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ABSTRACT: 1t is difficult, even for an expert, to fully understand the behavior of a complex sys-
tem. One can view a system at different levels of abstraction based on the system’s functional
structure. The way we understand a complex system is mostly hierarchical. This paper presents a
method of hierarchical representation in a complex system. This method enables acquisition and
simultaneous utilization of knowledge that is expressed in multiple levels with different abstrac-
tions based on approximations. A new method is proposed, which is an extension of the existing
explanation-based learning method, to support the construction of a consistent hierarchical
knowledge base that complies with the proposed representation scheme. Examples are taken
from the domain of analog/digital circuits to explain the proposed representation and the method
of constructing a consistent hierarchical knowledge base. The use of the hierarchical knowledge
base for problem solving is also discussed.

1. INTRODUCTION

It is difficult, even for an expert, to fully understand the behavior of a complex system.
One can view a system at different levels based on the system’s functional structure.
Furthermore, he tries to identify the role of each part in the working mechanism of the
system. He then identifies a given set of elements as a meaningful composite and re-
gards it as a single entity. A complex system is most often understood and described as
a hierarchy.

Hierarchical knowledge representation is needed to realize the way an expert under-
stands a complex system. Qualitative reasoning can be regarded as a method to express
physical systems (de Kleer, 1984; Williams, 1984; Kuiper, 1986). The need for a hierar-
chical approach in describing a complex system has previously been addressed in an
early phase of the related research (Patil et al.,, 1981; Bylander & Chandrasekaran,
198S5). In this work the concept of hierarchy is based on the difference in the degree of
approximation in functional descriptions. The work of Doyle (1986), Bennett (1987),
Mozetic (1987), and Falkenhainer and Forbus (1988) are the important prior research
related to this issue. These studies simplify the described system by using various
approximations.

Little effort has been made to construct a consistent hierarchical knowledge base.
Almost all of the work related to this issue has relied on user effort to achieve a consis-
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Figure 1. Knowledge structure of a complex system.

tent knowledge base. Component consistency is very important. For example, a knowl-
edge compilation method can be used to derive a diagnostic system from a hierarchical
knowledge base (Sembugamoorthy & Chandrasekaran, 1986), but inconsistency be-
tween each hierarchical level will result in either a wrong answer or the lack of an an-
swer. Also, a top-down refinement design system (Steinberg, 1987) can be developed
using a hierarchical knowledge base. The problem of inconsistency in this case is that
the system cannot refine a design plan if the knowledge base does not maintain a con-
sistent relationship between each hierarchy.

Two important issues arise when constructing a consistent hierarchical knowledge
base. First, information about approximations used at each level should be stored and
retrieved as necessary. Without this information, contradictions introduced by approx-
imations between different levels decreases the functional ability of the knowledge
base. Second, complex systems have many aspects, and there are many domain theories
to apply to each aspect. Representation methods should be clearly expressed in order to
manipulate this information.

The primary objective of this research is to develop a method for hierarchical repre-
sentation of a complex system which maintains consistency among the representations
in each level of the hierarchy. This method is an extension of the existing explanation-
based learning method (Mitchell et al., 1986; DeJong & Mooney, 1986), and is appli-
cable to an intractable domain theory.

The proposed hierarchical representation scheme is described in the next section to-
gether with the knowledge acquisition method to support the construction of a consis-
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tent hierarchical knowledge base. The use of this hierarchical knowledge base for
problem solving is also discussed. Some acquired knowledge is explained in section 3
as well as the detailed acquisition process to show how this scheme represents the
knowledge. Section 3 also explains how a computer program constructs a consistent hi-
erarchical knowledge base using an EBL-like method.

2. DESCRIBING A SYSTEM BY HIERARCHICAL REPRESENTATION

2.1 General Framework of Hierarchical Knowledge Representation

The knowledge structure of a complex system is shown in Figure 1. Complex systems
have many aspects, as well as many applicable domain theories. In this figure, ellipses
on the left represent the functional description of a complex system. In the domain of a
digital circuit, these ellipses represent the functional description of various aspects. For
example, there are three aspects in the case of a NOR circuit (Figure 7, explained be-
low). The lowest ellipse represents the analog behavior of the circuit. It includes equa-
tions which describe some aspect of the physical principles that hold in the circuit (e.g.,
Ohm’s law, Kirchhoff’s law, and the relationship between voltage and current of the
transistor node). The second lowest ellipse represents the behavior of switches. Each
transistor can be seen as a switch. The knowledge at this level is the behavior of each
switch and its connections. The uppermost ellipse represents the logical behavior of the
NOR circuit (which is derived from the switches). Hierarchical knowledge of a complex
system consists of these types of knowledge. Here, the concept of deep/shallow is based
on the difference in the degree of abstraction which are treated as approximations in the
functional description.

Considering any two adjacent levels, the upper level knowledge (shallow knowl-
edge) can be regarded as the specification, and the lower level knowledge (deep knowl-
edge) can be regarded as the implementation. This nature is recursive; the description of
some knowledge level can be regarded as a set of specifications of the deeper level
knowledge, and also can be regarded as the implementation of the shallower level. For
example, a switch (specification) is implemented by a transistor (implementation) and a
NOR circuit (specification) is implemented by three switches (implementation).

The ellipses on the right represent the task dependent knowledge. Sembugamoorthy
and Chandrasekaran (1986) developed a method to compile task dependent knowledge

Deep Knowledge Shallow Knowledge
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Figure 2. Approximation process.
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from a functional description. In conventional usage, shallow knowledge refers to task
dependent knowledge, and deep knowledge refers to a functional description. The
words “deep” and “shallow™ are used to distinguish between functional hierarchies in
this paper. In both cases, shallow knowledge can be constructed from deep knowledge
using additional information. Conventional shallow knowledge is constructed using the
task knowledge as this additional information; however, the information about approx-
imations is used in this study. This paper is limited to the hierarchy of the functional de-
scription and the related issues. The approximation process, which concerns the
knowledge hierarchy, is shown in Figure 2.

The lower/deep knowledge in Figure 1 assumes less approximation, the upper/shal-
low knowledge is transformed from the deep knowledge by introducing some new ap-
proximations. In this study, approximations are processed in two steps. First, some
assumptions are added to the deep knowledge, depending on the function of the whole
or a part of the system. Next, a logically correct transformation is performed to make
the shallow knowledge.
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Specification Implementation
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Specification and Implementatio Approximations
Simulation Design Diagnostic
Syste: System System
Generate Whole Hierarchy Refine Spec. in Top Down Manner Check I/O Relations
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Figure 3. Hierarchical knowledge base in problem solving.
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The shallow knowledge generated through this process is easy to use compared to
the corresponding deep knowledge. The tasks which can be performed with this shallow
knowledge will use it efficiently. The need for deep knowledge still remains, as it is a
source of more detailed information. Also, information about the assumptions and the
transformation is needed to check the correspondence between deep and shallow
knowledge.

2.2 Hierarchical Knowledge Representation and Problem Solving

Problem solving schemes using a hierarchical knowledge base are explained in Fig-
ure 3. The output of the acquisition system is regarded as a set of consistent relation-
ships between the specification (shallow knowledge) and the implementation (deep
knowledge) at multiple levels. The entire hierarchy can be constructed from the deepest
level implementation using these relations.

In a simulation system, the system can choose the appropriate knowledge level, de-
pending on its purpose. The shallow level simulation uses fewer computing resources
compared to the corresponding deep level simulation. In simulation whose purpose is to
predict a summary of the complex component’s behavior, the simulation system uses
the shallow level knowledge for efficiency. However, when the purpose is to obtain de-
tailed behavior, it must use deeper level knowledge. Simulation that simultaneously
uses multiple knowledge levels is also possible. The consistency of the knowledge base
is extremely important. Here, consistency refers to the explicit information about the
assumptions. With this information, the simulation system can eliminate meaningless
results which are based on contradictory assumptions.

The same information about assumptions is also required in the design system. With-
out this information, the top-down refinement design system cannot eliminate illegal
design plans that include contractions. This aspect of the design system. suggests a new
research issue: In order to achieve a top-down refinement design system with a hierar-
chical domain model that involves assumptions in lower level knowledge, an efficient
method should be developed to negotiate between contractions that come from various
assumptions. Most conventional design systems that use top-down refinement methods
propagate constraints which specify the function of the lower level parts. These con-
straints are kept in the following lower level design process. Steinberg (1987) studied
this constraint propagation. When the hierarchical domain model involves assumptions
in a lower level, the design system sometimes comes across a totally new requirement
in the lower level design process. The constraint propagation of this new requirement
seems to degrade system performance, so a new method for the propagation should be
developed. However, this is beyond the scope of the current research. Also, to ensure
the functional ability of the design system, the implementation of each specification
should be stored in the knowledge base. Thus, in this case, the requirement for consis-
tency is even more important.

A simple diagnostic system checks the relations between input and output of the
components. Additionally, it checks information about the environment necessary for
the components to function. The assumptions recorded in the consistent knowledge base
correspond to this environment. Thus, a diagnostic system with this type of consistent
knowledge base clarifies (1) the cause of the malfunction and (2) the incorrect usage of
the component by checking the environment. A hierarchical knowledge base enables
top-down diagnosis and pinpoints the cause of the malfunction efficiently. The mal-
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functioning component is investigated further to find the exact cause of the malfunc-
tion. However, a knowledge compilation method with a hierarchical knowledge base
for the diagnostic system should be reconsidered in order to utilize the hierarchical/ap-
proximated nature of the component’s knowledge. This issue is also beyond the scope
of the current research.

2.3. A Knowledge Acquisition Method for a Consistent Knowledge Base

The configuration of a knowledge acquisition system' that supports the construction
of a consistent hierarchical knowledge base is shown in Figure 4. It includes a simu-
lation subsystem to check the behavior of the specification and the implementation of
the component. The output of this system is a set of consistent relations between deep
and shallow knowledge. Other elements are input to the system. The system acquires
consistent relations in the following manner:

1. First, the system selects the deepest level as the implementation level, and the se-
cond deepest level as the specification level.

2. The system receives the implementation and the specification of the component.

3. The system symbolically simulates the behavior of the component both in the
deep/implementation level and the shallow/specification level.

In the knowledge representation scheme, information about the relationship be-
tween data is stored in the implementation/specification level knowledge. For ex-
ample, each equation which represents some aspect of a physical principle
describes only the name of the relationship between physical data. Interpretation
rules describe the actual usage of relationships at each level, such as the qualita-
tive or the logical simulation rules. With these interpretation rules, the simulation
system can calculate the value of the data.

Initial conditions of the simulation are exhaustively generated for each datum,
if not specified.” The set of values is supplied as a part of the interpretation rules.

4. Deep level simulation sometimes fails due to ambiguity arising from a lack of
necessary information. For example, ambiguity of qualitative simulation is widely
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Knowledge Interpretation Rule Translation
Assumptlon
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Figure 4. Configuration of knowledge acquisition system.



Knowledge Representation Based on Approximation 111

known. If this happens, the system will generate an assumption to reduce ambigu-
ity, and ask a user for confirmation. User confirmation is needed to reduce the
search space of the assumptions.’

5. After the system finds the correspondence between behavior of both levels, the
EBL-like process generates a generalized relationship. Translation rules are used
in two ways. First, they are used to find the correspondence between behavior of
both levels. As there is sometimes a difference between the vocabulary of each
level, the translation rule converts the vocabulary to find a correspondence. After
the system gets user confirmation, translation rules are also used to perform log-
ically correct transformations.

6. If there is another knowledge level in the component, the acquisition process is
continued by returning to step 2 in the next level of the deep to shallow sequence.

After the system acquires enough relations between the deep and shallow knowledge,
the deepest level knowledge is sufficient to generate the entire hierarchical and consis-
tent knowledge base of a component. The EBL-like process used in the above steps has
the following distinguishing characteristics:

1. It is easy for a domain expert to distinguish between important parts of the com-
ponent. By acquiring the relations between the specification and its implementa-
tion from the basic to the complex parts, the expensive chunks which cause
degradation are naturally avoided. The knowledge of a complex component is de-
scribed using knowledge about the simpler components, each of which is recur-
sively constituted from further simpler components. Thus, the resulting chunk is
simpler than that made directly from knowledge about the simplest components.

Because of the characteristics of the pattern match that the system must use, a
long chunk excessively degrades the system performance. For example, receiving
the deep level equation A = B, and the generalized equation in the chunk X = Y,
the pattern matcher must check two correspondences: X =A,Y=Band X =B, Y
= A. This requirement affects the performance far beyond the linear increase.
Thus, a number of short chunks are better than a corresponding single long chunk.

2. The acquisition system can automatically check the necessary environment for the
chunk to be functional, using the information about the approximations. The as-
sumptions which are used in the approximation process correspond to this envi-
ronment.

3. The explanation of the implementation level behavior is extended to suppress
over-generalization that is introduced by the approximations. In the conventional
EBL process, the chunk is made using information about the dependency of the
resulting data on the input data. In our system, in addition to the conventional in-
formation, the dependency on data which are related to the assumptions is in-
cluded in the chunk.

3. APPLICATION TO CIRCUIT DESCRIPTION

This section uses the knowledge structure of analog and digital circuits and the acquisi-
tion process as examples to show how the proposed idea works.
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Figure 5. Knowledge structure of amplifier.

3.1. Resistor with a Bypass Capacitor (Analog Circuit)

The circuit shown in Figure 5, which is part of a radio circuit,* is used as a bias stabi-
lizer for temperature compensation. The deep knowledge equations describe the under-
lying physical principle of this circuit.’

The shallow knowledge describes the representative behavior of a resistor with a by-
pass capacitor and has no ambiguity. The qualitative simulation using these deep level
equations does have ambiguity. The acquisition system finds the relation between both
knowledge types by checking the correspondence of behavior between the two levels.

After starting the behavior simulation in the deep level induced by an increase in 7,
it instantly gets stuck because it does not know how to propagate the change in I, in
equation (4). To suppress ambiguity, the assumption “/_is negligibly small” is needed.
With this assumption, the translation rule, shown in Figure 6, can make a new shallow
level equation, I, = I, so no ambiguity remains there.

The qualitative simulation using both levels of knowledge has no ambiguity, and
negative feedback is detected as shown by

It LRt vitls veils vels i t= 0, negative feedback
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Figure 6. Knowledge acquisition process.

This process can be simulated using the equations and the interpretation rules. This
negative feedback is necessary behavior for this analog circuit to have bias stability
with temperature change. Thus, equation (11) in Figure 5 can be regarded as a specifi-
cation of this circuit.

After the system finds the correspondence between behavior in two adjacent levels,
the EBL-like process generates a relation between both levels using the equations which
were used in the simulation processes. With this new relation, the system can recognize
negative feedback of the behavior of circuits with the same structure. One important
point here is that this relation includes information about the simulation of I's value,
that is, equations (1, 2, 3, 10). This information is included in the chunk that is the
conditional part of the relation shown in Figure 5, because /.. is related to the assump-
tion “I is negligibly small.” Using this information, the system can distinguish this type
of circuit from a similar circuit, such as an imaginary “resistor with a bypass coil.”

3.2 NOR Circuit (Digital Circuit)

Figure 7 shows a simple digital circuit which is made up of three transistors (one
pull-up and two pull-down). The bottom level is a world of analog circuits and its be-
havior is described by twenty-two qualitative equations. The second level is a world of
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Figure 7. Knowledge structure of NOR circuit.

switches and the behavior of this level is described by nine equations. The top level is a
world of logic. In the bottom level world, change needs a certain amount of time. In the
second and top level worlds, time is represented by a sequence of events. This example

has the following two important aspects:

1. The vocabulary and inferences of each level are completely different. Thus, the

system needs appropriate interpretation rules to perform the task in each level.
Translation rules are also required to find the correspondence of events which are

described using different vocabularies.
A step-by-step acquisition scheme is required. The top level logical behavior re-

quire a lot of computing resources, if they are to be computed using the bottom

level qualitative relations. However, this system first acquires the relationships
between the bottom level knowledge and the second level knowledge, and then
the relationships between the second level and the top level so that fewer comput-

ing resources are required.

The acquisition process for the relationship between the bottom and the second level
knowledge, “A transistor acts as a switch,” requires the knowledge about the qualitative
simulation that was used in the previous example in section 3.1. The following second
level knowledge and interpretation rules describe the world of the switch (pull-down

transistor).

Equation switch(base,in,out)

I. Rule If switch(base,in,out)
and base = [true] at time a
and in = $value at time a

Then out = $value at time b (next time of a)
If No driving input for data

and data = $value at time a
Then data = $value at time b (next time of a)

The following event sequences resulted from the simulation:
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at time t0 at time t1
base = [true] base = [true]

in = [true] in = [true]
out = [false] out = [true]
base = [false] base = [false]

in = [true] in = [true]
out = [false] out = [false]

The bottom level simulation can be performed using a qualitative reasoning tech-
nique. Thus, the interpretation rules are different from those for the second level.

Equation MOS Tr.1(Vb,Ve,le)
MOS Tr.2(Ve,le)
I. Rule Next Ve = Ve + Ve
If MOS Tr.2(V,])
and I = $value at time a
Then V = $value at time a

The results for the bottom level, as pointed out before, require a certain amount of
time for the change:

at time t0 at time t1’ at time t2'
base = [high] base = [high] base = [high]
in = [high] in = [high] in = [high]

out = [low] out = [middle] out = [high]

Assumptions that neglect the state during the change are introduced in the bottom
level to find the correspondence between the bottom and second levels. Also, transla-
tion rules are used to check the correspondence. For example, the following rule was
used to find the correspondence between the voltage and the true/false value.

If A = [high]
Then A = [true]

After the system finds the relationship between the transistor and the switch, it gen-
erates the description of other second level switches from the bottom level description.
Ambiguity still arises at the second level behavior concerning the direction of the
change in “Out” for “Base = [high].” In this case, both the pull-up transistor and pull-
down transistor are closed switches. A new assumption which specifies that the effect of
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Figure 8. Knowledge structure of carry circuit.

the pull-up transistor is negligible is needed to find the correspondence between the se-

cond level and the top level behaviors.

3.3 Carry Circuit (Digital Circuit)

Figure 8 shows part of an adder, which is a slightly more complicated digital circuit
than the NOR gate shown above. It receives three inputs, =K, =P, and C,, (Carry-in),
and produces one output, C . (Carry-out), where K and P are nor and xor of the two
one-bit inputs to the adder (Mead & Conway, 1980). The level of the approximation at
the bottom level where the behavior is described by forty equations is equal to that at
the second level of the NOR circuit. Finding that the effect of the pull-up transistors can
be neglected at this level, the system generates eight equations at the second level. The
second and the top level simulations can be started after assuming the initial values of
the above four variables. When the initial conditions are “K = P = [true], C,, =
[true]/[false] and C , = [false],” the result of the top level simulation gives “C,, =

[true],” and that of the second level simulation gives “C_, = [false].” From this result,
to ensure the top level speci-

the system concludes that it is necessary to precharge C_,
==K A ((P A C,)v -P).In this case, the initial value of C,, is the as-

fication C_,
sumption that is needed to make this carry circuit functional.
In the Figure 8 example, the acquired relation between the top level and second level

knowledge includes eight logical equations in the chunk When this relation is directly
learned from the transistor level knowledge (i.e., the bottom level of Figure 8), the
chunk includes 112 qualitative equations. As discussed in section 2.3, this long chunk
excessively degrades the system performance. By acquiring the relations between the
specification and its implementation, from the basic parts to the complex parts, the pro-
posed knowledge acquisition scheme avoids this expensive chunk. This is a clear exam-

ple that shows the advantage of this method.
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4. RELATED WORK

Prior to this work, the use of approximations was widely studies for intractable do-
mains. The work presented in this paper builds on this line of research.

Keller (1987) and Ellman (1988) improved efficiency of planners and learners by ig-
noring some search paths in game trees. Their work is closely related to our study.
However, these studies did not use an explanation structure to check the correctness of
learned heuristics for approximations. The learned heuristics must be examined in an
empirical manner. Tadepalli (1989), Mostow and Prieditis (1989), and Unruh and
Rosenbloom (1989) also aimed at improving the efficiency of planners and learners in
game domains by approximations. However, their work cannot be used directly in the
construction of a hierarchical knowledge base.

Bennett (1987) used approximations to simplify mathematical domain theory. His
approach used numerical information to ensure the correctness of the approximate solu-
tion. The present study generalizes approximation type from the numerical one to a
more general form. Doyle (1986) and Mozetic (1987) also used approximations to sim-
plify domain theory. Their domains are intractable, but have relatively simple struc-
tures. Their prespecified inference engine was enough to handle the domain theory,
without the additional information which is required as interpretation rules in our study.

Falkenhainer and Forbus (1988) investigated multigrain, multislice models to repre-
sent a large system. In their work, the user described hierarchy of the system to
dramatically reduce the complexity of the qualitative reasoning task. But the user had to
carefully design the whole hierarchical structure to achieve consistency of the whole
hierarchy. The proposed method can be used to construct this type of knowledge more
easily.

5. CONCLUSIONS AND FUTURE WORK

A hierarchical knowledge representation was proposed. It enables acquisition and si-
multaneous utilization of knowledge that is expressed in multiple levels with different
approximations. The characteristics of the proposed representation scheme can be sum-
marized as follows:

1. Information about approximations which are used in each hierarchy are memo-
rized in an hierarchical knowledge base. Without this information, contradictions
which are introduced by the approximations between each level decrease the
functionality of the knowledge base.

2. The multiple domain theory and the relation between descriptions of different lev-
els are used to express many aspects of the complex system.

3. A new method which is an extension of the existing explanation-based learning
method is proposed to support construction of a consistent hierarchical knowledge
base complying with the proposed representation scheme.

The examples which were given in the domain of analog/digital circuits show the abil-
ity of the proposed representation and of the knowledge base construction method to
express the behavior of physical devices.

Despite the progress in the representation scheme and the construction method of the
consistent hierarchical knowledge representation, a number of issues remain to be ad-
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dressed. The knowledge compilation method for diagnostic systems with this type of hi-
erarchical knowledge base should be reconsidered in order to utilize the
hierarchica/approximated nature of the system’s knowledge. An efficient method of ne-
gotiating contradictions should be developed in order to achieve a top-down design sys-
tem with approximated domain model.
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NOTES

1. The functionality of this acquisition system was checked using the examples in section 3.

2. To keep the number of initial conditions low, numerical information is treated using qualita-
tive representation.

3. Initial values for data can also be regarded as assumptions. The simulation system that is cur-
rently used requires the initial value, so the current acquisition system generates assumptions
in two steps. This distinction between assumptions in steps 3 and 4 is not important.

4. Application of the proposed scheme to another part of the radio circuit is explained in Yoshi-
da and Mooda (1989).

5. Examples of the rules and the equations are reformed to increase readability. Deep/shallow
knowledge in Figures 5 and 6 is represented in terms of actual relationship among data.
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