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Abstract. We address the problem of discovering the influential nodes in a so¢iabreun-
der thesusceptiblénfectegsusceptible (SIS) modehich allows multiple activation of the same
node, by defining two influence maximization problefinsil-time and integral-time We solve
this problem by constructing a layered graph from the original network edtth layer added on
top as the time proceeds and applying the bond percolation with fiecti@e control strategies:
pruning and burnout. We experimentally demonstrate that the propcstaddgives much better
solutions than the conventional methods that are based solely on the rfatentrality using two
real-world networks. The pruning is modtective when searching for a single influential node,
but burnout is more powerful in searching for multiple nodes whichttegyeare influential. We
further show that the computational complexity is much smaller than the padbabilistic simu-
lation both by theory and experiment. The influential nodes discoveessidastantially dferent
from those identified by the centrality measures. We further note that ligoss of the two op-
timization problems are also substantiallyfdient, indicating the importance of distinguishing
these two problem characteristics and using the right objective functibbébasuits the task in
hand.

Keywords: Information difusion; SIS model; Influence maximization; Pruning method; Burnout
method

1. Introduction

Social networks mediate the spread of various informatiafuiding topics, ideas and
even (computer) viruses. The proliferation of emails, blagd social networking ser-
vices (SNS) in the World Wide Web accelerates the creatidargé social networks.
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Therefore, substantial attention has recently been @idettt investigating information
diffusion phenomena in social networks (Newman, 2001; Adar adan#c, 2005;
Domingos, 2005; McCallum et al, 2005; Leskovec et al, 200&fhjts and Dodds,
2007; Agarwal and Liu, 2008), and other aspects such as semlyf social network-
ing sites (Mislove et al, 2007; Muhlestein and Lim, 2009)itoevolution (Zhou et
al, 2006; Peng and Li, 2010), and privacy issues (Backstrbal,2007; Zhou and
Pei, 2010).

Finding influential nodes is one of the central problems tigmetwork analysfs
Thus, developing fcient and practical methods of doing this on the basis ofrinfo
mation difusion is an important research issue. Widely used fundahprababilistic
models of information dfusion are thendependent cascade (IC) mod&oldenberg
et al, 2001; Kempe et al, 2003; Gruhl et al, 2004) andlithear threshold (LT) model
(Watts, 2002; Kempe et al, 2003). Researchers investigatgroblem of finding a
limited number of influential nodes that arffextive for the spread of information un-
der the above models (Kempe et al, 2003; Kimura et al, 200@uika et al, 2010).
This combinatorial optimization problem is called th#uence maximization problem
Kempe et al (2003) experimentally showed on large collamranetworks that the
greedy algorithm can give a good approximate solution ®pghbblem, and mathemat-
ically proved a performance guarantee of the greedy sal(tie., the solution obtained
by the greedy algorithm). Recently, methods based on bortbia¢ion (Kimura et
al, 2007) and submodularity (Leskovec et al, 2007a) werpgsed for ficiently esti-
mating the greedy solution. Succeeding work further impdathe diciency by approx-
imating the solution using a heuristic (Chen et al, 2009k Trtfluence maximization
problem has applications in sociology and “viral marketi(garwal and Liu, 2008),
and was also investigated in gldrent setting (a descriptive probabilistic model of in-
teraction) (Domingos and Richardson, 2001; Richardsonuomingos, 2002). The
problem has recently been extended to influence controlgmubsuch as a contamina-
tion minimization problem (Kimura et al, 2009a).

The IC model can be identified with the so-calledsceptiblénfectegrecovered
(SIR) modelfor the spread of a disease (Newman, 2003; Gruhl et al, 2004he
SIR model, only infected individuals can infect suscegtibidividuals, while recov-
ered individuals can neither infect others nor be infectgaters. This implies that
an individual is never infected with the disease multiptees. This property holds true
for the LT model as well. However, there are many phenomenwaliich this property
does not hold. A typical example would be the following progéon phenomenon of
a topic in the blogosphere: A blogger who has not yet postedssage about the topic
is interested in the topic by reading the blog of a friend, apndts a message about
it (i.e., becoming infected (activateql) Next, the same blogger reads a new message
about the topic posted by some other friend, and may post aageqi.e., becoming
infected) again. Note here that we regard the act of "postmbe the state change from
"susceptible” to "infected”. The blogger can read the ndrigband respond to it any-
time after the completion of the previous posting. Most dimiis phenomenon can
be modeled by &usceptiblénfectedsusceptible (SIS) mod&om the epidemiology.
Other examples include the growth of hyper-link posts amiologgers (Leskovec et
al, 2007Db), the spread of computer viruses without perntanears-checking programs,
and epidemic disease such as tuberculosis and gonorrhean@e 2003). There are

1 “Influence” means many things and there are many factors whiclemalode influential. In this paper, as
we describe later in this section and define more formally irseation 2.2, influence of a node simply means
the expected number of activated nodes as a result of infavmditusion that starts from the node.

2 We use “infected” and “activated” interchangeably.
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many more examples of informationfiision phenomena for which the SIS model is
more appropriate.

We focus on an information flusion process in a social netwo& = (V, E) over
a given time spa on the basis of an SIS model. Here, the SIS model is a stochasti
process model, and thefluenceof a set of node#l at time-stept, o-(H, t), is defined
as the expected number of infected nodes at time4stepen all the nodes it are
initially infected at time-step = 0. We refer tao- as theinfluence functiorfor the SIS
model. When we want to find an influential node, we need to kadw},t), (v € V,
t=1,...,T), but when we want to solve influence maximization problera, veed
to knowo(H,t), (H € V,t=1,..., T). Itis vital, first of all, to have an féective
method for estimating-({v},t). Clearly, in order to extract influential nodes, we must
estimate the value af({v}, t) for every noder and every time-step Solving influence
maximization problem is much morefficult because we have to find the optimal subset
of nodsHj with a fixed cardinalityK. Here it is vital to have anfiective method for
evaluating thenarginal influence gaingr(HU{v}, T) — oo(H, T); v € V\H} for any non-
empty subseH of V. We have reported our preliminary work offieiently estimating
{o({vl,t); ve V,t=1,..., T} for the SIS model based on the bond percolation with
a pruning strategy (Kimura et al, 2009b), and extended ibtiméntial maximization
problem in which we introduced a new technique called burtmefficiently estimate
{foc(HU{Vv},T) —o(H,T); ve V \ H} (Saito et al, 2009).

In this paper, we describe these two techniques in detadscanduct extensive
experiments to evaluate how these twiteet the diciency of solving the influence
maximization problems on a netwo@ = (V, E) under the SIS model. Needless to say,
we can naively estimate the marginal influence gains for amyempty subsetl of
V by simulating the SIS model. However, this naive simulatieethod is overly inef-
ficient and not practical at all. Here, we define two influen@ximization problems:
thefinal-time maximization problerand theintegral-time maximization problenThe
latter problem does not make sense for the SIR model and ysnoe&ningful for the
SIS model. We adopt the greedy algorithm, to reduce the ctatipnal complexity, for
approximately solving the problems according to the worKepe et al (2003) which
was conducted for the IC and the LT models, ensuring that sdikarity holds in the
SIS model setting, too. We show theoretically that the psepanethod is expected to
achieve a large reduction in computational cost by comgarimputational complexity
with the naive probabilistic simulation method. Furthesing two large real networks,
we experimentally demonstrate that the proposed methodighmmore éicient than
the naive greedy method that uses only the bond percolatitrowt employing both
the pruning and the burnout. We show that the pruningfiectve when searching for a
single influential node, but the burnout is more powerful eamentually takes over the
pruning as we increase the number of nodes to search. Theigdtisable to use both
the pruning and the burnout only in the initial few iteracand stop using the pruning
and use the burnout alone in the succeeding iterations igréezly algorithm. The com-
putational cost reduces by 2 orders of magnitudes comptréngaive bond percolation
which itself is 2 to 3 orders of magnitudes moi&aent than the naive simulation. We
also show that the nodes discovered by the proposed metba@ibstantially dierent
from the nodes discovered by the conventional methods teab@sed on the notion
of various centrality measures which does not considerrtfogrnation difusion phe-
nomena and can be evaluated from the network topology aldreproposed method
results in a substantial increase in the expected influaedfurther find that the two
optimization problems give also substantiallyfelient solutions and it is important to
use the right objective function which reflects the probldraracterization.

The paper is organized as follows. We define the informatiinglon model in sec-
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tion 2 and the two influential maximization problems we warngslve in section 3. We
then give details of the algorithms to solve this probleneégly algorithm, bond perco-
lation, pruning, burnout and their combinations) in setdo The experimental results
are given in section 5 (network data, quality of the solugiand computation time for
both influence function estimation and influence maximaatgstimation), followed

by some discussions in section 6. We end this paper by surmimgthe conclusion in

section 7.

2. Information Di ffusion Model

LetG = (V, E) be a directed network, whekéandE stand for the sets of all the nodes
and (directed) links, respectively. Here, note tBas a subset o¥/ x V. For anyv e V,
letI'(v; G) denote the set of the child nodes (directed neighbors) thfat is,

I'(v;G) ={weV,; (v,w) € E}.

2.1. SIS Model

An SIS model for the spread of a disease is based on the cydisedse in a host. A
person is firssusceptibldo the disease, and becomaectedwith some probability
when the person has contact with an infected person. Thetétfeperson becomes
susceptible to the disease soon without moving to the imnstaie. We consider a
discrete-time SIS model for informationftlision on a network. In this context, infected
nodes mean that they have just adopted the information, ammihthese infected nodes
activenodes.

We define the SIS model for informationfiision onG. In the model, the diusion
process unfolds in discrete time-steéps 0, and it is assumed that the state of a node
is either active or inactive. For every linlg,{) € E, we specify a real valug,, with
0 < puv < 1in advance. Herep,, is referred to as thdifusion probabilitythrough
link (u, v). Given an initial set of active nodétand a time spaii, the difusion process
proceeds in the following way. Suppose that nadecomes active at time-stef< T).
Then, nodeu attempts to activate everny € I'(u; G), and succeeds with probability
Puv- If nodeu succeeds, then nodewill become active at time-stefp+ 1. If multiple
active nodes attempt to activate nodat time-steft, then their activation attempts are
sequenced in an arbitrary order. On the other hand, ndiEomes or remains inactive
at time-steg + 1 unless it is activated from other active node at time-st&pe process
terminates if the current time-step reaches the time Ilimit

2.2. Influence Function

For the SIS model o6, we consider an informationfiiusion from an initially activated
node seH c V over time spai. Let S(H, t) denote the set of active nodes at time-step
t. Note thatS(H, t) is a random subset & andS(H,0) = H. Let o(H,t) denote the
expected number ¢8(H, t)|, where|X| stands for the number of elements in aXetVe

call (H, t) theinfluenceof node seH at time-stef. Note thato is a function defined
on 2’ x{0,1,---,T}. We call the functioro- theinfluence functiorfor the SIS model
over time sparT on networkG. In view of more complex social influence, we need
to incorporate a number of social factors with social neks@uch as rank, prestige
and power. In our approach, we assume that we can encode attohsfas dfusion
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probabilities of each nodeAs emphasized in section 1, it is important to estimate the
influence functionr efficiently. In theory we can simply estimateby the simulations
based on the SIS model in the following way. First, &isiently large positive integer

M is specified. For eachl c V, the difusion process of the SIS model is simulated
from the initially activated node set, and the number of active nodes at time-step
t, IS(H, )|, is calculated for every € {0,1,---,T}. Then,o(H,t) is estimated as the
empirical mean ofS(H, t)|'s that are obtained frorivl such simulations. However, this
is extremely inéficient, and cannot be practical.

3. Influence Maximization Problem

We mathematically define the influence maximization prolslema networks = (V, E)
under the SIS model. L&t be a positive integer witK < |V/|. First, we define thénal-
time maximization problenfrind a seHy of K nodes to target for initial activation such
thato(H; T) > o(H; T) for any setH of k nodes, that is, find

Hy = arg e \l/“nlax o(H;T). D
Second, we define thiategral-time maximization problerfrind a seH;; of K nodes to
target for initial activation such that(H}; 1)+---+o(H%; T) > o (H; 1)+---+0o(H; T)
for any setH of k nodes, that is, find

T
Hx = arg max Zo-(H;t). (2)
t=1

{HeV; HI=K}

The first problem cares only how many nodes are influenceckdtrtte of interest.
For example, in an election campaign it is only those people are convinced to vote
the candidate at the time of voting that really matter andimate who were convinced
during the campaign but changed their mind at the very endirviaing the number
of people who actually vote falls in this category. The secproblem cares how many
nodes have been influenced throughout the period of intéfesexample, maximizing
the amount of product purchase during a sales campaignirfaliss category.

4. Proposed Method

Kempe et al (2003) showed théectiveness of the greedy algorithm for the influence
maximization problem under the IC and LT models. In this isectwe introduce the
greedy algorithm for the SIS model, and describe three iqubks (the bond perco-
lation method, the pruning method, and the burnout method¥ficiently solving
the influence maximization problem under the greedy algoritWe also discuss the
computational complexity of these methods and show thetroktine pruning and the
burnout.

3 Such factors as rank, prestige and power exert influence imailative way, i.e. richer gets richer phe-
nomena. We need some reinforcement mechanism outside the SIStondeal with such feedback which is
beyond the scope of our framework.
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4.1. Greedy Algorithm

We approximately solve the influence maximization problgnihe greedy algorithm.
Below we describe this algorithm first for the final-time nrakiation problem and then
for the integral-time maximization problem.

Greedy algorithm for the final-time maximization problem:
Al. SetH « 0.

A2. Fork = 1toK do the following steps:

A2-1. Choose a hodg € V \ H maximizingo(H U {v}, T).
A2-2. SetH « H U {w}.

A3. OutputH.

We can easily modify this algorithm for the integral-time ximaization problem by
replacing stepA2-1 as follows:

Greedy algorithm for the integral-time maximization probl em:
AL. SetH « 0.

A2. Fork = 1toK do the following steps:

A2-1'. Choose a node € V \ H maximizing¥.,_; o(H U {v}, ).
A2-2. SetH «— H U {w}.

A3. OutputH.

Let Hx denote the set oK nodes obtained by this algorithm. We referHg as the
greedy solutiorof sizeK. Then, it is known that

o(Hi,t) > (1-&) o (H. 1),

where H; is the exact solution defined by Equation (1) or (2), that e, éxpected
influence of the greedy solution is lower bounded and it isgui@ed that it is at worst
63% of the optimal expected influence (Kempe et al, 2003).

To implement the greedy algorithm, we need a method for esitig all the marginal
influence degreesr(H U {v},t); v e V \ H} of H in stepA2-1 orA2-1’ of the above al-
gorithms. In the subsequent subsections, we propose a dietheficiently estimating
the influence functiowr over time spa for the SIS model on networ®.

4.2. Layered Graph

We build a layered grapB&’™ = (VT,E") from G in the following way (see Figure 1).
First, for each node& € V and each time-stepe {0,1,--- , T}, we generate a copy
of v at time-step. Let V; denote the set of copies of alle V at time-stefd. We define
VT by VT = Vo UV U--- U V7. In particular, we identif)V with V. Next, for each
link (u,v) € E, we generatd links (U1, ), (t € {1,---,T}), in the set of node¥".
We setE; = {(_1,); (u,V) € E}, and define€E" by ET = E; U - -- U Er. Moreover, for
any link (U1, ) of the layered grapts', we define the occupation probabilidy, , ,
by OQu_1ve = Puyv-

Then, we can easily prove that the SIS model witfudiion probabilitiegpe; € € E}
on G over time sparT is equivalent to thdond percolation process (BP) with occu-
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graph G layered graph G”

Fig. 1. An example of a layered graph.

pation probabilities{de; € € E"} on G'.* Here, the BP process with occupation prob-
abilities {ge; € € ET} on G' is the random process in which each liek E' is inde-
pendently declared “occupied” with probabiligy. We perform the BP process @,
and generate a graph constructed by occupied li@ks= (VT,ET). Then, in terms of
information difusion by the SIS model o8, an occupied linki_1, ;) € E; represents
a link (u,v) € E through which the information propagates at time-dtegnd an un-
occupied link (-1, ;) € E; represents a linku( v) € E through which the information
does not propagate at time-stejFor anyv € V \ H, let F(H U {v}; GT) be the set of all
nodes that can be reached fréfru {v} € Vg through a path on the gragdl . When we
consider a difusion sample from an initial active node= V for the SIS model o1,
F(H U {v}; GT) n V, represents the set of active nodes at time-5t8gH U {v}, t).

4.3. Bond Percolation Method

Using the equivalent BP process, we present a methodficrenmtly estimating influ-
ence functionr. We refer to this method as thsP method Unlike the naive method,
the BP method simultaneously estimatg$l U {v},t) for all v € V \ H. Moreover, the
BP method does not fully perform the BP process but performartially. Note first
that all the paths from nodés U {v} (v € V \ H) on the graptGT represent a diusion
sample from the initial active nodeﬂsu {v} for the SIS model ois. Let L’ be the set
of the links inG" that start from the non-activated nodes in thusion sample. For
calculatingS(H u{v}, t)], it is unnecessary to determine whether the links'iare occu-
pied or not. Therefore, the BP method performs the BP prdoesmly an appropriate
set of links inG". The BP method estimatesby the following algorithm:

BP method:
B1. Seto(H U {v},t) « Oforeachve V\Handte {1,--- ,T}.
$2. Repeat the following proceduid times:

4 The SIS model over time spdh on G can be exactly mapped onto the IC model®h (Kempe et al,
2003). Thus, the result follows from the equivalence of tiefocess and the IC model (Grassberger, 1983;
Newman, 2002; Kempe et al, 2003; Kimura et al, 2007).
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B2-1. Initialize S(H U {v},0) = H U {v} for eachv € V \ H, and setA(0) « V \ H,
A)«—0,---, A(T) < 0.

$2-2. Fort =1toT do the following steps:

B2-2a. ComputeB(t — 1) = Uyeag-1) S(H U {v},t - 1).

B2-2b. Perform the BP process for the I|nks fch(t 1) inGT", and generate the graph
G constructed by the occupied links.

B2-2c. For eachv e At - 1) computeS(H U VL 1) = Unesum.- T(W; Gt) and set
o(HU{V}, 1) « o(HU{v},t) + |S(H U{v}, 1)l andA(t) — A(t U{v}if S(HU{v},t) # 0.

83. For eachv € V \Handt € {1,---,T}, seto(H U {v},1) « o-(H U {v},t)/M, and
outputo(H U {v}, ).

Note thatA(t) finally becomes the set of information source nodes that lasleast an
active node at time-stepthat is,A(t) = {ve V \ H; S(H U {v},t) # 0}. Note also that
B(t — 1) is the set of nodes that are actlvated at time- Stepl by some source nodes,
thatis,B(t — 1) = Uyey S(H U {v},t = 1).

Now we estimate the computational complexity of the BP metimoterms of the
number of the nodesy,, that are identified in stefg2-2a, the number of the coin-flips,
N, for the BP process in stef2-2b, and the number of the link&f, that are followed
in stepB2-2c. Letd(v) be the number of out-links from node(i.e., out-degree of)
andd’(v) the average number of occupied out-links from nedster the BP process.
Here we can estimat#(v) by > er(v.c) Pvw- Then, for each time-stepe {1,--- , T}, we
have

Na= D, ISHUMLt-D) No= D> dw). Ne= >, > dw) @
veA(t-1) weB(t-1) VeA(t—1) weS(HU{v},t-1)
on the average.

In order to compare the computational complexity of the BRhoe to that of the
naive method, we consider mapping the naive method onto EhaBnework, that is,
separating the coin-flip process and the link-followinggass. We can easily verify that
the following algorithm in the BP framework is equivalenthe naive method:

Naive method expressed in the framework of BP method:

B1. Seto(H U {v},t) « O0foreachve V\Handte {1,--- ,T}.

B2. Repeat the foIIowmg proceduid times:

B2-1. Initialize S(H U {v},0) = H U {v} for eachv € V \ H, and setA(0) « V \ H,
A)«—0,---, A(T) < 0.

B2-2. Fort = 1toT do the following steps:

B2-2b’. For eachv € A(t-1), perform the BP process for the links fré@HuU{v}, t—1)
in GT, and generate the gragh(V) constructed by the occupied links.

B2-2¢'. Foreach/e At- l) computeS(HU L) = Uwes(Hu(vt 1 I(w; Gi(V)), and set
oc(HU{V},t) «o(HU{v t)+|S(H U{vht)| andA(t) — A(t)u {v}if S(H U{V} t) # 0.

8B3. For eachv € V \Handt € {1,---, T}, seto(H U {v},t) « o(H U {v},t)/M, and
outputo(H U {v}, ).
Then, for eactt € {1,--- , T}, the number of coin-flipshVy, in stepB2-2b’ is

Ny= > > dw), @)
veA(t—1) weS(HU{v},t-1)

and the number of the linksyy, followed in stepB82-2c’ is equal toN; in the BP
method on the average. From equations (3) and (4), we cahae®y is much larger
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than Ne = N;, especially for the case where thdfdsion probabilities are small. We
can also see thatyy is generally much larger than each/gf and A, in the BP method
for a real social network. In fact, since such a network galheimcludes large clique-
like subgraphs, there are many nogles V such that(w) > 1, and we can expect that
2ven-1) S(H U VLt = 1) 3> [ Uveaq-1) S(H U {vl, t = 1)1 (= |B(t — 1)]). Therefore, the
BP method is expected to achieve a large reduction in cortipng cost.

4.4. Pruning Method

In order to further improve the computationdieiency of the BP method, we introduce
a pruning technique and propose a method referred to @Rheith pruning methad
The key idea of the pruning technique is to utilize the follogyproperty: Once we have
S(H U {u}, tp) = S(H U {v}, tp) at some time-stefy on the course of the BP process for
a pair of information source nodasandyv, then we hav&S(H U {u},t) = S(H U {v}, 1)
for all t > to. The BP with pruning method estimatedy the foIIowrng algorithm

BP with pruning method:

B1. Seto(H U {v},t) « Oforeachve V\Handte {1,--- ,T}.

B2. Repeat the followmg procedum times:

$2-1". Initialize S(H U {v};0) = } for eachv € V \ H, and setA(0) « V \ H,
A)«<0,---, A(T) < 0, andC(v) v} for eachv e V \ H

B2-2. Fort = 1to T do the following steps.

B2-2a. ComputeB(t — 1) = Uyeag-1) S(H U {v},t - 1).

8B2-2b. Perform the BP process for the links frdd(t—1) inG', and generate the graph
G; constructed by the occupied links.

B2-2¢”. For eachv € A(t — 1) computeS(H U {v},1) = Unesum 1y T(W; Gy), set
A(t) — A(t)Ufv}if S(HU{v},t) # 0, and seb—(HU L 1) « o(HU{U}, t)+|S(HU{V}, 1)
for eachu € C(v)

$2-2d. Check whetheS(H U {u},t) = S(H u v}, t) for u,v e A(t) and selC(v) «
C(v) U C(u) andA(t) «— A(t) \ u} if S(H U {u},t) = S(H U {Vv}, 1).

B3. For eachv € V \Handt e {1,---,T}, seta(H U { t) «— o(H U {v},t)/M, and
outputo(H U {v}, t).

Basically, by introducing ste32-2d and reducing the size Aft), the proposed method
attempts to improve the computationdiegency over the original BP method. For the
proposed method, it is important to implemefit@ently the equivalence check process
in stepB2-2d. In our implementation, we first scan each A(t) according to the value
of n = |S(H U {v},t)|, and identify those nodes with the samealue.

4.5. Burnout Method

In order to further improve the computationdlieiency of the BP with pruning method,
we introduce another technique called burnout and proposethod which is referred
to as theBP with pruning and burnout method More specifically, we focus on the
fact that maximizing the marginal influence degre@ U {v},t) with respect tov €

5 Here we integrated these two techniques, but it is also pless combine the BP method with only the
burnout method. We skipped this one because it is self-etziden
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V '\ H is equivalent to maximizing the marginal influence ggir(v,t) = oo(H U {v}, 1) —
o(H,t). Here in terms of the BP process for a newly added informatmurce node,
maximizinge¢y (v, t) reduces to maximizings(H U {v},t) \ S(H, t)| on the average. The
BP with pruning and burnout method estimaggsby the following algorithm:

BP with pruning and burnout methods:

Cl. Setpy(v,t) « Oforeachve V\Handte {1,---,T}.

C2. Repeat the following proceduid times:

C2-1. Initialize S(H;0) = H, andS({v}; 0) = {v} for eachv € V \ H, and setA(0) «
VAH,AQ) < 0,---, A(T) « 0, andC(v) « {v} for eachve V \ H.

C2-2. Fort = 1to T do the following steps:

C2-2a. ComputeB(t — 1) = Uyeag-1) S({VE t = 1) U S(H,t - 1).

C2-2b. Perform the BP process for the links frds(t - 1) in G, and generate the graph
G¢ constructed by the occupied links.

C2-2c. ComputeS(H,t) = Uwes(Ht-1) I'(w; Gy), and for eachv € A(t — 1), compute
SV 1) = Uweswt-1) T(W; Gt) \ S(H, 1), setA(t) « A(t) U {v} if S({v},t) # 0, and set
dn({ul,t) « ¢Hé{u}, t; + |S({v}, 1) for eachu € C(v).

C2-2d. Check whetheB({u}, t) = S({v},t) for u,v € A(t), and seC(v) « C(v) U C(u)
andA(t) « A(t) \ {u} if S{u},t) = S({v}, 1).

C3. Foreachv € V\ Handt € {1,--- , T}, setpy({v},t) « ¢#n({v},t)/M, and output
Pu(fvhb).

Intuitively, by using the burnout technique, we can sulistiy reduce the size of the
active node set frons(H U {v},t) to S({v},t) for eachv € V \ H andt € {1,---,T}
compared with the BP with pruning method. Namely, in termsarhputational costs
described by Equation (3), we can expect to obtain smalletaus forNV; and N, when

H # 0. However, how &ectively the proposed method works will depend on several
conditions such as network structure, time span, valuesfiifsion probabilities, etc.
We will do a simple analysis later and experimentally shoat this indeed fective.

5. Experimental Evaluation

We have carried out extensive experiments and evaluateefdas of the two tech-
niques that were implemented on top of the bond percolatiothe quality of the so-
lution and the computation time, using two real world sooietiworks. The baseline to
compare the quality of the solution is the naive simulaticethnod which is confirmed
to be prohibitively indicient.

5.1. Network Data and Basic Settings

In our experiments, we employed two datasets of large realanks used in Kimura
et al (2009a), which exhibit many of the key features of dawworks (Newman and
Park, 2003).

The first one is a trackback network of Japanese blogs. Therletlata was col-
lected by tracing the trackbacks from one blog in the siteo“@ttp;/blog.goo.ne.jf)”
in May, 2005. We refer to the network data as the blog netwble blog network was
a strongly-connected bidirectional network, where a linkated by a trackback was
regarded as a bidirectional link since blog authors esthbfiutual communications
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by putting trackbacks on each other’s blogs. The blog nétad 12047 nodes and
79,920 directed links. The second one is a network of peoplewaat derived from
the “list of people” within Japanese Wikipedia. Specifigalve extracted the maxi-
mal connected component of the undirected graph obtaindohking two people in
the “list of people” if they co-occur in six or more Wikipedpgages, and constructed
a directed graph by regarding those undirected links asduitibnal ones. We refer to
the network data as the Wikipedia network. Thus, the Wikipetktwork was also a
strongly-connected bidirectional network, and had&l nodes and 24844 directed
links.

We assigned a uniform valygto the difusion probabilityp,, for any link (U, v) €
E, that is,p,y = p for the SIS model we used. According to Kempe et al (2003) and
Leskovec et al (2007b), we set the value mfelatively small. In particular, we set
the value ofp to a value smaller than/dl, whered is the mean out-degree of a net-
work. Since the values af were about 63 and 235 for the blog and the Wikipedia
networks, respectively, the corresponding values/df\ere about A5 and 0039. In
view of these values we decided to pet 0.1 for the blog network ang = 0.03 for the
Wikipedia network. Time spah can be arbitrarily set but it is constrained by thefiine
ciency of the naive simulation method. We fouhd 30 is good enough to evaluate the
performance of our method. We also need to specify the nuidbef performing the
bond percolation process. The larger, the better, but we tmeompromise between
the solution quality and the computational cost. We Iidet= 10,000 for estimating
influence degrees for the blog and Wikipedia networks (S24.b.

All our experimentations were undertaken on a single PC withintel Dual Core
Xeon X5272 3.4GHz processor, with 32GB of memory, runnindasriLinux.

5.2. Performance for Influence Function Estimation
5.2.1. Accuracy of Estimated Influence Function

We first investigated how accurately the proposed method:stimate the value of in-
fluence function in terms of node ranking. Since, in this cdseinformation difusion
starts with every single nodee V independently with all the other nodes remaining
inactive, i.e.H = 0, there is no room for burnout to come in. Thus, we compared the
BP with pruning method (BPP for short) with the naive methaai\e for short) which
we consider as the baseline. Both methods reqguir® be specified in advance as a
parameter. IM is set ato, both BPP and naive should give the correct expected influ-
ence degree. For a finite value i, the results may seemftérent. In fact, as shown
in section 4.3, the number of coin flips idfdirent in these two methods and it is much
larger in the naive method. However, this does not mean lieattis more randomness
introduced in the naive method and thus the convergencesafdive method is faster.
In fact for each single (initially activated) nogdrom which to propagate the informa-
tion, the number of independent coin-flips tgeetively the same for both the methods.
Thus by using the same value M, both would estimate-(v, t) with the same accuracy
in principle.

We have first experimentally confirmed that usdvbf 100 000 gives a very stable
identical converged solution for both methods for a few &ele initial nodes, but the
naive method took an order of week to return the result and thunot practical to
perform the comparative study. Then we found that furthduceng the value toM =
10,000 still gives reliable results, i.e., iffect the same ranking and valuecd(fv, t), for
t=1,---,20 for the high ranked nodes. The following results were iabthby using
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Table 1. Results for the top 10 nodesand the values of-(v, 20) based on the proposed method (BPP) for
the blog network. Left: The result of the first experiment. lRid he result of the second experiment.

Rank Y o(v,20) Rank v (v, 20)
1 2210 98474 1 2210 9847
2 2248 98(41 2 2248 9796
3 3906 957 3 3906 9584
4 3907 95304 4 3907 9571
5 146 9296 5 146 9280
6 155 92877 6 155 92819
7 3233 91x»1 7 3233 91D1
8 3228 91218 8 3228 91619
9 140 90922 9 140 911
10 2247 90912 10 2247  90%9

Table 2. Results for the top 10 nodesand the values of-(v, 20) based on the naive method for the blog
network. Left: The result of the first experiment. Right: Tlkeult of the second experiment.

Rank v o(v,20) Rank \Y (v, 20)
1 2210 98438 1 2210 9894
2 2248 9799 2 2248 9802
3 3906 95682 3 3906 9567
4 3907 95314 4 3907 9539
5 146 93103 5 146 93162
6 155 929%68 6 155 93@1
7 3233 91%0 7 3233 9189
8 3228 9127 8 3228 91(2
9 140 91004 9 140 91®7
10 2247  90%9 10 2247  90%9

M = 10,000. Tables 1 and 2 show the ranking of the initially actiddtéluential nodes

v evaluated at time-step = 20 for the blog network. We had to limit to 20 because
of the prohibitive computation cost for the naive simulatidhe value of influence
functiono(v, 20) is sorted in the decreasing order and the top 10 nodesstad. [We

repeated the experiment twice for each method (BPP and)nangk the results for
both are shown side by side. We note that the ranking is gxtwl same for the two
runs and this is also true between the two methods. We funthier that the values of
corresponding influence degrees are very similar. The inflealegree varies slowly
and it decreases only by less than 10% in going from the topetd ®th. Tables 3 and 4
are the results for the Wikipedia network. The results aghsy less stable than for the

Table 3. Results for the top 10 nodesand the values of(v, 20) based on the proposed method (BPP) for
the Wikipedia network. Left: The result of the first experihéRight: The result of the second experiment.

Rank Y o(v,20) Rank v o(v,20)
1 790 212152 1 790 212045
2 279 21202 2 279 21182
3 8340 211®8B3 3 8340 21182
4 323 21186 4 323 211B1
5 326 211708 5 326 21145
6 772 211706 6 772 21166
7 325 211612 7 325 21185
8 2441 21139 8 4924 21172
9 2465 21152 9 1407 21124
10 1407 21129 10 2498 21185
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Table 4.Results for the top 10 nodesnd the values af(v, 20) based on the naive method for the Wikipedia
network. Left: The result of the first experiment. Right: Tleeult of the second experiment.

Rank v o(v,20) Rank v o (v, 20)
1 790 212214 1 790 212084
2 279 21192 2 323 21181
3 8340 21190 3 279 21186
4 323 211M7 4 8340 21182
5 326 211734 5 326 21175
6 772 211637 6 772 211B2
7 325 2114 7 325 21189
8 1407 211385 8 1407 21142
9 4294 211279 9 2465 21184
10 3149 211567 10 4924 21135
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Fig. 2. Results for the blog network.

blog network. However, the rankings of top 7 are the samei®two runs of BPP and
the first run of the naive. We note that the values of the infleategrees change much
more slowly and the value only reduces by less th&¥0in going from the top to the
10th. The Wikipedia network is much mordittult in terms of correctly identifying the
ranking. From the overall experimental results, we confinat for the same and large
enough values of M, the proposed method (BPP) gives the sasu#s as the naive
method.

We have not evaluated the integral influence function owetithe sparm :Zthl o(v,t)
because if it is confirmed that each componefw t) can be well approximated, its sum
is equally well approximated.

5.2.2. Computational Cost for Influence Function Estimation

Next, we compared the processing time of the proposed me®B&) with the BP
method without pruning (BP for short) and the naive methaete-iwe used! = 1,000

in order to keep the computational time for the naive meth@daasonable level so that
it runs for a largefT. Figures 2 and 3 show the processing time to estifafe t); v €
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Fig. 3. Results for the Wikipedia network.

V,t = 0,1,---,T} as a function of the time spah for the blog and the Wikipedia
networks, respectively. In these figures, the circles, meguand triangles indicate the
results for BPP, BP and naive, respectively. Note that ie cdithe blog network, the
processing time for the time spdn= 100 is about 7 minutes,& hours, and 5 days
for BPP, BP, and naive, respectively. Namely, BPP is abouarb 310 times faster
than BP and naive, respectively. Note also that in case ofMikgedia network, the
processing time for the time spdn= 100 is about 21 minutes, 5 hours, and 155 hours
for BPP, BP and naive, respectively. Namely, BPP is abounti44d0 times faster than
BP and naive, respectively.

The reduction of the processing time due to the pruning ggelafhe processing time
is about 20 times less when evaluatedTot 100. However, wheit is small the prun-
ing adversely fiects the processing time because of the computational exériThe
two BP methods (with and without pruning) are much fasten tha naive method. The
performance dference between BPP and each of BP and naive increases astejme-
(or time span) increases. Moreover, the same performaffeeatice becomes larger for
the blog network than the Wikipedia network. The followirigiple analysis explains
this. Consider the extreme case whé(@,t) = S(v,t) for Yu,v € A(t) andd(w) = d
for Yw € S(v,t) (v € A(t)) at some time-steh We denotgA(t)] = a and|S(v,t)| = s.
Then, we haveV, = as Ny, = sd, Ny = asdandN; = asd on the average for time-step
t + 1. Recall that!’ is the expected number of the occupied links, which is cateul
as pd, Wherep is the common diusion probability for all links. Further assume that
the pruning was ideal such thAt, = s and N = sd, which respectively denote the
number of nodes identified in step 2-2a and the average nuafbligks followed in
step 2-2¢” for BPP. Then, dd > d, i.e.,ad’/d = ap> 1 holds, the improvement ratios
of BPP over BP and naive are respectivad/sd = ap andasd/sd = a. From our
experimental results, we can estimatas 310 for the blog network and 440 for the
Wikipedia network. Then we obta@mp as 31 and 13 respectively, which approximates
the actual ratio (Pratimegp/Proctimegpp), 25 and 14. The similar discussion applies
to the processing time for the integrated influence funabiegr the time spai.
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Fig. 4. Comparison of solution quality for the blog network (finali& maximization problem).

5.3. Performance of Influence Maximization Problem

5.3.1. Comparison of Accuracy of the Proposed Methods with Centrality
Measures

We compared the quality of the solution of the proposed ntkthe. the BP with prun-
ing and burnout method (BPPB for short) with the three wetikn centrality measures:
“degree centrality”, “closeness centrality”, and “betweess centrality” that are com-
monly used as the influence measure in sociology (WassernthRaust, 1994). Here,
the betweenness of nodés defined as the total number of shortest paths between pairs
of nodes that pass throughthe closeness of nodes defined as the reciprocal of the
average distance betweemand other nodes in the network, and the degree of nasle
defined as the number of links attached/t&@Ve evaluated the value of these measures
for each node and ranked the nodes in decreasing order, lEnthted the influence de-
gree (both the final-time value and the integral-time valisihg the topK nodes with
K =1,2,..,30. We refer to these methods as thetweenness methatthe closeness
method and thedegree methqdespectively.

The solutionHk of the proposed method is calculated by the bond percolation
gorithm described in 4.5 using both pruning and burnoutafyethe quality ofHx can
be evaluated by the influence degre@ii, T) for the final-time maximization problem
and the influence degr@{zl o(Hk,t) for the integral-time maximization problem. We
estimated the values ef(Hg, T) and Zthl o(Hg,t) with M = 10,000 andT = 30.
Figures 4 and 5 show the influence degogélx, T) (solution of the final-time max-
imization problem) as a function of the number of initialiaetnodesK for the blog
and the Wikipedia networks, respectively. In the same wagures 6 and 7 show the
influence degrthT:1 o(Hg, t) (solution of the integral-time maximization problem) as
a function of the number of initial active nod&sfor the blog and the Wikipedia net-
works, respectively. In the figures, the circles, triangtkamonds, and squares indicate
the results for the proposed (BPPB), the betweenness, diserass, and the degree
methods, respectively. Evidently, the proposed methofbpas the best for both net-
works and for both maximization problems. The shapes of tinees are dterent for
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Fig. 6. Comparison of solution quality for the blog network (intdgiene maximization problem).

the two problems. In the final-time maximization problem|yothe first top 5 to 10
nodes are influential and the succeeding nodes do not cot&tib increasing the influ-
ence degree. As a rule of thumb, this is true for all the fouthmes. In the integral-time
maximization problem, nodes after the top 10 are also inflakand contribute to in-
creasing the influence degree. This is also true for all the foethods as a rule of
thumb. There is no clear indication as to which centralityamges rank higher for a
wide range of nodes. For example, betweenness measurasippba the next best for
the both networks in case of the final-time maximization peoh but degree measure
is also good for the both networks (slightly better for thegsdnd slightly worse for the
Wikipedia network) in case of the integral-time maximipatproblem. If we focus only
the first 10 nodes, degree method appears to be the best ahmtigde conventional



Efficient Discovery of Influential Nodes for SIS Models in Soditworks 17

62000 —

60000 )
A
58000 4
56000
[0}
(o]
’83 54000
g 520001 —O— proposed ]
= —A— betweenness
2 500007 —&— closeness
£ —B— degree
48000+
46000
44000+
42000 = ‘ ‘ ‘ ‘ ‘
1 5 10 15 20 25 30

number of initial active nodes

Fig. 7. Comparison of solution quality for the Wikipedia networktégral-time maximization problem).

methods. How well or badly each of the conventional hewsspierforms depends on
the characteristics of the network structure and the typemaximization problem.
Note that there are substantiatffdrences in the amount of the influence degree (value
of the objective function). These results clearly indidhg it is indeed important to ob-
tain the optimal solution. The proposed method canftfextvely used for this purpose,
and outperforms the conventional heuristics centralityasnees from social network
analysis.

It is interesting to note that thHenodes k = 1, 2, ..., K) that are discovered to be the
most influential by the proposed method are substantiafferdint from those that are
found by the conventional centrality measures. For examptle case of the final-time
maximization problem, the best node £ 1) chosen by the proposed method for the
blog dataset is ranked 118 for the betweenness method, 858ef@loseness method
and 6 for the degree method, and the 15th ndde (15) by the proposed method is
ranked 1373, 8848 and 507 for the corresponding converitinathods, respectively.
The best nodek( = 1) chosen by the proposed method for the Wikipedia dataset is
ranked 580 for the betweenness method, 2766 for the closemethod and 15 for the
degree method, and the 15th nodte<{ 15) by the proposed method is ranked 265,
2041, and 21 for the corresponding conventional methodperdively. In the case of
the integral-time maximization problem, theférence is not that much but is similar
by no means. The best node<£ 1) chosen by the proposed method for the blog dataset
is ranked 17, 5 and 3 for the corresponding conventional ogsthand the 15th node
(k = 15) by the proposed method is ranked 31, 653 and 27, resplycilihe best node
(k = 1) chosen by the proposed method for the Wikipedia datasebked 15, 6 and 3,
and the 15th node(= 15) by the proposed method is ranked 84, 23, and 12.

What these results imply is that the influential nodes stypdgpend on the objec-
tive functions to be maximized, which in turn implies thatitey the difusion process
into consideration is crucially important. The results Wbie &fected not only by the
network structure but also by the values offasion parameters.e., even if the net-
work structure remains the same, assignirfipdent difusion probabilities changes the
influence degree of each node. Saitfatently, any centrality measure that is solely
based on network topology has an intrinsic limitation toreotly evaluate the node
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influence as defined in this paper. We realize that theseat#ytmeasures are not nec-
essarily designed to infer the influential nodes. They hhe& bwn advantages.g,
degree centrality can be used to identify the core nodes ofrarunity and between-
ness centrality can be used to study community structudedd, the recently proposed
topological centrality (Zhuge and Zhang, 2010) is showrgtedry useful to understand
the structure of network by distinguishing the roles of rqdiscovering communities
and finding underlying backbone networks.
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5.3.2. Comparison of Computational Cost amongdent Combinations of
Component Techniques

Next, we compared the processing time of the proposed méB#i@B) with three other
methods with dferent combinations of component techniques (itthout Pruning
and Burnout), i.e. bond percolation only (BP), bond peribmfawith pruning (BPP)
and bond percolation with burnout (BPB) to see tffea of each component. We only
show the results for the final-time maximization probleméuese it is self-evident that
the processing time for the integral-time maximizationgbemn is almost the same from
the algorithm in 4.1. Figures 8 and 9 show the processing titbese four methods
as a function of the number of initial active nodésfor the blog and the Wikipedia
networks, respectively. In these figures, circles, triaagbquares and crosses indicate
the results of BPPB, BPB, BPP and BP, respectively. Tifextof the pruning is shown
by the diterence of the processing timekat= 1 (difference between BP and BPP). The
pruning reduces the processing time to abg&, Which is consistent with Figs. 2 and
3forT =30in5.2.2. AtK = 2 the dfect of burnout starts appearing and it surpasses
the dfect of pruning for the blog network (BPBBPP) but it still does not do so for the
Wikipedia network (BPR: BPB). However, afteK > 3 the dfect of burnout surpasses
the dfect of pruning, and burnout plays a key role of reducing thematational cost.
Combining the both, i.e., BPPB, always gives the best resuithin the region where
the experiments were performed, ike.< 5. The amount of reduction in processing
time by BPPB is large. The processing time of BP and BPPHKfer5 is 58 days and
2.8 hours, respectively, for the blog network, and 8ays and % hours, respectively,
for the Wikipedia network. The processing time reduces/&01for the blog network
and 1/40 for the Wikipedia network foK = 5. However, it is seen that theffiirence
between BPB and BPPB becomes smalleKdsecomes larger and it is predicted that
eventually BPB will surpass BPPB, meaning that the overludgutuning exceeds the
saving by pruning. Thus, it is advisable to use both the exgias only in the initial
few iterations, and stop using the pruning and use the btialone in the succeeding
iterations in the greedy algorithm. Note that the above ¢tdo is forT = 30. It is
expected that the reduction is much larger for a lafigee.g., T = 100, and also for a
largerK, e.g.K = 30. Needless to say, the naive method needs an order of nmnth t
return the results and is prohibitively iffieient. From these results, we can conclude
that the proposed method is much mofigceent than the simple BP method and can be
practical.

6. Discussion

The influence functiowr(-, T) is submodular (Kempe et al, 2003). For solving a com-
binatorial optimization problem of a submodular functibron V by the greedy algo-
rithm, Leskovec et al. (Leskovec et al, 2007a) have recqhgented a lazy evalua-
tion method that leads to far fewer (expensive) evaluatadrthe marginal increments
f(HU{v}) - f(H), (v € V \ H) in the greedy algorithm foH # 0, and achieved
an improvement in speed. Note here that their method rexjairaluatingf (v) for all

v € V at least. Thus, we can apply their method to the influence rmiaation prob-
lem for the SIS model, where the influence functiof, T) is evaluated by simulating
the corresponding random process. It is clear that 1) thibodeis more #icient than
the naive greedy method that does not employ the BP methodnatehd evaluates
the influence degrees by simulating théuion phenomena, and 2) further both the
methods become the same #r= 1 and empirically estimate the influence function
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o (-, T) by probabilistic simulations. These methods also reqMréo be specified in
advance as a parameter, whéfies the number of simulations. Note that the BP and
the simulation methods can estimate influence degfegd) with the same accuracy by
using the same value ®&fi. Moreover, estimating influence functiot{-, 30) by 1Q 000
simulations needed more than.8%ours for the blog dataset and.23lays for the
Wikipedia dataset, respectively. However, the proposeithagefor K = 30 needed less
than 70 hours for the blog dataset and.1ours for the Wikipedia dataset, respec-
tively. Therefore, it is clear that the proposed method aafelster than the method by
Leskovec et al (2007a) for the influence maximization probfer the SIS model. In
fact, we have confirmed in Kimura et al (2010) that the bondg@ation method is 10
times faster than the lazy evaluation for the SIR modeKfar 30. Since the SIS model
can be mapped to the SIR model by introducing the layerechgthp result above is
consistent to our previous result.

We discussed the accuracy and the computational cost ofrtdp@ged method in
5.2 and 5.3. Here we look into the solutions of the final-tineximization problem and
the integral-time maximization problem. We found that theso diferent maximiza-
tion problems give almost totally fiierent nodes although the objective function to be
maximized for the latter is the sum of the objective functdthe former over the final
time T. There is only one common node out of 30 influential nodes $& cd the blog
network and there are only five common nodes in case of thepafka network. In
general the identified influential nodes for the final-timeximdzation problem reflects
the difusion characteristics of one time slot but those for thegiratietime maximiza-
tion problem reflects the globalfflision characteristics. Intermediate process does not
matter and what matters is only the final situation for thenfer, whereas the whole pro-
cess does matter for the latter. It is important to distisbuhese two dierent problem
characteristics and use the right objective function tleat buits the task in hand.

7. Conclusion

Finding influential nodes is one of the most central problémthe field of social net-
work analysis. There are several models that simulate hoiwusthings, e.g., news,
rumors, diseases, innovation, ideas, etfude across the network. One such realis-
tic model is thesusceptiblénfectegsusceptible (SIS) modedn information dffusion
model where nodes are allowed to be activated multiple tiffiles computational com-
plexity drastically increases because of this multiplévatibn property, e.g., compared
with the susceptiblénfectedrecovered (SIR) modethere nodes once activated can
never be deactivatgeactivated. We addressed the problem fitiently discovering
the influential nodes under the SIS model, i.e., estimatiegekpected number of acti-
vated nodes at time-steégdort = 1,--- , T starting from an initially activated node set
H e V at time-step = 0 and finding the optimal subskt* to maximize the expected
influence. We solved this problem by constructing a layenegbly from the original
social network by adding each layer on top of the existingtayas the time proceeds,
and applying the bond percolation with two control stragegpruning and burnout. We
showed that the computational complexity of the proposetthatsis much smaller than
the conventional naive probabilistic simulation methodlifieoretical analysis. We ap-
plied the proposed method to twoffdirent types of influence maximization problem,
i.e. discovering th&k most influential nodes that together maximize the expectiati
ence degree at the time of interest (final-time maximizagiozblem) or the expected
influence degree over the time span of interest (integmad-tmaximization problem).
Both problems are solved by the greedy algorithm taking athgge of the submodu-
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larity of the objective function. We confirmed by applyingthroposed method to two
real world networks taken from the blog and Wikipedia dat the proposed method
can achieve considerable reduction in computation timaawit degrading the accu-
racy compared with the naive simulation method as predioyettie theory. Use of the
two control strategies contributes to reducing the comntpmrtal cost by a factor of 50
compared with the naive bond percolation which itself is 3 torders of magnitudes
faster than the naive simulation method. The proposed rdetan discover nodes that
are more influential than the nodes identified by the congaatimethods based on the
various centrality measures. The results of the two inflaemaximization problems
are totally diferent in terms of the identified influential nodes and thus grucial to
choose the right objective function that meets the needhetask. We further found
that the pruning is féective when searching for a single influential node, but gaily
its overhead surpasses its saving and the burnout is morerfadwhen searching for
multiple influential nodes. Use of both is modfextive for the initial few iterations.
Thus, we recommend to use both the pruning and the burnogtionhe initial few
iterations, and stop using the pruning and use the burnouoeah the succeeding iter-
ations in the greedy algorithm. Just as a key task on bioledg find some important
groups of genes or proteins by performing biologically giale simulations over reg-
ulatory networks or metabolic pathways, our proposed ntetam be a core technique
for the discovery of influential persons over real socialveks.
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