain keywords
which is labeled to the files. After applying the preprocessing to generate the
inverse indexing data, 3 keywords are selected from the set of labeled keywords
randomly for the evaluation as shown in the second column of Table 5. Each
keyword is given to the retrieval system and processed along the dashed line in
Fig. 1. Because of the nature of the mathematical transformation, i.e., FFT, of
the original byte sequence in the files under the moving window approach, our
retrieval system enumerates the files containing not only the original keyword
given to the system but also similar string of the keyword. For example, the
file containing “fuel”, “nuclear”, “nuclear fuel” and “fuel cycle” can be retrieved
under the keyword of “nuclear fuel cycle”. Accordingly, the performance of the
retrieval system has been evaluated in terms of not only the number of the given
keyword contained in the retrieved file but also the number of the partial strings
of the keyword. The files containing the partial strings of the original keyword
is considered to have some relevance. The partial strings shown in the third
column in Table 5 are used in the evaluation in addition to the original keyword
for the 3 retrieval cases from No.1 to No.3.

Table 5 Keywords and its partial strings

No. Keywords Partial strings

1 nuclear fuel cycle nuclear fuel, cycle, fuel

2 fault-tree analysis fault-tree, analysis

dynamical characteristic dynamical characteristic3 of nuclear reactor nuclear reactor

Table 6 (a), (b) and (c) show the retrieval results for the several fre-
quency threshold values for the feature vector matching in the retrieval. In
these tables, the first column from left shows the frequency threshold value, and
the second column shows the retrieved file ID. Because the retrieval result of
the lower threshold value subsumes that of the higher threshold value, only the
additionally retrieved file IDs are indicated in the lower threshold case. The
rest of the columns except for last one show whether the strings written in the
top row are contained in each retrieved file. If it is contained, the value is “1”
otherwise “0”. The last column is the total number of “1”. If the value is larger,
the file is considered to be more related to the keyword.

Table 7 shows the retrieval result on the same keyword by well-known



Multi-Structure Information Retrieval Method Based on Transformation Invariance 13

text retrieval system of NAMAZU12) where the keyword matching is used. The
results of NAMAZU include some files which contain no keyword. This is be-
cause NAMAZU divides keyword into morphologies by famous morphological
analysis system, ChaSen13), then calculates frequency in which each morphology
appears in every file. So the results of NAMAZU include files in which mor-
phologies appear many times but no keywords do. Our approach also retrieve
files that contain strings that are partial and/or similar to the original keyword.
For example, in the result of “fault-tree analysis”, the file 1636 appears in the
retrieval result even when the frequency threshold of relevance measure is set to
1.0 while the file does not contain keyword. We checked the file 1636, and found
a misspelled word “falt-tree analysis” in the file. In this manner, our approach
can find files that include similar keyword including misspelling in addition to
files including right keywords without having any dictionary. Moreover in the
case of the keyword “nuclear fuel cycle”, the file numbered 675 which does not
include any keywords or partial string is retrieved when the threshold of retrieval
is set to 0.7. We found a phrase “fuel cycling” in this file. Since the phrase “fuel
cycling” approximately means “nuclear fuel cycle”, the retrieval result supposed
to include files containing similar meaning words. In case of NAMAZU, the
files numbered 224 and 183 are retrieved on the keyword “nuclear fuel cycle”
which do not appear in our result of the Table 6(a). However our system could
retrieve them when the threshold of retrieval is set to 0.7. In addition, on the
“fault-tree analysis”, no file is retrieved by NAMAZU since “fault-tree” is not
registered in word dictionary of ChaSen. So we registered “fault-tree” for the
dictionary and experimented again. The second column in Table7 is the result
of experiment after registration of “fault-tree”. Our approach, in contrast, could
retrieve files containing keyword without knowing the word since it does not use
the concept of words. It only compares the invariant freature vector generated
from both keyword/keyfile and stocked files. The performance of our approach
is approximately equivalent or superior in a certain condition to the performance
of NAMAZU which is a retrieval system specialized to text file format.

Moreover, our approach was compared with the conventional signature
files approach10). Signature files approach is as follows. First, sequences having
fixed a length which is set by user are extracted from sequence in a file by
moving window. Then a set of values which are calculated from each extracted
sequence by a function is generated. For exmple, let an original file F be a byte
sequence {10, 14, 25, 36, 7, 1}, the extraction length 2 bytes and the function



14 Fuminori ADACHI et al.

Table 6 Results of Retrieval

(a) Result on “nuclear fuel cycle”

Threshold Retrieved nuclear cycle fuel nuclear Total
file ID fuel cycle fuel cycle
945 1 1 1 1 4
913 1 1 1 1 4
885 1 1 1 1 4
819 1 1 1 1 4
805 1 1 1 1 4
6 1 1 1 1 4

682 1 1 1 1 4
530 1 1 1 1 4
385 1 1 1 1 4

1.0 372 1 1 1 1 4
29 1 1 1 1 4
257 1 1 1 1 4
1732 1 1 1 1 4
1541 1 1 1 1 4
1488 1 1 1 1 4
1407 1 1 1 1 4
1348 1 1 1 1 4
1312 1 1 1 1 4
1194 1 1 1 1 4
1189 1 1 1 1 4
1148 1 1 1 1 4
922 1 1 1 0 3

0.8
122 0 1 1 0 2

675 0 0 0 0 0
0.7 ...

Only a protion of thr retrieved files are indicated for the threshold 0.7 due to space limiation.

(b) Result on “fault-tree analysis”

Threshold Retrieved file ID fault-tree analysis fault-tree analysis Total
72 1 1 1 3

1.0 268 1 1 1 3
1636 0 1 0 1
1640 0 1 0 1

0.7 1594 0 1 0 1
1392 0 0 0 0

(c) Result on “dynamical characteristic of nuclear reactor”

Retrieved nuclear dynamical dynamical
Threshold file ID reactor charac- characteristic Total

teristic of nuclear reactor
894 1 1 1 3

1.0 1587 1 1 1 3
1051 1 1 1 3

0.8 1216 1 0 0 1



Multi-Structure Information Retrieval Method Based on Transformation Invariance 15

Table 7 Retrieval result of NAMAZU

nuclear fault tree dynamical characteristic
fuel cycle analysis of nuclear reactor

885 72 1051
1407 268 1587
183∗ 894
805
372

6
945
257

224∗
922∗

29
1541
1194
682

1312
1189
1148
1488
1348
913
530
385

1732
∗ Contain no keyword

“(a1 +a2) mod 8”. By applying this function to the 2 bytes moving window, the
set {0, 7, 5, 3, 0} is obtained. Subsequently, the redundant elements are gathered
into one element in the set. Then new set becomes {0, 7, 5, 3}. Let this set
be A. All elements in A are less than 8 since each element is modulation of
8. A bit vector called “signature” whose length is 8 bits is generated from
A in the following manner. The x-th bit in the signature is set to “1” if x

is in A, othewise “0”. In case of this A, the signature becomes “10010101”.
This signature represents some features of the original file F, and the signature
is labeled to the file F. On retrieval, the signature is calculated by the same
function from the keyword or key file, and the signature is compared with the
signatures of files accumurated in the computer breforehand. Files are listed in
retrieval when all non-zero digits in key file’s signature are also non-zero in the
files’ signatures. In short, when the logical product between the signature of the
keyword or key file and the signature of the file is identical to the original key
word’s or key file’s signature, the file is retrieved. The signature files approach
used on evaluation uses the 1536 bits signature whose values are caluculated by



16 Fuminori ADACHI et al.

the hashjpw function11). Table 8 shows that signature files approach retrieves
only the files which contain the keyword. Because small change in the sequence
causes large change on the hash value. The signature becomes significantly is
different from that of the original sequence. Accordingly, the signature files
method is very sensitive to the miss-spell or synonyms.

Table 8 Retrieval result of signature files approach

nuclear fault tree dynamical characteristic
fuel cycle analysis of nuclear reactor

1148 72 1051
1189 268 1587
1194 894
1312
1348
1407
1488
1541
1732
257
29

372
385
530

6
682
805
819
885
913
945

In short summary, the performance of our approach is approximately
equivalent or superior under a certain conditions to the performance of NA-
MAZU which is a retrieval system specialized to text file format and the perfor-
mance of the signature files approach which is another representative retrieval
approach.

§6 Evaluation on Semi-Real-World
Word Processor Files

The practical performance of our proposed method is also evaluated
by using real world data. The data is a set of 2253 word processor files having
Microsoft Word doc format. The average size of a file is around 20KB. Each con-
tains a document consisting of almost 600 characters coded in a specific binary
format. Accordingly, the conventional text keyword retrieval is not applicable



Multi-Structure Information Retrieval Method Based on Transformation Invariance 17

to this retrieval problem. To evaluate the ability to retrieve similar content files
within the proposed approach, the raw Microsoft Word data are numbered from
No.1 to No. 2253, and they are processed to have stronger similarity in terms
of contents when the number labels of the files are closer. Initially, a seed file is
selected from the original set of 2253 word processor files and numbered as No.1′.
Then a sequence consisting of 16 charactors is extracted from the content of a file
which is randomly selected from the left 2252 files. The sequence overwrites the
sequence having length of 16 charactors selected from the content of file No.1′,
and the overwritten sequence is stored as file No.2′. Subsequently, a sequence
consisting of 16 charactors is extracted from the content of a file selected from
the left 2251 files. A sequence consisting of 16 charactors selected from file No.2′

is overwritten by the sequence, and so on. This process is repeated until the set
of files becomes empty to gradually and randomly change the original seed file,
and newly generate similar files. As a result of this process, 2253 files in total
are generated where the files having close number labels have similarity.

Table 9 Retrieval on semi-real world data

KeyFile KeyFile KeyFile KeyFile KeyFile
No.100 No.500 No.1000 No.1500 No.2000

100 500 1000 1500 2000
102 676 789 1499 2001
99 664 979 1494 1999

104 508 648 1498 1995
96 554 999 1502 2158
97 503 967 1497 2223

105 579 997 1496 1868
106 561 856 1503 2019
103 543 852 1504 1989
98 485 543 1506 1877

Std. Std. Std. Std. Std.
17.0 142.4 176.4 190.0 108.2

χ2 = χ2 = χ2 = χ2 = χ2 =
1352 316 256 1765 385

0.642sec 0.466sec 0.422sec 0.844sec 0.370sec

Based on this semi-real world data, the inversed indexing data and un-



18 Fuminori ADACHI et al.

usable vector list are generated in the preprocessing stage of our approach. Sub-
sequently, 5 key files arbitrary chosen from the semi-real world files are used
to retrieve their similar files. Each key file is given to the retrieval system and
processed along the dashed line in Fig. 2. Table 9 show the result of the top 10
retrieved files in the order of the similarity judged in the feature vector match-
ing the 5 key files. The result clearly shows that the files having close number
with the key file are retrieved. Some files are not retrieved even when their
numbers are closer to the number of the given key file. This is because the
character sequence for the replacement can be quite different from the original
overwritten sequence as numerical series data, and this replacement significantly
affects the coefficients of FFT in the feature vectors. This effect has been al-
ready discussed in the example of the feature vectors of “26dy10mo02yr” and
“(LF)5dy10mo02yr” in Table 1. Though the moving window approach alleviates
this type of distortion in the judgment of similarity, the judgment is infected to
some extent even by this approach when the character sequence for the replace-
ment is largely different from the overwritten sequence. The third row from the
bottom in the table indicates the standard deviation of the label numbers of the
top 50 retrieved files, and the second row from the bottom shows the chi-squared
value on the difference of the standard deviation from that of the label numbers
randomly sampled. In this case, the chi-squared value follows the distribution
whose degree of freedom is 49. If the chi-squared value is more than 94.6, the
probability that the files retrieved are randomly sampled is less than 0.0001.
In this regard, the distributions of the retrieval results are sufficiently skewed
around the key files in the sense of the similarity. The bottom row represents
the computation time to retrieve the 50 files for each key file. The 50 similar
files are retrieved within a second among the 2253 doc files for each key file.
The difference of the time for retrieval is due to the difference of the number of
the feature vectors which are not unusable for each key file. For example, the
number of the usable feature vector of the key file No.1500 is 1474 while it is
only 593 for the key file No. 2000. The retrieval time is almost linear with the
number of the effective feature vectors of each key file.

§7 Evaluation on Real-World MS Word
Documents

In addition to the ordinary ascii text data and semi-real MS Word data,
we evaluated the performance of our approach by using a dataset consisting of



Multi-Structure Information Retrieval Method Based on Transformation Invariance 19

MS Word documents which is coded into binary data. The dataset includes
2253 files of MS Word documents that are converted from text files used in
the previous section 5. The inversed indexing data and unusable vector list
are generated from this dataset. Then 3 files are chosen as a key file from the
dataset, and these key files are given to the retrieval system and processed along
the dashed line in Fig. 2. To evaluate the performance of the retrieval, some
representative keywords characterizing the contents are selected from each key
file, and the frequency of appearance of keywords are counted in each retrieved
file. Table 10 shows the average frequency of the keyword occurrence per file
and the average ratio of the keyword occurrence normalized by the number of
letters included in each retrieved file. Table 11 shows the average frequency and
the average ratio with the same definition for randomly chosen 20 files from the
dataset without using our retrieval approach. From these tables, the performance
of our approach is clearly higher than that of random file sampling. Accordingly,
our approach is also capable of retrieving similar files on binary MS word files.

Table 10 Retrieval performance of our approach

File No. 200 1000 2000

Ave. frequency of keywords 3.00 2.04 2.55

Ave. ratio of letters 0.013 0.022 0.024

Table 11 Result of random sampling

File No. 200 1000 2000

Ave. frequency of keywords 0.40 1.15 0.5

Ave. ratio of letters 0.002 0.008 0.005

An important point through section 4 to 7 is that our identical retrieval
approach is used for each of these tasks. Nevertheless, our approach shows
good performance in each evaluation. This shows that proposed approach has
flexibility to retrieve data which constraints the contents represented by byte
sequences.

§8 Evaluation on Complex Structued Data
In this section, we propose a slight extention of our approach to com-

plex structured data format. Our previous approach considers data which have



20 Fuminori ADACHI et al.

similar orders to be relevant each other. Then by taking into account invariant
feature based on mathematical transformation from order, files in dataset which
is similar to keyfile is retrieved. For complex structured data, the “Data Extrac-
tion” part in Fig. 2 is needed to be modified for each data type. For example,
we explain the case of bitmap image files. An image file has grid structure where
each point of the grid is related to information of colors. Humans recognize the
similarity among images arranging similar colors in similar order. Moreover,
humans recognize the similarity among images including many similar partial
blocks. Because an image has two dementional structure, “Data Extraction”
and “Mathematical Transformation” in Fig.2 must transform two dimensional
byte data, and convert the two dimensional coefficients into one dimensional
feature vectors. To generate feature vectors, all color information is divided into
two components, i.e., intensity and color difference, and two dimensional mov-
ing window which has a fixed size area sucn as 8 × 8 or 16 × 16 is applied to
intensity component of the image in “Data Extraction” part in Fig.2. The color
difference component is not used bucause of the charasteristic of human’s vision
that is more sensitive to intensity than color difference. Two dimensional Fourier
transformation is applied to every area and the two dimensional Fourier coef-
ficients are obtained for every area. High vertical and/or horizontal frequency
components are removed from coefficients since human’s vision is insensitive to
fine change in the image. Then a zigzag-scan on a coefficients matrix shown in
Fig.3 to retain low order coefficients. The feature vectors are generated by quan-
tization of coefficient vectors. After generating feature vector, the procedure in
Fig.2 identical with the case of one dimensional order is applied. This approach
needs minimum change to deal with complex structured data.

Fig. 3 Zigzag-scan

This extended approach is applied to the dataset consisting of 101 bitmap



Multi-Structure Information Retrieval Method Based on Transformation Invariance 21

files whose sizes lie between 5 KB and 8MB. The moving window size is set as
8 × 8 pixels. The FFT coefficients are discretized into 12 levels for each order.
The threshold frequency to determine the unusable vector are set to 70% for the
generation of the feature vectors. The specification of the computer used in this
experiment is CPU: AMD AthlonXP 1900+, RAM: PC2100 DDRSDRAM 2GB,
HDD: Quantum Atlas10KIII and OS: RedHat Linux 7.2.

The evaluation function used on judgement of similarlity is:

F (i) =
f(i)√
x · y(i)

(1)

where f(i) is the number of matched feature vector of the i-th file in the data
with those obtained from the key file. x is the number of feature vector generated
from the key file, and y(i) is the number of feature vector generated from the
i-th file. This evaluation function is chosen after a number of empirical analysis.
The details of the analysis can be seen in the literature9).

The evaluation was repeated several times by changing the key file. We
show an example of the result. The key file given to the system is shown in Fig.4.
The top 5 files retrieved by our MSIR approach are shown in Fig.5. Futhermore
the 50th through 54th files of the retrieval result are shown in Fig.6

According to this result, all files in the top 5 are a kind of diagram which
is same with the key file. Their appearance is similar to the key file. In contrast,
files shown in Fig.6 are photographs or illustrations whose appearances are not
as similar as those of the top 5 files. Our approach can obtain good result on
complex structured data such as image file by changing a small part of the MSIR
into suitable one.



22 Fuminori ADACHI et al.

Fig. 4 Image of key file

However, the problem of the computation time remains. It took 25
seconds to retrieve in the previous example. More efficient retrieval is neccessary.

§9 Discussion and Related Work
The signature files method to use moving windows of byte sequences

having a fixed length in the files has been proposed for file retrieval 2). This
method compresses each byte sequence in an incomplete and irreversible fashion
by introducing hash functions, and efficiently focuses on similar key sequence
patterns on the reduced size of binary signature data. However, the direct
matching of key sequence is required at the final stage of the retrieval to achieve
the complete retrieval because of the incompleteness of the signature matching.
On the other hand, the inversed indexing approach where the files containing
each key are listed in advance are often used for the fast and practical retrieval
3). One of the representative systems is Namazu for Japanese documents 12).
Though this approach needs a considerably large space for the indexing data
storage, recent increase of the capacity of the storage devices is alleviating this
difficulty. However, this approach is for the complete keyword matching in files
such as documents.



Multi-Structure Information Retrieval Method Based on Transformation Invariance 23

In contrast, the proposed method applies a mathematical transformation
having some invariance and compression properties to retain the information of
certain similarities among files rather than the ordinary hash compression func-
tion. Because of the nature of the mathematical transformation, the complete
matching is easily achieved in our framework if the threshold value for feature
vector matching is taken at a high frequency. Moreover, the incomplete match-
ing to retrieve files containing similar patterns in terms of the invariance and
robustness of the transformation is also achieved by applying a lower threshold
value. The efficiency of the retrieval is comparable with the ordinary inversed
indexing approach because our approach also uses the inversed indexing on the
representation of feature vectors.

§10 Conclusion
In this work, “Multi-Structure Information Retrieval”(MSIR) approach

is proposed. Our approach has high flexibility since it is applicable to various
data format by slightly changing the generation process of feature vectors. The
proposed approach covers the most advantage of the conventional approaches.
In addition, our approach provides less cost to adapt to a certain data format
than to develop a new system specialized to the format. However there are some
exceptions, e.g., enciphered data, compressed data and more complex structured
data. The measure to handle these formats is left for future work. Also the
problem on the computation time of retrieval on complex structured data must
be addresed in future work.

References

1) Baeza-Yates, R.A, “String Searching Algorithms” Information Retrieval, Data
Structures & Algorithms, Chapter 10(ed. Baeza-Yates, R.A.), pp. 219-240, 1992.

2) Faloutsos, C. , “Signature Files” Information Retrieval, Data Structures &
Algorithms, Chapter 4(ed. Baeza-Yates, R.A.), pp. 44-65, 1992.

3) Harman, D., Fox, E. and Baeza-Yates, R.A., “Inverted Files” Information
Retrieval, Data Structures & Algorithms, Chapter 3(ed. Baeza-Yates, R.A.),
pp. 28-43, 1992.

4) Ogle, V.E., Stonebraker,M., “Chabot: Retrieval from a Relational Database of
Images”, IEEE Computer, Vol. 28, No. 9 pp. 1-18, 1995.

5) Faloutsos, C., Equitz, W., Flickner, M., Niblack, W., Petkovic, D. and Barber,
R., “Efficient and Effective Querying by Image Content”, Journal of Intelli-
gence Information Systems, 3, 3/4, pp. 231-262, 1994.



24 Fuminori ADACHI et al.

6) Salton, G. and McGill, M.J., Introduction to Modern Information Retrieval,
McGraw-Hill Book Company, 1983.

7) Fox, C., “Lexical Analysis and Stoplists”, Information Retrieval, Data Struc-
tures & Algorithms, Chapter 7(ed. Baeza-Yates, R.A.), pp. 102-130, 1992.

8) The Institute of Electronics, Information and Communication Engineers (IE-
ICE), Digital Signal Processing 10th Ed., Gihoudou, pp. 49-61, 1983. (in
Japanese)

9) Fujimoto, A., Adachi, F., Washio, T., Motoda, H., Niwa, Y. and Hanafusa, H.,
“Expansion of Generic Search Method for Two-dimensional Data”, Proc. of the
17th Annual Conference of Japanese Society for Artificial Intelligence(JSAI),
2C3-01, 2003. (in Japanese)

10) Masui, T., “An Retrieval System Based on Signature Files Approach”, Monthly
UNIX magazine 1999.11, ASCII, pp.170-176, 1999. (in Japanese)

11) Aho,V.R., Ethi, R. and Ullman, D.J., “Compilers: Principles, Techniques, and
Tools”, Addison-Wesley, 1986

12) http://www.namazu.org/

13) http://chasen.aist-nara.ac.jp/



Multi-Structure Information Retrieval Method Based on Transformation Invariance 25

Fig. 5 Top5 files retrieced by keyfile



26 Fuminori ADACHI et al.

Fig. 6 The 50th through the 54th file of retrieval result


