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We address the problem of minimizing the propagation of undesirable things, such as computer

viruses or malicious rumors, by blocking a limited number of links in a network, which is converse
to the influence maximization problem in which the most influential nodes for information diffu-

sion is searched in a social network. This minimization problem is more fundamental than the
problem of preventing the spread of contamination by removing nodes in a network. We introduce
two definitions for the contamination degree of a network, accordingly define two contamination

minimization problems, and propose methods for efficiently finding good approximate solutions to

these problems on the basis of a naturally greedy strategy. Using large social networks, we experi-
mentally demonstrate that the proposed methods outperform conventional link-removal methods.

We also show that unlike the case of blocking a limited number of nodes, the strategy of removing
nodes with high out-degrees is not necessarily effective for these problems.
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1. INTRODUCTION

Considerable attention has recently been devoted to investigating the structure and
function of various networks including computer networks, social networks and the
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World Wide Web [Newman 2003]. From a functional point of view, networks can
mediate diffusion of various things such as innovation and topics. However, unde-
sirable things can also spread through networks. For example, computer viruses
can spread through computer networks and email networks, and malicious rumors
can spread through social networks among individuals. Thus, developing effective
strategies for preventing the spread of undesirable things through a network is an
important research issue. Previous work studied strategies for reducing the spread
size by removing nodes from a network. It has been shown in particular that the
strategy of removing nodes in decreasing order of out-degree can often be effective
[Albert et al. 2000; Broder et al. 2000; Callaway et al. 2000; Newman et al. 2002].
Here notice that removal of nodes by necessity involves removal of links. Namely,
the task of removing links is more fundamental than that of removing nodes, and
this is the problem we address in the paper.

In contrast, finding influential nodes that are effective for the spread of infor-
mation through a social network is also an important research issue in terms of
sociology and “viral marketing” [Domingos and Richardson 2001; Richardson and
Domingos 2002; Gruhl et al. 2004]. Recent studies include attempts to solve a
combinatorial optimization problem called the influence maximization problem on
a network under the independent cascade (IC) model, a widely-used fundamental
probabilistic model of information diffusion[Kempe et al. 2003; Kimura et al. 2007].
Here, the influence maximization problem is the problem of extracting a set of K
nodes to target for initial activation such that it yields the largest expected spread
of information, where K is a given positive integer. Note also that the IC model
can be identified with the so-called susceptible/infective/recovered (SIR) model for
the spread of disease in a network [Gruhl et al. 2004].

As we see, what we address in this paper is a problem that is converse to the
influence maximization problem. The problem is to minimize the spread of unde-
sirable things by blocking a limited number of links in a network. More specifically,
we consider, when some undesirable thing starts with any node and diffuses through
the network under the IC model, finding a set of K links such that the resulting net-
work obtained by blocking those links minimizes the contamination degree for the
undesirable thing, where K is a given positive integer. We refer to this combinato-
rial optimization problem as a contamination minimization problem. We introduce
two definitions for the contamination degree of a network; the average contami-
nation degree and the worst contamination degree. According to these definitions,
we formalize two contamination minimization problems; the average contamination
minimization problem and the worst contamination minimization problem. The
former aims to minimize the expected number of contaminated nodes (i.e., the av-
erage case), and the latter aims to minimize the maximum number of contaminated
nodes (i.e., the worst case).

We presented in [Kimura et al. 2008] a method for efficiently finding a good
approximate solution on the basis of a naturally greedy strategy for the average
contamination minimization problem. In this paper, we explain the method in
more detail, and propose a novel method for efficiently finding a good approximate
solution for the worst contamination minimization problem on the basis of the same
greedy strategy
ACM Journal Name, Vol. V, No. N, December 2008.
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Furthermore, we compare the proposed methods with a naive greedy strategy
in terms of computational complexity for both the average and the worst contam-
ination minimization problems, and show that the proposed methods can achieve
a great deal of reduction in computational cost. We also present strategies for
making the proposed methods computationally more efficient in practice. Finally,
using large real networks that exhibit many of the key features of social networks,
we experimentally demonstrate that the proposed methods outperform link-removal
heuristics that rely on the well-studied notions of betweenness and out-degree in
the field of complex network theory. In particular, we show that unlike the case
of blocking a limited number of nodes, the strategy of removing nodes with high
out-degrees is not necessarily effective for our problems.

2. INFORMATION DIFFUSION MODEL

We assume the IC model to be a mathematical model for the diffusion process
of some undesirable thing on a network. We call nodes active if they have been
contaminated by the undesirable thing.

Let G = (V, E) be a directed network, where V and E (⊂ V × V ) stand for the
sets of all the nodes and (directed) links, respectively. Throughout this paper, a
network means a directed network, a link means a directed link, and we also call
a network a graph. According to the work of Kempe et al. [2003], we define the
IC model on graph G in Section 2.1, and recall a mathematical definition of the
influence maximization problem for the IC model on graph G in Section 2.2.

2.1 Independent Cascade Model

First, we define the IC model on graph G. In the IC model, the diffusion process
unfolds in discrete time-steps t ≥ 0, and it is assumed that nodes can switch their
states only from inactive to active, but not from active to inactive. Given an initial
set A of active nodes, we assume that the nodes in A have first become active at
time-step 0, and all the other nodes are inactive at time-step 0. For every e ∈ E,
we specify a real value pe with 0 < pe < 1 in advance. Here, pe is referred to as the
propagation probability through link e.

The diffusion process proceeds from a given initial active set A in the following
way. When a node u first becomes active at time-step t, it is given a single chance
to activate each currently inactive child node w, and succeeds with probability pe,
where e = (u,w) ∈ E. Here, for a link e′ = (u′, w′) ∈ E, nodes u′ and w′ are called
the parent and child nodes of w′ and u′, respectively. If u succeeds, then w will
become active at time-step t + 1. If multiple parent nodes of w first become active
at time-step t, then their activation attempts are sequenced in an arbitrary order,
but all performed at time-step t. Whether or not u succeeds, it cannot make any
further attempts to activate w in subsequent rounds. The process terminates if no
more activations are possible.

For an initial active set A, let ϕ(A;G) denote the number of active nodes at the
end of the random process for the IC model on G. Note that ϕ(A;G) is a random
variable. Let σ(A;G) denote the expected value of ϕ(A;G). We call σ(A;G) the
influence degree of node set A on graph G. When A is in particular equal to a
set of single node {v}, we simply denote σ(A;G) by σ(v;G), and call σ(v;G) the
influence degree of node v on graph G.
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2.2 Influence Maximization Problem

Next, we recall a mathematical definition of the influence maximization problem
on a network. Here, we consider maximizing the spread of desirable information
through graph G = (V, E). Let K be a given positive integer with K < |V |. Here,
|X| stands for the number of elements of a set X. The influence maximization
problem on G for the IC model is defined as follows: Find a subset A∗ of V with
|A∗| = K such that σ(A∗;G) ≥ σ(A;G) for every A ⊂ V with |A| = K.

3. PROBLEM FORMULATION

We assume that some undesirable thing starts with any node in a network and
diffuses through the network under the IC model. For preventing it from spreading
through the network, we aim to minimize the contamination degree by appropriately
removing a fixed number of links. Here, the contamination degree of a network is
a measure of how badly the undesirable thing will contaminate the network. We
give two definitions for contamination degree, and mathematically formalize two
contamination minimization problems on a network.

3.1 Contamination Degree

For any graph G = (V, E), we introduce two definitions for contamination degree
of G.

3.1.1 Average Contamination Degree. We define the average contamination de-
gree c0(G) of graph G as the average of influence degrees of all the nodes in G,

c0(G) =
1
|V |

∑

v∈V

σ(v;G). (1)

3.1.2 Worst Contamination Degree. We define the worst contamination degree
c+(G) of graph G as the maximum of influence degrees of all the nodes in G,

c+(G) = max
v∈V

σ(v;G). (2)

3.2 Contamination Minimization Problem

According to the above definitions of contamination degree, we mathematically
define the contamination minimization problems on a network, which are converse
to the influence maximization problem on the network.

For any graph G = (V, E), we denote by c(G) both the average contamination
degree c0(G) and the worst contamination degree c+(G). For any link e ∈ E, let
G(e) denote the graph (V , E \ {e}). We refer to G(e) as the graph constructed by
blocking e in G. Similarly, for any D ⊂ E, let G(D) denote the graph (V , E \ D).
We refer to G(D) as the graph constructed by blocking D in G.

We define the contamination minimization problems on a graph G = (V, E) as
follows: Given a positive integer K with K < |E|, find a subset D∗ of E with
|D∗| = K such that c(G(D∗)) ≤ c(G(D)) for any D ⊂ E with |D| = K. The
contamination minimization problem for c = c0 is referred to as the average con-
tamination minimization problem, and the contamination minimization problem for
c = c+ is referred to as the worst contamination minimization problem.
ACM Journal Name, Vol. V, No. N, December 2008.
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For a large network, any straightforward method for exactly solving the contam-
ination minimization problems suffers from combinatorial explosion. Therefore, we
consider approximately solving the problems.

4. PROPOSED METHOD

We propose methods for efficiently finding good approximate solutions to our con-
tamination minimization problems. Let K be the number of links to be blocked in
the problems.

4.1 Greedy Algorithm

We approximately solve the contamination minimization problems on a given graph
G0 = (V0, E0) by the following greedy algorithm:

A1. Initialize a subset D of E0 as D ← ∅.
A2. Initialize a graph G = (V, E) as V ← V0 and E ← E0.
A3. Choose a link e∗ ∈ E minimizing c(G(e)), (e ∈ E).
A4. Update D as D ← D ∪ {e∗}.
A5. Update G = (V, E) as E ← E \ {e∗}.
A6. Return to Step A3 if |D| < K.
A7. Set DK ← D.
A8. Set GK ← G.

Here, DK is the set of links blocked, and represents the approximate solution ob-
tained by this algorithm. We refer DK to as the greedy solution. GK is the graph
constructed by blocking DK in the graph G0, that is, GK = G0(DK).

To implement this greedy algorithm, we need methods for calculating

e∗ = arg min
e∈E

c(G(e)) (3)

for a given graph G = (V, E) in Step A3 of the algorithm. The IC model is a
stochastic process model, and it is an open question to exactly calculate influence
degrees by an efficient method [Kempe et al. 2003]. Therefore, we must develop
methods for efficiently estimating {c(G(e)); e ∈ E} for graph G = (V, E).

Kimura et al. [2007] presented the bond percolation method that efficiently esti-
mates the influence degrees {σ(v; G̃); v ∈ Ṽ } for any graph G̃ = (Ṽ , Ẽ). Thus, in
the greedy algorithm, we can estimate c(G(e)) for each e ∈ E by applying the bond
percolation method for the graph G(e) and using Equations (1) or (2). Namely,
we can simply estimate the greedy solution DK by implementing Step A3 of the
greedy algorithm as follows:

(1) Estimate {c(G(e)); e ∈ E} by straightforwardly performing the bond percola-
tion method |E| times.

(2) Find e∗ ∈ E such that c(G(e∗)) ≤ c(G(e)) for any e ∈ E.

We refer this strategy to as the naive greedy strategy. However, |E| becomes very
large for a large network in the greedy algorithm unless K is very large. Namely,
the naive greedy strategy is not practical for large networks. Therefore, we propose
more efficient methods for estimating e∗ ∈ E satisfying Equation (3) on the basis
of the bond percolation method.

ACM Journal Name, Vol. V, No. N, December 2008.
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4.2 Bond Percolation Method

First, we revisit the bond percolation method [Kimura et al. 2007]. Here, we con-
sider estimating the influence degrees {σ(v;G); v ∈ V } for the IC model with
propagation probabilities {pe; e ∈ E} on a graph G = (V, E).

The bond percolation process with occupation probabilities {pe; e ∈ E} on graph G
is the random process in which each link e ∈ E is independently declared “occupied”
with probability pe. Note that in terms of information diffusion on a network, the
occupied links represent the links through which the information propagates, and
the unoccupied links represent the links through which the information does not
propagate. For a positive integer M , we perform the bond percolation process M
times, and sample a set of M graphs constructed by the occupied links,

{Gm = (V, Em); m = 1, · · · ,M} .

For any v ∈ V , we define s(v;G,M) by

s(v;G,M) =
1
M

M∑
m=1

|F (v;Gm)| . (4)

Here, for any graph G̃ = (Ṽ , Ẽ) and any node v ∈ Ṽ , F (v; G̃) stands for the set of
all the nodes that are reachable from node v on graph G̃. We say that node u is
reachable from node v on graph G̃ if there is a path from u to v along the links on
graph G̃.

It is known [Newman 2003] that the IC model with propagation probabilities
{pe; e ∈ E} on graph G can be exactly mapped onto the bond percolation process
with occupation probabilities {pe; e ∈ E} on graph G, and the influence degree
σ(v;G) of node v ∈ V can well be approximated by s(v;G,M),

σ(v;G) ' s(v;G,M), (v ∈ V ), (5)

if M is sufficiently large. We decompose each graph Gm into the strongly connected
components (SCCs) as follows:

V =
Jm⋃

j=1

SCC(um
j ;Gm), (6)

where Jm is the number of the strongly connected components of graph Gm, each
um

j is an element of V , and SCC(um
j ;Gm) denotes the SCC of graph Gm that

contains node um
j . Note that

|F (v;Gm)| = ∣∣F (um
j ;Gm)

∣∣ , if v ∈ SCC(um
j ;Gm). (7)

Thus, by calculating {|F (um
j ;Gm)|; j = 1, · · · , Jm} in advance and using Equa-

tion (7), we efficiently calculate |F (v;Gm)| for all v ∈ V . Once we have {|F (v;Gm)|;
v ∈ V, m = 1, · · · ,M}, we can calculate s(v;G,M) for all v ∈ V from Equation (4).

Namely, the bond percolation method estimates all the influence degrees {σ(v;G);
v ∈ V } on graph G as follows: It first specifies the value of integer M , calculates
s(v;G,M) for all v ∈ V by performing the above procedure, and estimates σ(v;G)
for all v ∈ V by using Equation (5).
ACM Journal Name, Vol. V, No. N, December 2008.
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4.3 Estimation Method

Now, we give methods for efficiently estimating e∗ ∈ E satisfying Equation (3) for
a given graph G = (V, E) to implement Step A3 of the greedy algorithm for the
average and the worst contamination minimization problems.

First, we perform the bond percolation process M times on graph G = (V, E),
and sample a set of M graphs constructed by the occupied links,

{Gm = (V, Em); m = 1, · · · ,M} ,

where M is a given positive integer. Next, we calculate

BM (e) = {m ∈ {1, · · · ,M}; e /∈ Em} , (e ∈ E). (8)

Note that BM (e) represents the subset of the M trials for the bond percolation
process on graph G such that e is not an occupied link.

Here, we consider performing the bond percolation process |BM (e)| times on the
graph G(e) = (V, E \ {e}) for any e ∈ E, and sampling a set of |BM (e)| graphs
constructed by the occupied links,

{G(e)m; m = 1, · · · , |BM (e)|} .

We assume that M is large enough so that |BM (e)| is also sufficiently large. Then,
by Equation (5), we have

σ(v;G(e)) ' s (v;G(e), |BM (e)|) , (v ∈ V ). (9)

Note from Equation (4) that

s (v;G(e), |BM (e)|) =
1

|BM (e)|
|BM (e)|∑

m=1

|F (v;G(e)m)| , (v ∈ V ). (10)

In order to efficiently estimate {c(G(e)); e ∈ E} without applying the bond
percolation method on the graph G(e) for every e ∈ E, we alternatively calculate

sM (v, e) =
1

|BM (e)|
∑

m∈BM (e)

|F (v;Gm)|, (v ∈ V, e ∈ E), (11)

for the graph G on the basis of the bond percolation method. Since each link of
graph G is independently declared “occupied” in the bond percolation process, we
can obtain the following theorem from Equations (8), (9), (10) and (11).

Theorem 4.1. Let G = (V, E) be a graph. For every v ∈ V and e ∈ E, we have

sM (v, e) → σ(v;G(e))

as M →∞.

From Theorem 4.1, we can apply the approximation

σ(v;G(e)) ' sM (v, e), (v ∈ V, e ∈ E), (12)

for a sufficiently large M . Therefore, by Equations (1) and (2), we propose esti-
mating e∗ ∈ E satisfying Equation (3) for a given graph G = (V, E) as follows:

e∗ = arg min
e∈E

(
1
|V |

∑

v∈V

sM (v, e)

)
(13)

ACM Journal Name, Vol. V, No. N, December 2008.
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for the average contamination minimization problem (i.e., c = c0), and

e∗ = arg min
e∈E

(
max
v∈V

sM (v, e)
)

(14)

for the worst contamination minimization problem (i.e., c = c+). Note that for the
proposed method, the value of M is specified in advance.

4.4 Computational Complexity and Implementational Strategy

For both the average and the worst contamination minimization problems, we com-
pare the proposed methods with the naive greedy strategy in terms of computa-
tional complexity. We focus on the computational complexity of estimating e∗ ∈ E
satisfying Equation (3) for a given graph G = (V, E).

Let Q be the expected computational complexity for calculating the values of
{s(v;G, 1); v ∈ V } on graph G = (V, E) on the basis of the bond percolation
method (see, Equation (4)). Then, the expected computational complexity of the
proposed method for calculating {sM (v, e); v ∈ V , e ∈ E} amounts to MQ, since
the values of {|F (v;Gm)|; v ∈ V , m = 1, · · · ,M} are calculated on the basis of the
bond percolation method (see, Equations (4) and (11)). Note that for any e ∈ E,
calculating {sM (v, e); v ∈ V } for the proposed methods corresponds to estimat-
ing c(G(e)) through |BM (e)| trials of the bond percolation process on graph G(e)
(see, Equation (11)). For the naive greedy strategy, we consider estimating c(G(e))
through |BM (e)| trials of the bond percolation process on graph G(e) (see, Equa-
tions (9) and (10)). Then, in order to estimate the values of {c(G(e); e ∈ E}, the
naive greedy strategy requires the computational complexity of Q

∑
e∈E |BM (e)|.

Here we assumed that the computational complexities of s(v;G, 1) and s(v;G(e), 1)
are the same because |E| is sufficiently large in general. By noting that the expected
value of |BM (e)| is (1− pe)M , the expected computational complexity of the naive
greedy strategy for estimating {c(G(e); e ∈ E} becomes MQ

∑
e∈E(1− pe). Thus,

we can see that the proposed methods are
∑

e∈E(1 − pe) times faster than the
naive greedy strategy on the average. For instance, when the number of links is
100, 000 and each propagation probability pe for the IC model is a uniform proba-
bility p = 0.2, the value of

∑
e∈E(1− pe) is 80, 000. Namely, the proposed methods

can achieve a great deal of reduction in computational cost, compared with the
naive greedy strategy.

Furthermore, the following strategies can be used to efficiently find e∗ ∈ E satis-
fying Equations (13) or (14) for a given graph G = (V, E) in actual practice.

First, as for the worst contamination minimization problem, we apply the idea of
lazy evaluations for marginal increments of a submodular function by Leskovec et al.
[2007]. More specifically, we efficiently calculate Equation (14) by appropriately
pruning the evaluations for {sM (v, e); v ∈ V , e ∈ E}. By Equations (4) and (11),
we have

M s(v;G,M) = |BM (e)| sM (v, e) +
∑

m∈{1,···,M}\BM (e)

|F (v;Gm)|

for any v ∈ V and e ∈ E. Thus, we can derive the following upper bound with
ACM Journal Name, Vol. V, No. N, December 2008.
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respect to sM (v, e):

M

|BM (e)|s(v;G,M) ≥ sM (v, e), (v ∈ V, e ∈ E). (15)

We arbitrarily fix a link e ∈ E. Then, we first sort all the nodes {v ∈ V }
of graph G by the value Ms(v;G,M)/|BM (e)| in descending order as follows:
〈vi; i = 1, · · · , |V |〉. We next calculate the value of sM (v, e) in this order, until
the current maximum value sM (v∗i , e) exceeds the value Ms(vi+1;G,M)/|BM (e)|
for the head vi+1 of the remaining nodes. By Equation (15), this pruning guar-
antees that the current maximum value attains the maximum without necessarily
evaluating sM (v, e) for all v ∈ V . In our experiments, the computational efficiency
was greatly improved by using this strategy, just as reported in [Leskovec et al.
2007].

Next, as for the average contamination minimization problem, we efficiently cal-
culate Equation (13) without evaluating the value of sM (v, e) for every pair of node
v and link e. Our strategy is to exploit the relation

1
|V |

∑

v∈V

sM (v, e) =
1

|BM (e)|
∑

m∈BM (e)

1
|V |

∑

v∈V

|F (v;Gm)|, (v ∈ V, e ∈ E), (16)

(see, Equation (11)). More specifically, we evaluate
∑

v∈V |F (v;Gm)/|V | for each
m on the basis of the bond percolation method in advance (see, Equations (6) and
(7)), and then calculate Equation (13) by evaluating

∑
v∈V sM (v, e) for every e ∈ E

using Equation (16).

5. EXPERIMENTAL EVALUATION

Using two large real networks that exhibit many of the key features of social net-
works, we experimentally evaluated the performance of the proposed method.

5.1 Network Data

First, we employed a trackback network of blogs because a piece of information can
propagate from one blog author to another blog author through a trackback. Since
bloggers (i.e., blog authors) discuss various topics and establish mutual communi-
cations by putting trackbacks on each other’s blogs, we regarded a link created by a
trackback as a bidirectional link. By tracing up to ten steps back in the trackbacks
from the blog of the theme “JR Fukuchiyama Line Derailment Collision” in the site
“goo” 1, we collected a large connected trackback network in May, 2005. The result-
ing network was a directed graph of 12, 047 nodes and 79, 920 links, which features
the so-called “power-law” degree distribution that most large real networks exhibit
(see, Figure 1). Here, the degree distribution is the distribution of the number of
links for every node. We refer to this network data as the blog network.

Next, we employed a network of people that was derived from the “list of peo-
ple” within Japanese Wikipedia. Specifically, we extracted the maximal connected
component of the undirected graph obtained by linking two people in the “list of
people” if they co-occur in six or more Wikipedia pages, and constructed a directed

1http://blog.goo.ne.jp/usertheme/
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Fig. 1. The degree distribution for the blog network.
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Fig. 2. The degree distribution for the Wikipedia network.

graph regarding those undirected links as bidirectional ones. We refer to this net-
work data as the Wikipedia network. Here, the total numbers of nodes and directed
links were 9, 481 and 245, 044, respectively. The network also showed the power-law
degree distribution (see, Figure 2).

Newman and Park [2003] observed that social networks represented as undirected
graphs generally have the following two statistical properties that are different from
non-social networks. First, they show positive correlations between the degrees of
adjacent nodes. Second, they have much higher values of the clustering coefficient
CC than the corresponding configuration models (i.e., random network models).
ACM Journal Name, Vol. V, No. N, December 2008.
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Fig. 3. The degree correlation for the Wikipedia network.

Here, the clustering coefficient CC for an undirected graph is defined by

CC =
3× number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which is connected to each
other, and a “connected triple” means a node connected directly to unordered other
pair nodes. For the undirected graph of the Wikipedia network, the value of CC of
the corresponding configuration model was 0.046, while the actual measured value
of CC was 0.39. Namely, the undirected graph of the Wikipedia network had a
much higher value of the clustering coefficient than the corresponding configuration
model. Moreover, we can see from Figure 3 that the Wikipedia network had weakly
positive degree correlation. Therefore, we believe that the Wikipedia network is a
typical example of a large real social network represented by an undirected graph,
and can be used as the network data to evaluate the performance of the proposed
method.

5.2 Experimental Settings

For the bond percolation method, we need to specify the number M of performing
the bond percolation process. It is reported [Kimura et al. 2007] that setting the
value of M at several thousand is good enough for estimating influence degrees for
the blog and Wikipedia networks. The following is the basis of assessing the value
of M in the experiments in this paper. We estimated the average and the worst
contamination degrees for the two networks with M = 8, 000 and M = 300, 000,
where we assigned a uniform probability p to each propagation probability pe for the
IC model (how the value of p is determined for each network is described in detail in
the next paragraph). The difference in the estimated average contamination degree
for M = 8, 000 and M = 300, 000 was about 0.01% for the blog network and 0.02%
for the Wikipedia network. Also, the corresponding difference in the estimated
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Fig. 4. Fragmentation of the blog network for the IC model. The fraction H of the maximal SCC

as a function of the propagation probability p.
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Fig. 5. Fragmentation of the Wikipedia network for the IC model. The fraction H of the maximal

SCC as a function of the propagation probability p. The upper and lower frames show the network
fragmentation curves for the whole range of p and the range of 0.01 ≤ p ≤ 0.09, respectively.

worst contamination degree was about 0.02% for the blog network and 0.01% for the
Wikipedia network. Thus, we concluded that the estimated contamination degrees
for these networks with M = 8, 000 are comparable to those with M = 300, 000.
By considering the assigned values of the propagation probabilities, we decided to
use M = 10, 000 through the experiments (i.e., 10, 000 (1 − 0.2) = 8, 000, see the
next paragraph).
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Because we assigned a uniform probability p to the propagation probability pe

for any directed link e of a network, the IC model had a single parameter p, and
we determined the typical value of p for each of the blog and Wikipedia networks,
and used them in the experiments. Let us consider the bond percolation process
corresponding to the IC model with propagation probability p on a graph G =
(V, E). Let H be the expected fraction of the maximal SCC in the network con-
structed by occupied links. H is a function of p, and as the value of p decreases,
the value of H decreases. In other words, as the value of p decreases, the original
graph G gradually fragments into small clusters under the corresponding bond per-
colation process. Figures 4 and 5 show the network fragmentation curves for the
blog and Wikipedia networks, respectively. Note that H → 1 as p → 1 since the
blog and Wikipedia networks are strongly connected. Here, given the value of p,
we estimated H as follows (see, Equation (6)):

H =
1

M |V |
M∑

m=1

max
1≤j≤Jm

|SCC(um
j ;Gm)|,

where M = 10, 000. We focus on the point p∗ at which the average rate dH/dp of
change of H attains the maximum, and regard it as the typical value of p for the
network. Note that p∗ is a critical point of dH/dp, and defines one of the features
intrinsic to the network. From Figures 4 and 5, we estimated p∗ to be p∗ = 0.2 for
the blog network and p∗ = 0.03 for the Wikipedia network.

5.3 Comparison Methods

We compared the proposed method with three other heuristic methods. Two of
them are based on the well-studied notions of betweenness and out-degree in the
field of complex network theory and the other one is the crude baseline of block-
ing links randomly. We refer to these methods as betweenness method, out-degree
method and random method, respectively.

5.3.1 Betweenness Method. The betweenness score bG(e) of a link e in a graph
G = (V, E) is defined as follows:

bG(e) =
∑

u,v∈V

nG(e;u, v)
NG(u, v)

,

where NG(u, v) denotes the number of the shortest paths from node u to node
v on graph G, and nG(e;u, v) denotes the number of those paths that pass e.
Here, we set nG(e;u, v)/NG(u, v) = 0 if NG(u, v) = 0. Newman and Girvan [2004]
successfully extracted community structure in a network using the following link-
removal algorithm based on betweenness:

B1. Calculate betweenness scores for all links in the network.
B2. Find the link with the highest score and remove it from the network.
B3. Recalculate betweenness scores for all remaining links.
B4. Repeat from Step B2.

In particular, the notion of betweenness can be interpreted in terms of signals
traveling through a network. If signals travel from source nodes to destination
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nodes along the shortest paths in a network, and all nodes send signals at the same
constant rate to all others, then the betweenness score of a link is a measure of the
rate at which signals pass along the link. Thus, we naively expect that blocking the
links with the highest betweenness score can be effective for preventing the spread
of contamination in the network. Therefore, we apply the method of Newman and
Girvan [2004] to the contamination minimization problems.

5.3.2 Out-degree Methods. Previous work has shown that simply removing nodes
in order of decreasing out-degrees works well for preventing the spread of contam-
ination in most real networks [Albert et al. 2000; Broder et al. 2000; Callaway
et al. 2000; Newman et al. 2002]. Here, the out-degree d(v) of a node v means the
number of outgoing links from the node v. Therefore, as a comparison method,
we consider the straightforward application of this node removal method. Namely,
we employ the method of choosing nodes in decreasing order of out-degree and
blocking simultaneously all the links attached to the chosen nodes. We refer to
this method as the node out-degree method. Note that the node out-degree method
cannot be applied for all values of positive integer K (≤ |E|) to the contamination
minimization problems of blocking K links.

We also consider the method of blocking links between nodes with high out-
degrees as an alternative comparison method. We define the link out-degree d(e)
of a link e = (u, v) from node u to node v by

d(e) = d(u) d(v),

and recursively block links in decreasing order of link out-degree. We refer to this
method as the link out-degree method.

5.4 Experimental Results

We evaluated the performance of the proposed method and compared it with that of
the betweenness, the node out-degree, the link out-degree and the random methods.
Clearly, the performance can be evaluated by the average contamination degree c0

and the worst contamination degree c+. We estimated these values by using the
bond percolation method with M = 300, 000, that is,

c0(GK) =
1
|V |

∑

v∈V

s(v;GK ,M),

c+(GK) = max
v∈V

s(v;GK ,M),

(see, Equation (4)), where M = 300, 000. Note that this evaluation is done sepa-
rately from the approximation used to search for the link to be deleted, i.e., Equa-
tion (11).

5.4.1 Average Contamination Minimization Problem. Figures 6 and 7 show the
average contamination degree c0 as a function of the number K of links blocked
for the blog network and Figures 8 and 9 show the corresponding results for the
Wikipedia network. In these figures the circles, squares, diamonds, triangles and
crosses indicate the results for the proposed, the betweenness, the node out-degree,
the link out-degree and the random methods, respectively. For each dataset, there
are two figures, one comparing the proposed method with the betweenness method
ACM Journal Name, Vol. V, No. N, December 2008.
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Fig. 6. Performance comparison between the proposed and the betweenness methods in the blog

network for the average contamination minimization problem.
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Fig. 7. Performance comparison of the proposed method at K = 500 with the node out-degree,

the link out-degree and the random methods in the blog network for the average contamination
minimization problem.

and the other comparing the proposed method at a fixed value of K = 500 with
the node out-degree, the link out-degree and the random methods.

First, note that the average contamination degree c0 at K = 0 is 976 for the blog
network and 403 for the Wikipedia network, which is 8.2% and 4.2% of the total
nodes, respectively. The average contamination degree as defined by Equation (1)
is less than 10%. The fact that this value for Wikipedia network is about half of
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Fig. 8. Performance comparison between the proposed and the betweenness methods in the

Wikipedia network for the average contamination minimization problem.
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Fig. 9. Performance comparison of the proposed method at K = 500 with the node out-degree, the

link out-degree and the random methods in the Wikipedia network for the average contamination
minimization problem.

that of the blog network is explained by the smaller value of p for the Wikipedia
network with the difference in network sizes considered. As expected the proposed
method performs the best and the betweenness method follows. The other three
methods are much worse than these two in the networks used.

The number of links blocked: K = 500 corresponds to 0.63% of the total links for
the blog network and 0.2% for the Wikipedia network. Inversely, 0.2% of the total
ACM Journal Name, Vol. V, No. N, December 2008.
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Fig. 10. Performance comparison between the proposed and betweenness methods in the blog

network for the worst contamination minimization problem.

links corresponds to 163 links for the blog network. The average contamination
degree at 0.2% link block, i.e., K = 163 for the blog network and K = 500 for the
Wikipedia network is 495 and 243 for the proposed method, which is equivalent
to 49% and 40% reduction in the degree, respectively, and 607 and 306 for the
betweenness method, which is equivalent to 38% and 24% reduction in the degree,
respectively. The difference between the two methods is 11% for the blog network
and 16% for the Wikipedia network, respectively. The average contamination de-
gree at 0.63% link block for the blog network, i.e., K = 500 is 267 for the proposed
method and 303 for the betweenness method, which is equivalent to 73% and 69%
reduction in the degree, respectively, and the difference between the two methods
is 4%.

Differently from the above, the proposed method as well as the betweenness
method outperform by far the other three methods (the node out-degree, the link
out-degree and the random) for both the blog and the Wikipedia networks. Blocking
500 links by the proposed methods is equivalent to blocking more than 10,000 links
for the blog network and 20,000 links for the Wikipedia network by the other three
methods, meaning that the proposed method is 20 to 40 times more effective.

5.4.2 Worst Contamination Minimization Problem. Figures 10 and 11 show the
worst contamination degree c+ as a function of the number K of links blocked for
the blog network, and Figures 12 and 13 show the corresponding results for the
Wikipedia network. The meaning of the symbols in captions and the layout of the
figures are the same as before.

First note that the worst contamination degree c+ at K = 0 is 3218 for the blog
network and 1929 for the Wikipedia network, which is 27% and 20% respectively.
They are about 3 and 5 times larger than the average contamination degrees. The
difference of the values between the two networks is consistent with the average
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Fig. 11. Performance comparison of the proposed method for K = 500 with the node out-degree,

link out-degree and random methods in the blog network for the worst contamination minimization
problem.
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Fig. 12. Performance comparison between the proposed and betweenness methods in the
Wikipedia network for the worst contamination minimization problem.

contamination case. The overall performance difference among the four methods is
also consistent with the average contamination case.

The worst contamination degree at 0.2% link block, i.e., K = 163 for the blog
network and K = 500 for the Wikipedia is 1763 and 1177 for the proposed method,
which is equivalent to 45% and 39% reduction in the degree, respectively, and
2455 and 1700 for the betweenness method, which is equivalent to 24% and 12%
ACM Journal Name, Vol. V, No. N, December 2008.
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Fig. 13. Performance comparison of the proposed method for K = 500 with the node out-

degree, link out-degree and random methods in the Wikipedia network for the worst contamination
minimization problem.

reduction in the degree, respectively. The difference between the two methods is
21% for the blog network and 27% for the Wikipedia network, respectively. The
worst contamination degree at 0.63% link block for the blog network, i.e., K = 500
is 1045 for the proposed method and 1193 for the betweenness method, which is
equivalent to 78% and 63% reduction in the degree, respectively, and the difference
between the two methods is 15%.

Again differently from the above, the proposed method as well as the betweenness
method outperform by far the other three methods (the node out-degree, the link
out-degree and the random) for both the blog and the Wikipedia networks. Blocking
500 links by the proposed method is equivalent to blocking more than 10,000 links
for the blog network and 30,000 links by the other three methods, meaning that
the proposed method is 20 to 60 times more effective.

5.4.3 Discussion. These results imply that the proposed method works effec-
tively as expected, and outperforms the conventional link-removal heuristics. There
is no big difference in the comparative performance results between the two net-
works. For both of them, the betweenness method performs reasonably well but
the other three methods (the node out-degree, the link out-degree and the random)
perform very poorly. There is no out-degree myth observed.

Of course how each of the conventional link-removal heuristics performs depends
on the characteristics of the network structure. In general a network consists of
multiple communities, and the members of each community are tightly connected
and the members of different communities are less tightly connected. Thus, it is
reasonable to assume that blocking the links between the different communities is
effective in suppressing the contaminant to diffuse from one community to others.
This is particularly true when there is a small number of nodes that play a key
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role of connecting different communities. Blocking these small number of paths is
quite effective. The fact that the betweenness method performed reasonably well
implies that the networks we analyzed may have this type of community structure.
On the other hand, if the network is hierarchically structured, blocking the nodes,
equivalently blocking the links attached to them, in the upper hierarchy should be
quite effective. The fact that the node out-degree method does not do well suggests
that there may not be such a structure in the networks we analyzed. Among
the poorly performing three methods, the link out-degree method performs most
poorly. It performs worse than the random methods for the blog network. This
would indicate that it is mainly blocking the links within the communities.

With all these different factors affecting the performance of each method taken,
the proposed method exhibits its strength of explicitly minimizing the contamina-
tion by considering the dynamics of information diffusion process, thereby making
its performance less sensitive to the structure of the network.

Considering the fact that all the methods can eventually block the contamination
when all of the links are blocked, it is important to have a method which is effective
when the number of links to be blocked is limited to be small, and the proposed
method has this property. It is noticeable that blocking only 0.2% of the links by
the proposed method can reduce the contamination by nearly 50%.

We have devised two measures: the average contamination degree and the worst
contamination degree. It is expected that the performance difference between the
proposed method and the betweenness method is larger for the latter than the
former, and the results is consistent. Our formulation does not assume the origins
of contamination to be known and fixed. If they are known in advance, the problem
is much easier computationally.

6. FUTURE WORK

We note that the analysis we showed in this paper is the simplest case where pe

takes a single value for all the links e in E. In a more realistic setting we can divide
E into subsets E1, E2, ..., EN and assign a different value pn for all the links in each
En. For example, we may divide the nodes into two groups: those that strongly
influence others and those not, or we may divide the nodes into another two groups:
those that are easily influenced by others and those not. We can further divide the
nodes into multiple groups. From a different angle, when we deal with online social
interactions that are represented as a latent social network, it is possible to assign an
adequate probability to each link according to the communication density between
the nodes.

Especially, when using multiple link probabilities, we need to carefully check that
some probabilities are not too large. In fact, when a link probability pe is close to
1, |BM (e)| becomes a quite small number. Here recall that BM (e) represents the
subset of the M trials for the bond percolation process on graph G such that e is not
an occupied link. Thus for such a case, the proposed method sometimes produces
unreliable result. One simple remedy to this case is to adopt a substantially large
trial number M .

As mentioned earlier, we consider that one important research direction is to
explore the relationships between information diffusion processes and community
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structure. To this end, we need to perform empirical evaluation by using a wide
range of both real and synthetic networks with elaborated diffusion probability
settings to information diffusion models. Other research direction includes applica-
tions of our proposed method to more practical problems, such as preventing the
spread of computer virus. We believe that the proposed method greatly contributes
to efficiently performing such experiments.

7. CONCLUSION

Just as good things, e.g., innovation, important topics, etc. spread through a net-
work and bring positive affects to people, undesirable things, e.g., computer virus,
malicious rumors, etc. also spread and affect people badly. We addressed the prob-
lem of minimizing the spread of undesirable things by blocking links in a social
network, which is converse to the influence maximization problem for the same
network. In particular, we have considered two contamination minimization prob-
lems, one minimizing the average contamination degree and the other minimizing
the worst (maximum) contamination degree. We chose to block “links” rather than
“nodes” because deleting nodes necessitates deleting links, but not vice versa.

We have proposed novel methods for efficiently finding good approximate solu-
tions to these problems on the basis of a naturally greedy algorithm and the bond
percolation method. Using large-scale blog and Wikipedia networks, we have ex-
perimentally demonstrated that the proposed method works effectively, and also
outperforms the conventional link-removal heuristics. The betweenness method
performed reasonably well but the out-degree methods performed very poorly al-
most as badly as the random method. No out-degree myth was observed for the
networks we analyzed. The performance of the link-removal heuristics is strongly
affected by the network structure, but the proposed method shows that it is im-
portant to explicitly minimize the contamination by considering the dynamics of
information diffusion process, which would make the performance less sensitive to
the structure of the network.
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