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   One method of evaluating the local variation of the neutron flux is described. By regarding the 
variations in nuclear reactors such as control rod motion, fuel shuffling and refueling as disturbances 

added to the material buckling, a one-group diffusion equation is solved using the perturbation theory 
in one-dimensional geometry. This method is applied to an inhomogeneous reactor, which has already 

been disturbed, where the disturbances are approximated by a number of square pulses small enough 
for the method to be applicable. Good results are obtained with this method for disturbances equivalent 

to a reactivity of several percent. Discussion based on several examples are presented on the errors 

introduced by larger disturbances.

        I. INTRODUCTION 

   In nuclear reactors, the neutron flux distribu-
tion changes its form when the material buckling 
is disturbed by such events as control rod motion, 
fuel replacement, and fuel loading. In order to 
assure the safety and economical operation of 
reactors, it is very important to establish a general 
correlation between the causes and effects of varia-
tions in neutron flux distribution. It is impossible, 
however, to solve the diffusion equation analytically 
when the distribution of the material buckling is 
complicated, which is, unfortunately, often the 
case. Thus, the development of an approximate 
method is called for, to determine the correlation 
by some simple procedure. 

   The procedure proposed here consists of the 
following steps. First, the perturbed diffusion 
equation is solved for a general form of disturbance 
and is then applied to the special case of a square 
disturbance. The variation of neutron flux caused 
by the introduction of a number of square dis-
turbances can then be obtained by the principle 
of superposition. Based on the result, thus obtained, 
a simplified method is developed for predicting 
the local variation of the neutron flux distribution 
caused by a square disturbance added to a reactor 
already disturbed by a number of square dis-
turbances.

   II. EQUATION TO BE SOLVED 

  The diffusion equation describes the neutron 
flux distribution which directly determines the 

power distribution in a one-group diffusion model. 
At critical steady state, in one-dimensional geometry, 
the diffusion equation of a homogeneous reactor 
takes the form:

Here,　 ψ0(x) means the neutron flux, λ0 the eigen-

value, and B0 is the material buckling defined by

where k∞ is the infinite multiplication factor of

neutrons and M2 the migration area. When the

material buckling is disturbed, the equation changes 

in form to

where δB2(x) is the additional buckling, which

usually takes the form of square pulse, and λ

the eigenvalue after the perturbation. We may 
write the solution of this equation

ψ=ψ0+ト δψ (4)
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λ=λ0+δλ (5)

The problem is to determine the form of δψ　and

δλ.

 III. SOLUTION OF THE EQUATION 

  1. Summary of the Perturbation Method 

  The equation of a state that is not perturbed 
generally written in the form

H0ψn(x)=λnψn(x), (n=0,1,2,…) (6)

where H0 is an unperturbed operator, λn and ψn

are the eigenvalue and the eigenfunction of H0, 

respectively. Here we adopt the assumption that

the functions ψ0, ψ1,…, ψn, … compose a complete

set of orthonormal functions. As a rule, the equa-

tion of a perturbed state is written

(H0+εV)ψ(x)=λ ψ(x), (7)

where V is the perturbation operator or function

of x, and ε a small parameter. The solution of

Eq. (7) is expanded into polynomials of ε:

ψ=ψ0+ε ψ(1)+ε2ψ(2)+… (8)

λ=λ0+ε λ(1)+ε2λ(2)+… (9)

Here ψ0 means the solution of the unperturbed

state. In order to simplify the ensuring discussion, 

we adopt the first approximation of the solution, 

which is given by(1)

ψ(1)=-SVψ0, (10)

λ(1)=(Vψ0,ψ0). (11)

Here, S is an inverse operator of (H0-λ0). It

should be noted that (H0-λ0) has nQ inverse

operator for ψ0, but has it in a subspace which

consists of functions orthogonal toψ0. We define

Thus, the key to the solution is to find a complete 
set of orthonormal functions and corresponding 
eigenvalues that satisfy Eq. (6). 

  2. Superposition of the Solutions 

  Suppose that the pertubation term of Eq. (7 ) 
consists of the numerous functions

Then it can easily be shown that the solution of 
Eq. (13) can be written in a simple form such as

-given below if the terms of the second order of

ε can be neglected.

Here, ψn(1)and λn(1)are the second terms of the

right-hand side of Eqs. (8) and (9) respectively,
which are obtained when εn, Vn are inserted into

ε, V in Eq. (7).

3. General Form of the Equation 

   and its Solution 

The unperturbed equation

has an infinite number of solutions and correspond-

ing eigenvalues. They are classified into two 
types, one for symmetric and the other for antisym-
metric. They are expressed by

In the critical state, the solution of Eq. (15)
is ψ0, which is symmetric and belongs to the

minimum eigevalue λ0. From the procedure given

above, it can easily be shown that the perturbed
equation cannot be solved unless the product Vψ0

has the form represented by Eqs. (16) and (17). 
Then the perturbation V should have the forms

If V is given in another form, we must begin by 

expanding it into these series of functions. Next 
we solve the equation

The solutions of Eq. (18) are calculated from Eqs. 

(10) and (11):
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In the same way, the solutions of the equation

are obtained. They are

These results are easily extended to more general 
cases making use of the principle of superposition. 

 4. Application to Square Disturbance 

  Since the disturbance added to the material 
buckling is usually given in the form of square 

pulse, we will apply these solutions to the case of 
square pulse perturbation. 

  Figure 1 shows the shape of a symmetric pair 
of square pulses, and Fig. 2 the shape of an 
antisymmetric pair. The arithmetic mean of these 
two pairs of pulses gives a single pulse such as

shown in Fig. 3. 
  Let a and b represent the half widths of the 

core and disturbed region, respectively. The 

pulseheight c is related to the magnitude of the 
perturbing buckling by

The symmetric pair in Fig. 1 is expanded in series :

Similarly, the antisymmetric pair in Fig. 2 is ex- 

pressed by

The arithmetic mean of these functions represents 

the single pulse in Fig. 3:

Inserting V(x)into δB2(x)in Eq.(3),

The solutions of this equation are obtained by

Fig. 1 Symmetric pair of 

       square pulses

Fig. 2 Antisymmetric pair 

       of square pulses

Fig. 3 Single square pulse
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using Eqs. (18)～(22) and the princlple of super-

position :

Here, αn and βn are defined by

Fig. 4 Comparison between exact and 

       approximated solutions

  The combination of this result and the principle 

of superposition makes it possible to obtain the 
solution of an equation representing a state of 

disturbance by a number of square pulses. Figure 
4 shows an example of such calculation, where the 

summation is carried out for the first ten terms. 
The results are in good agreement with the exact 

solution for the small disturbance taken up in 
this example.

NIV. PROCEDURE FOR ESTIMATING 

    THE LOCAL VARIATION FACTOR 

 1. Definition of the Local 
     Variation Factor

  The first approximation of the neutron flux 
disturbed by an additional buckling is represented 
by

ψ(x)=ψ0(x)-ψ(1)(x). (30)

The local variation factor is defined by

Here, d indicates the position where the perturba-

tion is introduced, and A is a normalizing factor 
defined by

∫a-a Aψ(x)dx=∫a-aψ0(x)dx. (32)

By defining. S0 and ΔS in　thh forms

the constant A is represented by

Accordingly, Eq. (31) becomes

  2. Local Variation Factor 
     in the General Case 

  In the preceding section, we have defined the 

local variation factor in a homogeneous reactor. 

However, it is more desirable to have an expres-
sion of the local variation factor caused by an 

additional perturbation to a state which has already 
been disturbed by a number of square disturbances.
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In this case, it is expected that the local variation 
factor depends essentially on the state before 
perturbation. Then the formulation will be some-
what complicated. 

   A simple approximate expression of such a local 
variation factor is obtained by analogy to the 
homogeneous reactor. But as it might be expected, 
the method is not useful for the case in which the 
state before perturbation is remote from the homo-

geneous reactor. 
  First we define the neutron flux which has 

already been disturbed by a number of square 
distnrhances:

φn(x)=An(ψ0(x)+ψ1(1)(x)+…+ψn(1) (x))

(36)

Here, An is the normalizing factor defined in the 
same way as before :

.When a disturbance is added to this state, the local 

variation factor is represented by

In order to simplify the form of β, it is assumed

that

ψn+1=ψn+ψ(1)n+1. (39)

Then β in Eq. (38) becomes

The error introduced by this approximation is given 
by the difference between Eq. (38) and (40), i. e.,

The first term of Eq. (41) is approximated in the 
simple form given below, based on the fact that
ΔSi(i=1,2,…,n+1)are not only negligibly small

compared with S0, but also that they can be either 

positive or negative :

The second term of Eq. (41) may be regarded as

negligible under the assumption that ψ(1)n+1≪ψnr

Zi. e.,

Thus, the approximated expression for β is

It should be noted that the suffix i(i=1,…,n)

is not included except for φn(d)which is given

as a known quantity. Then the expression can 

be simplified to

  3. Renormalization of Neutron Flux 

  The neutron flux is usually given in the form 
of a peaking factor that is normalized to give an 

average value of unity. Hence, it is desirable that

ψ(1) and φ are expressed in the same magnitude.

A constant factor γ can be introduced to give Φ

and Φ(1) defined by Eq.(45), such that the average

of Φ becomes unity:

Strictly spdaking, the second of the two expres-
sions in Eq. (45) is an approximation. From the
definition of the peaking factor, the constant γ is

defined by

The contribution of the disturbance is, then,

The local variation factor becomes

  4. Representation using Parameters 

  By normalizing the parameters b, d and variable 
x by

the second term of Eq. (28) is transformed into
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Where αn and βn are:

Integrating ψ0(x)from x=-a to x=a, S0 is

obtained :

In the same way, ΔS is calculated:

Therefore, the last term of Eq. (48) becomes

From Eqs. (45), (46) and (50),

Thus we obtain the final form of the local varia-

Table 1 Confficient P(B, D) for local variation factor

Table 2 Coefficient Q(B, D) for local variation factor
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tion factor :

The coefficients P(B, D) , Q(B, D) are calculated 
for some values of B and D. The results are 

presented in Tables 1 and 2.

  5. Further Approximation 

     for a Particular Case 

It is expected that the Variation of the neutron 
flux will be proportional to the width of the ad-

ditional square pulse when it is very small com-

pared with the width of the region. This condi-
tion, noted by B≪,1 reduces the expression of α,

β in Eq.(51) to

Using this result, the local variation factor is re-

presented by

where, R1(D) and R2(D) are defined by

These two coefficients, R1(D) and . R2(D) have 
been calculated, the result being as shown in Fig.

Fig. 5 Coefficients R(D) necessary to 
       estimate local variation factor

   V. RESULTS AND DISCUSSION 

  The procedure of estimating the local variation 
factor is illustrated in Fig. 6. It should be noted, 
however, that the process of deriving Eqs. (56) 
and (58) includes several approximations. Con-
sequently, the estimation of the errors accumulated 
thereby is somewhat complicated and is not 
practical. The validity of these approximations. 
has been otherwise examined through comparison. 
with exact solutions. Figure 7 shows the exact 
shapes of the neutron fluxes and the corresponding 
material buckling distribution. The solid line 
describes the state adopted as the unperturbed one
although it does not correspond exactly to the 
solution of the homogeneous reactor. The dotted 
lines represent the shapes of additional bucklings 
and the corresponding perturbed fluxes. The local
variation factors caused by each additional buckling 
are estimated by using Eq. (56). The results are

Table 3 Exact and approximated local uariation factors
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Fig. 6 Illustration of procedure for 

      estimating local variation factor

given in Table 3 together with the exact values. 
It is clear that the relative error of the quantity

(β-1)grows with the degree of perturbation. This

table indicates the limit to which the present

Fig. 7 Change of neutron flux due to 

      disturbances in material buckling

method can be applied and it also reveals the local 

variation factor to be in good agreement with the 
solutions obtained from the exact calculations. 
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