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A method of modal expansion approximation is applied to study a burnup optimization problem .
The spatial distribution of the neutron flux is approximated by a linear combination of certain pre-

determined spatial modes, and one of these modes is regarded as the control mode. A computational

procedure that allows fast and sufficiently accurate estimation of the effect of flux shaping on the attain-

able burnup is described. As numerical example the optimal policy for flux shaping for a one-dimen-

sional slab reactor model with nonlinear feedback effects is sought by this method. By manipulating

the flux shape according to the optimal policy, the attainable burnup is increased appreciably over that

obtained by the conventional method based on constant flux distribution, when the maximum allowable

power peaking factor is large. The optimal policies are determined uniquely in the cases of highly non-

uniform fuel loading and smaller values of the maximum allowable power peaking factor, while they

become non-unique in the contrary case. The present method is applicable to more general problems

such as the optimization of flux shaping of a reactor with multi-zone refueling scheme without much

increase in computing effort.
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I. INTRODUCTION

Fuel and poison management of large power

reactor cores has considerable influence on power

generating cost, and much effort has been directed

toward finding the best policy for the management.

In past studies, modern optimization theories have

been applied for solving the problem with the aid
of the digital computer: Wall & Fenech(1) had

sought the refueling policy of a three-zone pres-

surized water reactor core using the technique of

dynamic programming. Stover & Sesonske(2)

have applied a similar technique to optimize the

scatter loading scheme of a three-zone boiling water

reactor. Suzuki & Kiyose(3) have investigated

refueling optimization on a light-water moderated

five-zone power reactor, and have obtained the

optimal policy by means of a linear programming

technique in combination with the preliminary

considerations on a subproblem formulated by

stagewise decomposition of the overall problem.

In these studies, the problem of poison manage-

ment optimization was either eluded by assuming

that the poison density was varied uniformly in

the core, or else only partially treated by assum-

ing that the optimal policy was already known

and applied.

Terney & Fenech(4) have made an attempt to

solve the problem by making use of dynamic

programming and flux synthesis, and obtained a
scheme of control rod withdrawal for a radially

two-zone reactor. Suzuki & Kiyose(5) have dis-
cussed the problem from a general viewpoint using

the theory of topological mapping. Motoda &

Kawai(s) have presented a geometrical interpreta-

tion of the relations among criticality, fuel and

poison distribution, power distribution, and fuel

burnup in the state space which they named burn-

* Aoba , Aramaki, Sendai-shi.
** Ozenji , Kawasaki-shi.
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up space, and determined the optimal control rod
motion in this state space. The effect of fuel

management was not taken into account explicitly

in these studies.

Motoda(7), in his recent work, investigated the

coupling effect of fuel and poison management

optimization, applying their method of burnup

space for a one-dimensional two-zone reactor in

equilibrium fuel cycle, and showed that this coupl-

ing effect should influence the decision of optimal

policy for poison management. It was also shown

in his work that the optimization of poison

management improved the discharge burnup of

the fuel by 0 to 4% over the conventional opera-
tion with constant power shape.

All the foregoing studies have been performed

utilizing the nodal approximation in which a

reactor core was divided into several zones with

uniform nuclear properties in each zone. The

nodal approach can be considered logical for

rendering the problem tractable, especially when

the purpose of the analysis is to visualize the

effect of the spatial arrangement of materials

(i.e. fuel and/or poison) within the core. However,
when the number of zones to be treated is in-

creased, this approach can no longer be applied

to burnup optimization problems, since it then

requires too much computing time. This difficulty
has so far precluded the possibility of a more

general analysis and optimization of the long term

operation of a reactor covering both fuel and the

poison management.

The aim of the present paper is to develop

an alternate approximation procedure that is appli-

cable to optimization problems of a multizone core

reactor without suffering restriction by the number

of zones. In this method, it is assumed that the

influence of control rod programming can effective-
ly be substituted by that of power shaping in

relation to the burnup performance of a reactor.

The power distribution is expanded into a linear

combination of predetermined spatial modes, and

one of these modes is regarded as the control

mode. The optimal policy for maximizing the dis-

charge burnup of the fuel is determined in terms

of the time history of the amplitude of the control

mode. The method is applied to a one-dimensional
slab reactor with nonlinear feedback effects, and

the characteristics of the optimal policy are exa-

mined for several typical loading patterns.

II. STATEMENT OF THE PROBLEM

The behavior of the neutron flux is approxi-

mately expressed by the following neutron balance

equation for a one-dimensional slab reactor, assum-

ing equivalance of neutron flux and power:

where H is the half-width of the core, β and δ

are the Doppler and the xenon reactivity feedbacks

at the rated power, and γ is a constant such that

(1+γ) is the ratio of saturated xenon reactivity

to the avarage equilibrium value. The symbol u

is the reactivity of the control absorber, e the

burnup of the fuel, and α the reactivity depletion

coefficient for fuel burnup and can be determined

arbitrarily. The scale of the normalized time t

is decided according to the value of α. The

spatial boundary conditions are

where 1/λ is the linear extrapolation length of the

core. In addition, the following relations should

be taken into account corresponding to the constant

power condition, the constraint on power peaking

factor, and the nonnegativity condition of power

and absorber:

∫10Φ(x,t)dx=1,
(3)

0≦Φ(x,t)≦Φmax, (4)

0≦u(x,t) (5)

Assuming a linear relation between burnup

and flux-time, the burnup distribution is expressed

by

e(x,t)=∫t0Φ(x,t')dt' (6)

or, in differential form,

In this study, we consider the problem of
maximizing the integral

J=∫10e(x,tf)dx,t∫:undetermined, (8)
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which is equivalent to the maximization of the

discharge burnup of the fuel, and may be rewrit-

ten, simply,

minimize J=-∫tf0dt. (9)

Equation (7) can be regarded as a system equa-
tion and Eqs. (1)～(5) as constraint conditions .

Our problem is to find the best control rod pro-

gramming u*(x,t), that minimizes the performance
index J for the system without violating the

constraint conditions. The problem may be treated

with the optimization theory for distributed param-

eter systems. But, direct solution of the problem

is, in most cases, quite difficult.

We assume that the distribution of the neutron

flux can be approximated by a linear combination

of the two known spatial modes:

Φ(x,t)=ω1(x)+a(t)ω2(x) (10)

where ω1(x) and ω2(x) each represents a fixed

component of flux distribution, and must satisfy

the spatial boundary condition Eq. (2). In order
that the variation of the time dependent coeffici-

ent a(t) should not violate Eq. (3), we must
impose the condition,

∫10ω1(x)dx=1, ∫10ω2(x)dx=0. (11)

With above approximations, the time depend-

ent distribution of burnup is simply expressed

by

e(x,t)=tω1(x)+b(t)ω2(x), (12)

           where b(t)=∫t0a(t')dt'.
(13)

As in Eq. (7), Eq. (13) also is transformed into
differential form, leading to the relation

Hereafter, we regard the shape of the flux distri-

bution, or rather, the time dependent coefficient

a(t) as an alternate control variable. The vari-
able b(t) then becomes the state variable, since this
variable, and this only, represents the accumulated

effect of the control action a(t) on the physical
state of the reactor. The temporal change of the

state of the reactor is described by Eq. (14) within
the validity of the approximation of Eq. (10).
The freedom of the system is strongly restricted

by the criticality relation, Eq. (1). For the sake

of convenience, this equation is solved formally for

the distribution of control poison u(x,t), and is
rewitten

Obviously u(x,t), the distribution of poison re-
activity, is determined uniquely by specifying the

value of the three variables a, b and t. The
distribution must satisfy the non-negativity condi-

tion, Eq. (5), resulting in a restriction on the
variables (a, b, t) in a manner expressed in general
form by

G1(a,b,t)≧0, (16)

which indicates the fact that the freedom in flux

shaping is influenced by the burnup accumulation

in the reactor core. Another constraint, Eq. (4),
is transformed into the expression

G2(a)≧0, (17)

and is rewritten into the simpler form

amin≦a≦amax. (17)'

The set of admissible controls is defined by the

intersection of the regions satisfying the above

two inequalities:

G3(a,b,t)≧0, (18)

which is reducible to the form

aL(b,t)≦a≦aG(b,t). (18)'

If the constraint is satisfied for the specified value

of (a, b, t), we can assure ourselves that the reactor
is kept critical for that state of the burnup and
flux distribution. In other words, given the flux

and the burnup distribution in terms of (a, b, t),
the distribution of control reactivity can be deter-

mined exactly by Eq. (15), and the criticality can
be maintained only when the resulting poison

distribution is physically realizable.
After these approximations and assumptions,

our original problem is transformed into compact

form, and is described as follows.

Find the optimal control a*(t) that mini-
mizes the functional J of Eq. (9), subject to the
system Eq. (14) and the constraint Eq. (18).
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III. PROCEDURE FOR SEEKING

OPTIMAL POLICY

Although our problem has been simplified by

the modal approach, it is still difficult to obtain

the optimal policy by a purely analytic treatment,

or by numerical direct optimization (i.e. exhaustive

search of all possible control sequences), and some
suitable numerical method is called for to seek

the optimal policy with less computing effort.

A procedure that satisfies this requirement is de-

rived by examining the character of the constraint

on the state and the control.

In order to describe the outline of the pro-
cedure, a typical pattern of the constraint bound-

ary defined from Eq. (18) is visualized on the

(a, b) and (t, b) plane as shown in Figs. 1 and 2,
using appropriately synthesized spatial modes and

parameters equivalent to those given in the next

Fig. 1 An example of burnup dependent

variation of the admissible region
in (a, b) plane.

Fig. 2 Target curves and typical

trajectories in (t-b) plane

section. Each contour line in Fig. 1 is obtained

by solving

G1(a,b,t)=0 (19)

for a fixed value of t. The boundary of the

constraint Eq. (17), expressed by

G2(a)=0, (20)

becomes two straight lines parallel to the b axis

in the (a, b) plane. The relation between the flux
shape and a is also illustrated in Fig. 1. The

admissible region for every t value defined by

Eq. (18) is completely enclosed by these lines and
contours, and the range of this region decreases

monotonically with increasing t, as might be ex-

pected from physical considerations. Within the

admissible region, the control variable a(t) can be
selected freely, since no other restriction is im-

posed upon the system.

It is possible to determine the point of the
largest t value for every value of the state vari-

able b, so that the non-selfintersecting curve Гt

is given as shown in Fig. 2.

The following relation holds for all the points

on this curve,

aL(b,t)=aG(b,t) (21)

where aL(b,t) and aG(b,t) are defined by Eq. (18).
Every end of life (EOL) state of a reactor must

satisfy one of the limiting conditions of Eqs. (19)
and (20), but not necessarily Eq. (21), and there-
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fore some freedom of control is left for the opti-

mization. The reactor can be maintained critical

if the residual freedom of control is utilized

properly, until this freedom of control diminishes

to nothing. On this account, the curve Гt is

called the target curve, upon which the optimal

final state of the reactor must lie. In other words,

each point on the target curve can be considered

eligible as the optimal EOL state, since, in our

optimization problem, there is no reason for stop-

ping the reactor operation before the state reaches

the target curve.

It is necessary to distinguish the attainable

region on the target curve in order to decide the

optimal final state. Two boundary trajectories
obtained by the boundary control aL(b,t) or
aG(b,t) are depicted in Fig. 2, the end points of
which lie precisely on the target curve. We call

these trajectories the lower boundary trajectory

(Trl) and upper boundary trajectory (Tru). These
boundary trajectories and the target curve define

a closed region or a sector on the (t, b) plane.
Any point within this sector is presumed attain-

able if the control a(t) is manipulated properly,
and hence, the part of the target curve, blbu, is

thought to be attainable. In the example of Figs.

1 and 2, the point b0 is taken for the optimal

final point in the case of Φmax=1.7, since b0

represents the realizable final state with the largest

t value among all terminal points, and the same

for the point b0" in the case of Φmax=1.3.

The point b0 appears attainable by several

trajectories, since it lies within the limits bounded
by Trl and Tru with a fair margin, so that the

corresponding control policy is not determined

uniquely. On the other hand, the point b0" can

not be reached because it is located outside the

limit marked by Trl", and the point bl" must be

accepted instead as the the most favorable among

attainable final states. The optimal control is
determined uniquely in this case, and is given by

the boundary control aL(b,t).

The possibility of the existence of non-unique

optimal trajectories makes the problem difficult

to treat by ordinary search procedure.

Here, assume that the optimal trajectory is

composed of two parts: the earlier part of the

trajectory is an operation with constant flux shape

(i.e.a(t)=as), and the latter part with boundary
control (i.e.a(t)=aL(b,t) or a(t)=aG(b,t)). For brev-

ity of description, the earlier part will be called
"inner segment"

, and the latter "boundary seg-

ment". The assumption is clearly justified when

the optimal control is unique as in the case of

Trl" in Fig. 2. With this assumption, the search

for the optimal policy is carried out by the

following computational procedure:

Step 1 Define amax and amin for the specified

value of maximum allowable power peaking

factor, and determine the increment Δa in such

way that Δa=(amax-amin)/N, where N is a given

integer.

Step 2 Compute the inner segment of the tra-

jectory using the control as=amin+nΔa(n=0,1,

…
, N) up to the time ts at which the relation

G1(as,asts,ts)=0 holds.
Step 3 Starting from this point (as, asts, ts),
compute the upper and the lower boundary

trajectory by performing boundary control, until

the end point is reached in each trajectory at
which the relation aL(bf,tf)=aG(bf,tf) holds.
Step 4 Repeat Steps 2 and 3 for all n, then

determine the optimal control a*(t) to obtain the
maximum value of tf.

By limiting the category of optimal solutions

to those stated above, the computational effort is

considerably reduced. In addition, the Newton-

Raphson algorithm becomes quite effective for

the search of the solutions of Eqs. (19) and (21),
convergence to the solution being usually obtained

with only a few interactions.

Some quantitative error may be introduced by

the simplifications in the procedure. In particular,

it would appear inaccurate to compute the two

boundary trajectories only, for t≧ts in Step 3.

However, in general, the freedom in control action

is so restricted at this stage of the reactor life

compared to that of beginning of life (BOL), that

the omission of the non-boundary trajectories
should not lead to significant error unless the

increment chosen for the control variable is too

large. Moreover, it is evident that rough prelimi-

nary search of the boundary segment always

underestimates the value of the attainable burnup
in comparison with the more precise values obtain-

able with detailed treatment. Thus, the computed

results are sure to be more of less pessimistic

estimations of the effect of flux shaping, provided

sufficient accuracy in the computation of the inner

segments. The accuracy of this search procedure
will be discussed again in the next section in
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connection with some numerical examples.

IV. RESULTS AND DISCUSSION

A numerical search was performed for a re-

actor model described in Chap. II, with the

parameters of

Δk=0.3, α=0.1, β=0.007, δ=0.018,

γ=0.3, M2/H2=0.0035 and λ=10.0,

which may be considered representative of a typi-

cal boiling water reactor. The effect of the initial
loading pattern was studied by taking five initial

k-distributions as shown in Fig. 3 (with notations,
Type 1, …, 5). The maximum aliowable power

peaking factor Φmax was varied from 1.3 to 1.7,

for the purpose of examining the influence of this

constraint on Φmax. The spatial modes ωi(x)

used in this study were derived by means of

ordinary Fourier series expansion truncated after

the third term, the accuracy of this treatment

having already been proved sufficient by one of

the present authors(18).

Fig. 3 Initial loading patterns
of fuel considered

The trajectories obtained for a uniformly loaded
reactor of Type 3 in Fig. 3 are shown in Fig.

4. The target curves for the problem are also

shown in order to demonstrate the validity of this

reduced search procedure. As the eligible optimal

final point, b0, is found within the attainable

region blbu of the target curve Гt, it is implied

that this point can be attained with some freedom

of control, and b0 is therefore regarded as the real

optimal final point. In fact, the best final point

Fig. 4 Optimal trajectories and target
curves for fuel-loading Type 3

bf given by the search procedure comes close to

the point b0 with only a small difference in the

attainable burnup (i.e. attainable t-value in Fig. 4),
demonstrating that the accuracy of the search is

sufficient for the present purposes.

By these trajectories, the policy for optimal
flux shaping is interpreted, and is transformed

into physical terms taking account of the defini-

tion of the variables a and b, as follows.

First, the flux is made to keep a shape with

a peak in the outer region of the reactor (i.e.
"outer -high" shape) as shown by the straight line

obs of the optimal trajectory. The flux shape is
held constant up to the time ts (point bs) when

it becomes impossible to maintain this shape. For

t≧ts, the gradient of the trajectory increases as

the time proceeds, implying that the criticality of

the reactor is sustained by changing the flux shape

as the burnup proceeds, and the peak of the flux

is shifted toward the inner region of the reactor

(i.e, "inner-high" shape). The operation must be
terminated at bf(=b0) where the gradient of the
trajectory becomes amax. The flux takes its worst

allowable shape at this final point, so that the

restriction on Φmax must be relaxed for further

operation. We call this policy outer-high (O-H)

policy. The behavior of the optimal trajectory on
the (t-b) plane is the same for all values of
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Φmax. This suggests that all optimal policies

for flux shaping are qualitatively similar despite

the difference in the allowable range for flux

variation.

As mentioned already, other optimal trajectories
that reach the optimal final point can be synthe-

sized by modifying the computing procedure

slightly. Two such trajectories, Trau and Tral,

are also traced in Fig. 4. These have been

obtained by keeping the worst flux shape corre-

sponding to the control amax or amin up to the

limiting time tm or tn, beyond which the point

b0 would no longer be attainable by any control.

These policies however, are not recommendable

since they require more sudden change of flux
shape than the policy shown by the trajectory
Tr0.

It is notable that the nature of the optimal
trajectory is mainly determined by the position of

the final point. In the present case for instance,

the outer-high flux shape must be maintained

for most part of a core life whatever the selected

optimal policy may be, since the b-value of the

optimal final point is negative with a large abso-

lute value.

An example of the results for non-uniform

loading pattern is shown in Fig. 5. These tra-

jectories and target curves were calculated for an
inner-high fuel distribution, Type 4. The optimal

final points lie on a higher part of (t-b) plane
compared to that of Type 3, and inner-high flux

shape becomes dominant in this situation. The

optimal trajectory is defined uniquely and coincides

Fig. 5 Optimal trajectories and target
curves for fuel-loading Type 4

with the upper boundary trajectory Tru" for
Φmax=1.3, thus the optimal flux shape is distorted

to its utmost toward the inner region.

For Φmax=1.5 and 1.7, the optimal trajectory

is not unique, since a slight freedom is admitted

to attain the optimal final point, but naturally

the overall tendency of the optimal policy is quite

similar to the case of Φmax=1.3. We call this

policy inner-high (I-H) policy.
The optimal trajectories were calculated and

analyzed for all loading patterns in the same way,
and the resulting categories of optimal policy are

summarized in Table 1. It is clearly seen that

the optimal flux shaping policy is, as a general

rule, the inner-high type for inner-high fuel load-

ings and the opposite for outer-high fuel loadings.

The tendency becomes particularly apparent with

increasing non-uniformity of the fuel loading and

with decreasing maximum allowable power peak-

ing factor.

Table 1 Effect of initial loading pattern and
maximum allowable power peaking

factor on category of optimal policy
for flux shaping

The initial value of the flux peaking in the

outer (inner) region of the reactor is equal to

Φmax for outer (inner)-high policy when the policy

is unique, while it becomes smaller than Φmax

when the optimal policy is non-unique. For

instance, the initial flux peaking is about 1.25

for the optimal policy for the loading pattern

Type 3 (Φmax=1.7), while it is equal to Φmax in

every case for Types 1 and 5.

The quantitative effect of flux shape optimiza-

tion is estimated by comparing the values of the

attainable discharge burnup with those given by
the conventional policy for flux shaping (i.e.

operation with constant flux shape), and the relative
values of burnup improvement obtained are listed
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in Table 2. The amount of improvement is
seen to be appreciable for larger values of Φmax,

while it is negligible for Φmax=1.3.

Table 2 Improvement of discharge burnup by
optimal control

(relative to the maximum burnup obtain-
able by constant flux shape operation)

The conventional policy is thus a good approxi-

mation for the optimal policy when the constraint

on the maximum allowable power peaking factor

is strict, but may bring significant losses when

this constraint is not restrictive, and optimization

of flux shaping may in such cases provide

appreciable improvement to attainable burnup.

Concerning optimization of the refueling

scheme, disregard of the effect of flux shaping

might lead to incorrect results for deciding the
best among the examined refueling schemes,

though the resulting difference in the measure of

performance (e.g. power generating cost) would be
small in effect.

It can be pointed out that the improvement

in discharge burnup is overestimated for some

cases. However, as we stated before, this over-

estimation is not due to any shortcoming of the

search procedure itself, but to the simplicity of

the mathematical model of reactor employed in

this study.

The categories of optimal policy are well con-

sistent with those given by the burnup space

method(6) for a one-dimensional two-zone reactor.

The fact that similar results have been obtained

from both modal and nodal approximations pro-

vides a certain amount of proof for the validity

of these approaches, since they are regarded as
mutually complementary approximation procedures.

V. CONCLUSION

The influence of flux shaping on the attainable

discharge burnup of fuel is studied by a method

of modal approximation technique for a one-

dimensional reactor. The optimal policy for flux

shaping is obtained in terms of optimal variation

of the amplitude of one of the spatial modes.

The characteristics of the optimal policies

obtained by the present analysis are summarized

as follows.

(1) The policy for attaining the maximum burn-
up becomes unique beyond a certain limit of

non-uniformity of the fuel loading and below

a certain value of the maximum allowable

power peaking factor, and becomes non-unique
in the contrary case.

(2) When the optimal policy is unique, the
policy is to maintain as long as possible a flux

shape that embodies the highest admissible

peak in the region of higher k-value. In our

terminology, the optimal policy becomes inner

(outer)-high policy for inner (outer)-high fuel
loading.

(3) When the optimal policy is non-unique, it
is usually possible to find a policy whose
fundamental characteristics are similar to the

unique one (i.e. O-H or I-H policy). In this

case, however, the initial value of flux peak-

ing is not equal to Φmax, but takes a certain

appropriate value smaller than Φmax.

(4) The quantitative effect of the optimization
of flux shaping is estimated by comparing

the results with those given by the conven-

tional policy. The amount of improvement

possible on the discharge burnup becomes

appreciable for larger values of Φmax.

These results are in qualitatively good agree-

ment with the results obtained by nodal approxi-

mation procedure. The present method is appli-

cable to the problem of deciding the optimal flux

shaping in more complicated reactor models (i. e.

a reactor with multi-zone refueling scheme) without
much increase in computing effort. For further

improvement of the accuracy of this approach,

the use of the flux-synthesis technique in deriving

the spatial modes should be promising.

ACKNOWLEDGMENT

The authors are grateful to Mr. T. Kawai of
the Atomic Energy Research Laboratory of Hitachi

Ltd. for his valuable suggestions and discussions.

They also wish to thank Prof. K. Sugiyama

of Tohoku University for his advice and encour-

agement in carrying out this work.

-15-



520 J. Nucl. Sci. Technol.,

REFERENCES-

(1) WALL, I., FENECH, H.: Nucl. Sci. Eng., 22, 285
(1965).

(2) STOVER, R. L., SESONSKE, A.: J. Nucl. Ener gy,
23. 673 (1969).

(3) SUZUKI, A., KIYOSE, R.: Nucl. Sci. Eng., 44,
121 (1971).

(4) TERNEY, W. B., FENECH, H.: ibid., 39, 109
(1970).

(5) SUZUKI, A., KIYOSE, R.: Trans. Amer. Nucl.
Soc., 11, 441 (1968).

(6) MOTODA, H., KAWAI, T.: Nucl. Sci. Eng., 39,
114 (1970).

(7) MOTODA, H.: ibid., 46, 88 (1971).
(8) idem: ibid., 41, 1 (1970).

-16-


