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Abstract

In previous studies search control knowledge has been acquired
using explanation-based learning (EBL) techniques. These learn
goal-oriented control knowledge by explaining how a decision at
a control decision node leads to the goal. In the domain of ge-
ometry problem-solving, however, this leads to knowledge which
is neither sufficiently general nor sufficiently operational. This
paper addresses an alternative form of search control knowl-
edge in which the search is controlled at each decision node in
such a way that a problem solver can locally recognize rele-
vant ‘perceptual chunks’. Previously the effectiveness of per-
ceptual chunks as control knowledge has been reported in a
geometry domain. In this paper, we propose a new chunking
technique, which acquires, as a chunk, an assembly of diagram
elements that can be recognized and grouped together with the
control decision node. In order to implement this chunking cri-
terion a learner, PCLEARN, employs recognition rules, domain-
specific knowledge describing necessary conditions for a domain
object to be recognizable. Experiments in a geometry domain
show that the set of learned knowledge exhibits higher opera-
tionality than EBL macro-operators. They also suggest that the
PCLEARN chunking technique can be a powerful method for
obtaining a small and highly organized set of domain-specific
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perceptual chunks if augmented with a mechanism for dynamj-
cally managing the utility of each chunk.

1 INTRODUCTION

The ability to learn search control knowledge is critically im-
portant for problem solvers due to the exponential growth in
size of the search spaces they confront. It has been shown that
explanation-based learning (EBL), including macro-operator learn-
ing by simple EBL techniques (Fikes et al. 1972; Minton 1985)
and a more sophisticated one that actively selects what to learn
(Minton et al. 1989), is a powerful technique for learning search
control knowledge. This research shares the common view that
learners acquire ‘goal-oriented’! search control knowledge by ex-
plaining why a choice taken at a control decision node eventually
satisfies the target concept of the problem.

The objective of this paper is to pose and answer the following
question. ‘Is there any kind of effective search control knowl-
edge which is not goal-oriented?’ In the domain of geometry, one
of the classical but typical domains with exponential growth in
size of search spaces, it has been reported that use of ‘perceptual
chunks’ in the Diagram Configuration (DC) model (Koedinger
and Anderson 1990) drastically reduces search spaces. Percep-
tual chunks are regarded as search control knowledge which is
not aimed at achieving a certain goal/subgoal, but at guiding
the search process at a control decision node in such a way
that problem solvers can recognize the chunks in the problem
space. Suwa and Motoda (1989; 1991) have shown that use of
‘figure-pattern strategies’, a small set of macro-operators whose
figurative patterns are the chunks meaningful in geometry do-
main, enables problem solvers to intelligently select appropriate
construction-lines by adding a new point out of an indefinite
number of candidate constructions. This research suggests that
perceptual chunks also provide critically important search con-
trol knowledge in the geometry domain. Here, we pose a sec-

1EBL learns from a target concept and produces search control knowl-
edge that is used for accomplishing a unifiable goal in future problems. In
this chapter we say that such control knowledge is ‘goal-oriented’.
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ond question, ‘Can the EBL technique simulate acquisition of
perceptual chunks in geometry?’ Koedinger (1992) suggested
that macro-operator-like perceptual chunks in geometry are not
primarily organized around the goal-structure explaining target
concepts but, rather, are organized around objects or aggrega-
tions of objects in the domain of geometry. We will find an
answer to the above questions and justify Koedinger’s sugges-
tion.

In this chapter, we will address two issues along the lines of
the above questions, by illustrating experimental data in the do-
main of geometry. The first issue is about operationality of EBL
macro-operators in the domain of geometry. It is a critical issue
because unless learners provide a mechanism of acquiring a small
and highly organized set of macro-operators with high opera-
tionality, problem solving performance degrades drastically with
increasing numbers of macro-operators (Minton 1984, 1985).
Operationality of EBL macro-operators depends upon the in-
trinsic nature of the geometry domain itself concerning whether
there is a consistency in goal-structure across many problems or
not, because EBL macro-operators can be applied only to those
future problems which include the same goal-structure. It is an
open empirical question (Koedinger 1992). We will examine it
by collecting experimental data on the frequency at which EBL
macro-operators are acquired from and applied to many prob-
lems, which is a simple measure of the utility of macro-operators
(Minton 1985).

The second issue is the proposal of a new learning technique,
which is based on another concept different from that of EBL;
the learned concept is to be acquired as a chunk, an assembly of
diagram elements that can be recognizable and grouped together
with each control decision node. The learned chunk can be used
as control knowledge which guides problem-solving search so
that solvers can locally recognize a perceptual-chunk relevant to
each of the control decision nodes. The distinguishing point is
that there is no notion corresponding to target concepts of EBL.
This requires us to provide a criterion for dynamically determin-
ing the range of chunking. Suwa and Motoda (1991) proposed
the idea of ‘recognition rules’, domain-specific rules describing
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necessary conditions for a domain object to be recognizable, as
a guide to determine the area of problem-solving traces to be
chunked out. In this chapter, we present a computer program
PCLEARN, a domain-independent system of learning percep-
tual chunks, by use of recognition rules. We also investigate the
utility of the rules using experimental data.

In the second section, we characterize the geometry domain
and enumerate the problems in applying EBL to this domain.
In the third section, we describe the details of the recognition
rules themselves and their use in learning perceptual-chunks. In
the fourth section, experimental results in the geometry domain
are presented and comparisons are made between EBL and the
proposed technique in terms of operationality of the learned
knowledge. The current limitations of the PCLEARN system
and future research issues are discussed in the fifth section.

2 LEARNING SEARCH CONTROL KNOWLEDGE IN GEOMETRY
2.1 Geometry domain

A general characterization of geometric problem-solving is that
it is the task of proving a fact holding among an assembly of
geometrical objects when a set of other facts are known to hold
as given conditions. Domain rules are used for deriving new
facts from the set of already given facts. Once a fact is derived,
it will never be undone in this domain, because it has been
already proved to hold in the given environment. Therefore,
the number of facts will increase monotonically as the proving
process proceeds. As discussed later, these characteristics are
major factors in bringing about difficulties in applying EBL in
this domain.

The geometrical objects in this domain are points, segments,
directed segments, angles, and triangles. A fact is a nature of an
object or a relation between geometrical objects, which is rep-
resented in this chapter using the predicate symbols egs, eqa,
cong, sim, para, collinear, exist. These express equality of the
lengths of two segments, equality of the sizes of two angles, con-
gruence of two triangles, similarity of two triangles, the state
of two directed segments being parallel, collinearity of two seg-
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Problem 1 . Domain Rules
A Qtvens: .
BC=CD, AC=CF Congruence of triangle
E AB=DE, IF XY=PQ, YZ=QR, ZX=RP

BCD collinear, THEN AXYZ=APQR

B C D AECEF collinear Isosceles

Goal: IF XY=YZ

LBAC=4DEC THEN /YXZ=/YZX

Figure 16.1. Geometry domain: examples of a problem and domain
rules

If there is a control choice node, XY=YZ

IF XY=YZ,WY=YYV, collinearXYZ,
collinearVYW
THEN
X Z LXYW=LZYV,AXYWmAZYYV,
LXWY=LZVY, LWXY=LVZY,
A"/ XW/HA/VZ, XW=ZV

w

Figure 16.2. An example of perceptual-chunk (which can be useful
in solving Problem 1 of Fig.16.1)

ments and the existence of a segment respectively. Domain rules
are general knowledge describing the natures of geometrical ob-
jects. Figure 16.1 shows an example of a geometry problem as
well as two examples of domain rules. Figure 16.2 is an example
of a perceptual chunk, which says, ‘When there is a fact (con-
trol decision node) such as segment XY = segment Y Z, try to
apply the domain rule of Triangle-Congruence to the fact prefer-
ably, and subsequently apply the designated macro-operator if
possible.’

2.2 EBL as a learner in geometry

Various versions of EBL systems have been proposed as a tech-
nique for learning search control knowledge. Experiments with
a STRIPS-like pure EBL technique (Minton, 1985) confirmed
that problem solving efficiency degrades remarkably as macro-
operators are learned, which is caused by the two limitations of
these earlier EBL systems. One is the limitation of the ways
of selecting what to learn, i.e. their target concepts were essen-
tially the same as the goals of the problem solving traces (as in
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(Fikes et al. 1972; Mitchell et al. 1983)). The second is the lack
or deficiency of utility measures for storing only useful macro-
operators. Some methods had no measure (Fikes et al. 1972;
Minton 1984) and others merely had a simple measure (Minton
1985). The PRODIGY system (Minton et al. 1989) addresses
these two problems by providing four kinds of meta-level tar-
get concepts (i.e. ‘succeeds’, ‘fails’, ‘sole-alternative’ and ‘goal-
interference’) and by evaluating the cost-effective utility of the
learned control knowledge (Minton 1990) over a series of expe-
riences of solving other problems.

However, in the domain of geometry problem-solving, learn-
ing from ‘fails’, ‘sole-alternative’, and ‘goal-interference’ will not
lead to useful knowledge, because there may be no positive rea-
son why a choice leads to a failure, and there may be no problem-
solving phenomenon corresponding to sole-alternative and goal-
interference in this domain where facts increase monotonically
in the problem space as reasoning proceeds. This is unlike task
planning where applications of operators successively change the
state of the reasoning target. Consequently, it is only ‘succeeds’
that may work well in the domain of geometry problem-solving.
This means again that the target concept is essentially the same
as the goal node of the problem. So, the EBL technique cannot
go beyond the first limitation mentioned above in this domain.

In the fourth section, we will examine the operationality of
the knowledge learned by EBL, based on the experimental data
in solving geometry problems.

3 THE PCLEARN SYSTEM
3.1 The learning concept

In order to address the problems mentioned in the previous
section for the purpose of learning a useful set of perceptual-
chunks from problem-solving traces, we proposed a new learn-
ing concept quite different from the ‘goal-orientedness’ of EBL;
PCLEARN acquires, for each control decision node in the problem-
solving traces, an assembly of diagram elements that are visually
recognizable and grouped together with the control decision node
as a chunk. It then learns the macro-operator information in-
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Input
Training Example : each control decision node
Domain Rules . knowledge represented as production rules
Chunking Criterion : ‘“‘recognition rules”

Output
The pair of a control decision node and the relevant perceptual-chunk
with macro-operator information.

Figure 16.3. The specification of PCLEARN chunking technique

cluded in the chunk as search control knowledge.

For that purpose, PCLEARN has a criterion for determin-
ing which portion of the problem diagram is recognizable and
grouped together with each control decision node. The criterion
is a set of ‘recognition rules’, domain-specific knowledge which
describes the necessary conditions for a domain object to be
recognizable. These take the following form;

recognizable(Obj):- recognizable(Obji), ..., recognizable(Objn),
a(0bj,...,0bjn).

In order for Obj to be recognizable, all the objects Obj; through
Objn must be recognizable and also an additional condition
a(0bjy, ...,0bjn) has to hold. «(Obji,...,0bjn) is a relation
between the argument objects and/or the objects composing the
argument objects. The precise procedure for acquiring perceptual-
chunks by use of these recognition rules is shown in the Sec-
tion 3.3.

The specification of PCLEARN perceptual chunking is sum-
marized in Figure 16.3. PCLEARN selects training examples
from the problem-solving traces according to the definition of
control decision node. Control decision nodes are nodes that are
members of the successful proof tree for which there is at least
one tested domain rule which has been found to be applicable
when the other tested ones were not. The output of PCLEARN
is the pair of a control decision node and the perceptual chunk
relevant to that node with macro-operator information telling
what domain rules should be subsequently applied to that node.
The learned knowledge can be regarded as a counterpart of ‘pref-

erence rules’ (Minton et al. 1989) of the PRODIGY system.

425



LEARNING PERCEPTUALLY CHUNKED MACRO OPERATORS

3.2 The overview of PCLEARN
The PCLEARN system includes the following modules;

¢ A domain-independent problem solver. This deals
with the task of proving a fact that holds in a given assem-
bly of domain objects when a set of other facts is known
to hold, e.g. theorem-proving or diagnosis, using domain
rules as well as search control rules. Domain rules are
general domain knowledge. They are represented as pro-
duction rules which have preconditions (sets of facts) in
the IF part and a conclusion (a fact) in the THEN part.

e Chunking facility. PCLEARN’s chunking method is ex-
plained in the previous section.

The problem solver’s search is conducted by repeating the
following decision cycle until the goal node is derived;

1. A node in the search tree is chosen. A node represents a
fact which has been given or proved to hold in the problem
space.

2. Domain rules (or search control rules) which can be ap-
plied to that node in a forward direction are searched for.
The domain rule applicable in a forward direction to a
node is the one which has an element of the IF part unifi-
able to that node and whose other elements in the IF part
can also be unifiable to the already existing facts.

3. If there is no applicable domain rule, go back to 1 and
select another node. If there is one, add a new parent
node(s), representing the instantiated fact of the THEN
part of the domain rule, whose children are the nodes rep-
resenting the set of facts in the IF part. Unless the new
node is unifiable to the goal node, go back to 1.

3.3 Algorithm for PCLEARN chunking

In creating a perceptual-chunk for a domain rule which is suc-
cessfully applied to a control decision node, PCLEARN first
identifies all the recognizable domain objects included in the
rule.? It then enumerates all the recognizable features of these

2This rule is denoted as SAR (Successfully Applied Rule) in this paper.
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recognizable(X).- recognizable(s(X,Y)).
recognizable(s(X,Y)):- recognizable(a(X,Y,Z)).
recognizable(s(X,Y)):- recognizable(tr(X,Y,Z)).
recognizable(s(X,Y)):- recognizable(X), recognizable(Y), exist(s(X.Y)).
recognizable(s(X,Y)):- recognizable(X), recognizable(Y), collinear(X.Z.Y).
recognizable(a(X,Y,Z)):- recognizable(s(X,Y)), recognizable(s(Y,Z)).
recognizable(tr(X,Y,Z)):-

recognizable(s(X,Y)), recognizable(s(Y,Z)), recognizable(s(Z,X)).
where s(X)Y) -- segment XY, tr(X,Y,Z) -- triangle XYZ, a(X,Y,Z) -- angle XYZ

The literals underlined are additional conditions.

Figure 16.4. The set of recognition rules in geometry

objects. This produces a perceptual chunk which is the assem-
bly of the objects with their features. Recognition rules are used
in the first process.

Figure 16.4 is the set of recognition rules in the geometry
domain. Points, segments, triangles and angles are the domain
objects in this domain. The first rule states that a point X
is always recognizable when a segment XY is found to be rec-
ognizable because X is a constituent member of XY . In gen-
eral, when an object is already found to be recognizable and
we want to prove the recognizability of another object which
is a structural constituent member of the former object, we do
not need any additional conditions. The first three rules in Fig-
ure 16.4 belong to this category. On the other hand, when we
prove the recognizability of an object from the other objects
which compose that object, we need some (sometimes no) addi-
tional conditions. For example, when we prove the recognizabil-
ity of segment XY from the recognizabilities of the two points
X and Y, an additional condition is needed, i.e. the segment
XY actually has to exist in the problem space(corresponding
to ezist(s(X,Y)) in Figure 16.4), or two segments s(X, Z) and
s(Z,Y) have to be on the same line for another point Z (cor-
responding to collinear(X,Z,Y) in Figure 16.4). The last two
recognition rules are examples where no additional condition is
needed by chance, although they belong to this category.

3.3.1 Step 1: Picking up recognizable objects.

The first step is to enumerate all the recognizable objects rele-
vant to a control decision node. The procedures are
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a(b,a,c)=a(d,e,c)
a(c,a.b)=a(d,e,f)
a(c,f,d)=a(d,e,f)

collinear(e,c,f) a(dfe)=ald.e a(c,a,b)=pa(c,f,d)

Domain rule
Cong-by-2Side-1Ang ~<

Figure 16.5. The successful proof tree of Problem 1 of Fig.16.1

1. to assert that all the objects which appear as the argu-
ments of the literals in the SAR are recognizable, and

2. to enumerate all the objects which can be proved as rec-
ognizable, using recognition rules.

Figure 16.5 is a successful proof tree of the Problem 1 in
Figure 16.1. The underlined nodes are the control decision
nodes. Here, the learning process for the control decision node,
AC = CF, is illustrated. The SAR for this control decision
node is Cong-by-2Side-1Ang. First, the objects appearing in this
SAR, s(b,c), s(a,c), s(c,d), s(f,¢), a(b, ¢, a),a(d,c, ), tr(a,b,c)
and tr(f,c,d), are asserted to be recognizable. Then, by use of
the recognition rules, the following objects, q, b, ¢, d, f, s(a,b),
s(d, f), s(b,d), s(a,f), a(b,a,c), a(b,a, f), a(a,b,c), a(a,b,d),
a(d, f,c), a(d, f,a), a(f,d,c), a(f,d,b), a(b,c, f) and a(a,c,d)

are justified to be recognizable.

3.3.2 Step 2: Enumerating recognizable features.

The second step is to derive from the problem-solving traces all
the recognizable features of the above recognizable objects. The
procedures are

1. the literals appearing in the SAR are recognizable,

2. the literals of the additional conditions which appeared
in the recognition rules used successfully for proving the
recognizability of objects in Step 1 are recognizable, and
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3. all the features that can be derived from the above recog-
nizable literals using domain rules are recognizable.

What we have obtained so far is the derivation tree (the third
procedure of Step 2). Note that the derivation tree itself repre-
sents a piece of macro-operator information that can be applied
to the same control decision node in future problems. The lowest
nodes of the tree are the IF-part of the macro-operator and the
other nodes are the THEN-part. If we notice that the macro-
operator has been derived only from the recognizable features
that have been determined by use of recognition rules, the sig-
nificant role of recognition rules in chunking the macro-operator
may be clear.

Let us look at the example case of learning from AC = C'F
in Figure 16.5. The recognizable literals to be picked up before
the derivation process are shown in Fig. 16.5 as the nodes col-
ored grey, out of which the literals that have been incorporated
as a result of using recognition rules (the 2nd of Step 2) are
collinear(a,c, f), collinear(b, ¢, d), exist(s(a,b)), exist(s(d, f)).
The first two have been picked up because they appeared in the
recognition rules used for proving the recognizability of the ob-
ject s(a, f) and s(b,d) respectively. Out of these four, the last
two will not be used in the derivation process and therefore will
be removed from the macro-operator.

Note that owing to the existence of some additional condi-
tions in the set of recognition rules, the learned macro-operator
becomes more specific® than the SAR itself. In case of the above
example, incorporating the two collinearities has been significant
in obtaining a perceptual-chunk of the two congruent triangles
located in a completely point-symmetry (the one in Figure 16.2),
which is more specific than the two merely congruent triangles.

3.3.3 Step 8: Generalizing.

The final step is to generalize each node of the acquired deriva-
tion tree by dissolving the bindings of the variables of the used

3This specificity directly influences the operationality of the learned
perceptual-chunks. In this sense, recognition rules play a crucial role in
determining the chunked area.
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Table 16.1. Assignment of problems to training and test sessions

Sessions Category | Category 2 Category 3

Learning 7 7 6
Test 3 4 3

domain rules. The generalized tree itself represents a macro-
operator that has been learned for the control decision node. In
the case of the above example, the one in Figure 16.2 is acquired.

We call this sort of macro-operator a perceptually-chunked
macro operator because the recognition rules work as a percep-
tual criterion for determining the area to be chunked out, just
as human experts might do visually.

4 EXPERIMENTAL RESULTS
4.1 Method of experimentations

For simplicity, we divided the experiments into two sessions; a
training session where problems are solved without using learned
search control knowledge and learning is conducted for each
problem, and a test session where problems are solved by use of
search control knowledge obtained from the training session and
no new learning is performed. We selected 30 geometry prob-
lems from some reference books on geometry, 20 of which are
assigned to the training session and 10 are assigned to the test
session. The problems we selected are limited to three problem
categories; congruence (and/or similarity) of triangles (Category
1), natures of isosceles and right-angled triangles (Category 2)
and natures of quadrilaterals (Category 3). The numbers of
the problems selected for each category and assigned to the two
sessions are shown in Table 16.1.

In selecting problems, we paid attention mainly to two issues.
The first is that the numbers of training problems selected for
the three categories should be approximately equal. This is in
order to avoid problem selection in terms of categories for the
training session which may cause the bias that certain percep-
tual chunks are learned more frequently, obscuring the issues of
consistency in perceptual chunks across problems. The second
is that the numbers of the test problems should also be approxi-
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Table 16.2. Frequencies of the same perceptual-chunks being learned
from many problems '

The number of perceptual-chunks

Frequencies of

being learned PCLEARN EBL
1 43 86
2 9 7
3 5 0
4 3 1
more than 4 4 0
total 64 94

mately equal in the three categories because the problems in the
three categories should be equally tested using macro-operators.

4.2 Operationality of macro-operators

In this chapter, operationality of macro-operators is measured
by the frequency at which each of the macro-operators is ac-
quired from the problems in the learning session and applied to
the problems in the test sessions. We investigated it in both
cases of the EBL learner which learns from ‘succeeds’ and the

PCLEARN system.

Table 16.2 shows the frequency at which macro-operators
with the same diagram configuration are acquired during solving
20 problems in the training session. It seems to be quite a rare
case that the EBL learner acquires the same set of perceptual
chunks from different problems. On the other hand, PCLEARN
learns several kinds of perceptual chunks more frequently in dif-
ferent problems.

Table 16.3 shows the results of the frequency at which those
learned macro-operators are successfully applied to problems in
the test session. The macro-operators of the EBL learner were
applied 15 times, out of which 13 were successful, while the
macro-operators by PCLEARN were applied 44 times, out of
which 39 applications were successful. Success rate is about the
same with both learners but the frequency is much larger in
PCLEARN.

Table 16.4 shows the percentage of the nodes which were re-
lated to applications of macro-operators against all the nodes
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Table 16.3. Frequencies of applications of the learned knowledge

Frequency PCLEARN EBL

Total applications 44 15

Successful applications 39 13
(ratio) (89%) (87%)

Table 16.4. The ratio of the nodes related to applications of macro-
operators against all the nodes in a proof-tree (average over all the
test problems)

PCLEARN EBL
Mean (%) Max. (%) Min. (%) Mean (%) Max. (%) Min. (%)
67.5 86.0 38.0 30.0 80.0 0

in the successful proof tree, i.e. a measure of how much macro-
operators contribute to constructing a proof-tree in the test ses-
sion. The shown data (mean, maximum and minimum) are
statistics over all the test session problems. The degree of the
macro-operators’ contributions to constructing proof-trees are
larger in using PCLEARN macro-operators.

According to the data on cross-problem learnability (Table
16.2), successful applicability (Table 16.3) and the degree of
contribution to proof-trees (Table 16.4), an answer to the em-
pirical question mentioned in the first section is that there is lit-
tle consistency in goal-structure across geometry problems while
there is indeed cross-problem consistency in perceptual chunks,
i.e. in the domain of geometry, ‘perceptually-chunked’ macro-
operators have higher operationality than ‘goal-oriented’” EBL
macro operators and hence PCLEARN is more appropriate to
this domain than EBL.

Table 16.5 shows an explanation why goal-oriented macro-
operators have low operationality. The average size of the ap-
plied macro-operators weighted with the frequency of appli-
cations is compared with the average size of all the macro-
operators learned in the training session®. Expert-selected macro-

4We define that the size of a macro-operator is the number of its IF part
elements, a measure reflecting the ease of finding appropriate instantiations
of its preconditions.
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Table 16.5. The average sizes of all the learned and applied macro-
operators '

Range of average EBL PCLEARN Expert-selected
All the learned macros 5.1 39 32
The applied macros 29 2.5 3.1

operators in the third column are the ones which are carefully
selected by a geometry expert from among the set of perceptual
chunks PCLEARN has acquired. In general, a large difference
in both quantities means that a group of macro-operators with
a certaln size is not applicable. However this may cause consid-
erable costs in testing to apply them in vain. In the case of the
EBL macro, the average size of all the macro-operators is much
bigger than that of the others which were actually applicable.
This is mainly because the EBL learner acquires a chunk from
all the paths from each control decision node to the goal of the
problem and hence the learned macro-operators tend to be too
big in size to be applied to the control decision nodes of future
problems. The experimental data suggest that more localized
small macro-operators, around control decision nodes which are
not always goal-oriented, would have higher operationality in
geometry domain.

From all this discussion, we conclude that the PCLEARN
chunking module is superior to the typical EBL technique as a
method for learning perceptual chunks in the geometry domain,
and also that recognition rules are effective as an operationality

criterion for determining the area of problem-solving traces to
be chunked out.

4.3 Learning performance results

Previous experiments have revealed that macro-operator learn-
ing has some distinct (both positive and negative) effects on
the search process. These reflect two sides of the same coin.
The major good effect is referred to as the ‘re-ordering effect’
(Minton 1990); the domain rules encoded as macro-operators
are tried before other rules which might be tried first if there
were no macro-operators, and consequently unsuccessful search
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Table 16.6. Reduction of the explored nodes by use of macro-
operators as well as frequencies of macro-operator applications, in
four macro modes

Problem  Without macros EBL PCLEARN Expert-selected
No. Expl. Suc. Tot.  Expl. Suc. Tot. Expl. Suc. Tot. Expl. Suc. Tot.
1 33 - - 33 0 0 4 7 7 12 4 4
2 10 - - 100 1 1 5 4 4 5 4 4
3 0o - - 23 2 4 7 2 2 7 2 2
4 9 — — 18 2 2 15 8 8 19 2 2
5 12 - - 11 2 2 9 4 4 9 2 2
6 17 - = 15 2 2 15 3 3 15 2 2
7 17 - - 17 0 O 7 2 2 7 2 2
8 4 - - 1 2 2 12 3 6 10 3 3
9 g - - 4 2 2 8 2 4 4 1 1
10 5 - - 15 0 O 8 4. 4 7 3 3

Expl. -- The number of the explored nodes in the proof tree
Suc. -- Frequencies of macro-operators being applied successfully
Tot. -- Total frequencies of macro-operators being applied

will be put off later or sometimes left out. This reduces the
search space.

Another negative effect is ‘increased matching cost’ (Minton
1990). As the number of macro-operators increases, the po-
tential frequencies of testing domain knowledge (domain rules
and macro-operators) at each control decision node also in-
creases; if no macro-operators are applicable at a control de-
cision node, the problem solver will have to resort to its domain
rules, which means that the matching cost in considering the
macro-operators was unnecessarily consumed. The number of
bindings for each precondition of a domain rule is especially
large in domains like geometry. Thus increased matching cost
produced by macro-operators severely affects the performance.

The third effect, which also tends to degrade performance, is
unsuccessful macro-operator application. The way PCLEARN
applies macro-operators is not in goal-oriented search control
but in a more local, opportunistic search control. This may
sometimes guide the solution search in the wrong direction,
which will increase the search space as a whole.

We investigated the above three effects in solving 10 test
problems using the following four macro modes; with no macro-
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operators and with each of the three sets of macro-operators
mentioned in Table 16.5. A simple measure of the search space
explored by the problem solver is the number of nodes to which
the problem solver applied domain knowledge (domain rules
and macro-operators). Table 16.6 shows the numbers of the
explored nodes in solving 10 problems in each of the four macro
modes, together with the statistics about all the applications
of macro-operators and successful applications. It is observed
that in all three macro-modes the search spaces are reduced (i.e.
‘re-ordering effect’), compared to no macro mode. There are
some exceptional cases of unsuccessful macro-operator applica-
tions. Especially the PCLEARN macro-operators contributed
much more to reducing the search space than the EBL macro-
operators did. In order to reduce the search space considerably,
problem solvers need a set of macro-operators with operational-
ity higher than a certain threshold. The PCLEARN macro-
operators exhibit a relatively high percentage of success, 89%.
The ideal value 100% is seen in the case of Expert-selected-
macro mode (see Table 16.6). This shows that the third effect
mentioned above is just a minor one in the PCLEARN system.

Table 16.7 shows the experimental data of ‘matching costs’
(the total cost, the cost of domain rule matchings and the cost
of macro-operator matchings) when solving the test problems in
the four macro modes. In EBL-macro mode, the cost of macro-
operator matchings is extremely large compared to the total cost
in No-macro mode. This is mainly because a large number of
inapplicable macro-operators with relatively large IF sizes (refer
to Table 16.5) were unnecessarily tested.

In PCLEARN-macro mode, the cost of domain rule match-
ings is smaller than that in No-macro mode, due to the reduction
of the search space by the re-ordering effect using PCLEARN
macro-operators which have relatively high operationality. How-
ever, the cost of macro-operator matchings still exceeds the re-
duction amount of the cost of domain rule matchings, and hence
the total cost does not pay in all the test problems compared
to No-macro mode. Expert-selected macro-operators are ones
which have been obtained by eliminating some of the PCLEARN
macro-operators (as mentioned before) which do not satisfy sim-
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Table 16.7. Matching costs in solving the test problems in each of
the four macro-operator modes

Problem  Without macros EBL PCLEARN Expert-selected
No. Tot. Rule Macro Tot. Rule Macro Tot. Rule Macro Tot. Rule Macro

1 477 477 0 3889 841 3048 629 278 351 329 199 130
2 67 67 0 1052 57 995 110 14 96 44 11 31
3 45 45 0 1060 162 898 131 32 99 59 26 33
4 87 87 0 1205 159 1046 198 35 163 267 121 146
5 33 33 0 660 53 607 112 34 78 35 21 14
6 170 170 O 621 100 521 305 75 230 169 67 102
7 81 81 O 541 117 424 103 32 71 57 31 26
8 98 98 O 941 173 768 318 130 188 137 86 51
9 54 54 O 92 5 87 150 52 98 15 6 9
10 106 106 O 1506 175 1331 168 79 89 66 39 27
Tot.  -- The total cpu-time cost taken in solving the problem

Rule -- The cpu-time cost taken for domain-rule matchings
Macro -- The cpu-time cost taken for macro-operator matchings (unit: sec)

ple requirements such as successful applicability and cross-problem
learnability. This elimination contributed to reducing the cost
of macro-operator matchings considerably (ranging from 20%
reduction to even 90%) and thereby reducing the cost of do-
main rule matchings marginally. Consequently, in some of the
test problems, the total cost is less than the cost in No-macro
mode.

However, there are still some problems in which even the
use of the Expert-selected macros does not pay in terms of the
total matching cost. This is an issue to be addressed. From
the data of Tables 16.6 and 16.7, in all the problems (No. 1, 2,
7,9, 10) where the use of macro-operators pays, the reduction
ratio of search space is more than 50%. This data shows that
since the cost of macro-operator matchings is inevitable, the
only way to minimize cost using macro-operators is to use those
macro-operators which are empirically promising and give great
re-ordering effects. For that purpose, we need to manage the
utility of each macro-operator dynamically (as in Minton 1990).
This must be based on empirical data of how frequently each
macro-operator can be successfully applied to problems and in
how many nodes of each of the applied macro-operator sequences
re-ordering effects are expected.
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5 FUTURE WORK

The experiments show that PCLEARN provides a method of
learning perceptual chunks with high operationality. However,
in order to obtain a small and highly organized set of cost-
saving perceptual chunks further study must be made on 1) the
mechanism of collecting empirical data of operationality and re-
ordering effects for each macro-operator and 2) managing the
utility of macro-operators dynamically. PRODIGY addresses
this problem (Minton 1990). This is one of the areas we intend
to study with a perceptual-chunking learner.

The PCLEARN chunking mechanism must be compared with
other goal-structure-based learning methods like SOAR (Laird
et al. 1987) and compilation of ACT theory (Anderson 1983)
in terms of operationality and dynamic utility of learned search
control knowledge. The characterization of learning mechanism
is that problem solvers learn knowledge of how to satisfy the
subgoals the solvers have established during problem solving,
i.e. chunking all the lower subgoal structures of the target sub-
goal. If we applied this method to the domain of geometry,
the learning procedure would be as follows. Problem solvers
establish a subgoal for finding a domain rule which can be suc-
cessfully forward applied to a control decision node and then
chunk all the necessary conditions for deriving each precondition
of the domain rule which was actually applied to the decision
node. This mechanism may chunk quite a different range of the
problem solving traces from a chunking mechanism which uses
‘recognition rules’.

Finally, we have to examine the generality of the PCLEARN
perceptual chunking mechanism. Currently, domain indepen-
dentness is assured if PCLEARN deals with tasks of reasoning
within structured objects that satisfy the requirement of mono-
tonicity of the derived facts. A candidate task in which the
extension of this method has to be examined might be in design
and/or planning tasks where operator applications will change
the state or forms of the domain objects, producing domain
objects unseen at the initial state of reasonings. The two key
requirements that have to be retained even in this extension are
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the following. Firstly all the kinds of domain objects which will
potentially appear in the reasonings have to be listed in advance.
Secondly recognition rules holding between those objects can be
explicitly described as domain-specific knowledge.

6 CONCLUSION

We proposed a new technique of learning search control knowl-
edge from problem solving episodes by the perceptual chunking
mechanism. This approach is quite different from the ‘goal-
oriented’ principle in EBL. Our method learns control knowl-
edge that guides problem-solving search at a control decision
so that the solver can recognize locally a perceptual chunk rel-
evant to the node. The learned knowledge consists of chunks
which are assemblies of diagram elements that can be recogniz-
able and grouped together with the control decision node. In
order to implement chunking, PCLEARN employs recognition
rules, domain-specific knowledge describing the necessary con-
ditions for a domain object to be recognizable.

In this chapter, experimental results of solving and learning
from 30 geometry problems were presented for comparing both
the goal-oriented EBL technique and the PCLEARN technique
in terms of operationality of the learned knowledge and perfor-
mance improvement by use of them. In the domain of geometry,
there is little consistency across many problems in goal struc-
ture, but rather a lot of cross-problem consistency in perceptual
chunks primarily. Reflecting the intrinsic nature of the geome-
try domain, perceptually-chunked macro-operators, have higher
operationality than goal-oriented EBL ones, which tend to be
too large to be applied to problems. In this respect, the EBL
technique does not work well in this domain.

‘Recognition rules’ are useful because they produce search
control knowledge with high cross-problem learnability, a high
percentage of successful applications, and high contribution to
proof-trees construction. The learned knowledge has a re-ordering
effect on the search process which reduces the search space con-
siderably. However, the cost of macro-operator matchings, a
negative effect, cannot be neglected because some of the learned

438



M. SUWA AND H. MOTODA

knowledge is inevitably not operational. So, a key issue in fu-
ture research is how to obtain a small and highly organized set
of perceptual chunks by eliminating ones with low utility and
selecting ones with large re-ordering effects. This requires that
we add to the current framework a mechanism for empirically
measuring the utility of each perceptual chunk.
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