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One method of evaluating the local variation of the neutron flux is described. By regarding the
variations in nuclear reactors such as control rod motion, fuel shufiling and refueling as disturbances
added to the material buckling, a one-group diffusion equation is solved using the perturbation theory
in one-dimensicnal geometry. This method is applied to an inhomogeneous reactor, which has already
been disturbed, where the disturbances are approximated by a number of square pulses small enough
for the method to be applicable. Good results are obtained with this method for disturbances equivalent
to a reactivity of several percent. Discussion based on several examples are presented on the errors

introduced by larger disturbances.

I. INTRODUCTION

In nuclear reactors, the neutron flux distribu-
tion changes its form when the material buckling
is disturbed by such events as control rod motion,
fuel replacement, and fuel loading. In order to
assure the safety and economical operation of
reactors, it is very important to establish a general
correlation between the causes and effects of varia-
tions in neutron flux distribution. It is impossible,
however, to solve the diffusion equation analytically
when the distribution of the material buckling is
complicated, which is, unfortunately, often the
case. Thus, the development of an approximate
method is called for, to determine the correlation
by some simple procedure.

The procedure proposed here consists of the
following steps. First, the perturbed diffusion
equation is solved for a general form of disturbance
and is then applied to the special case of a square
disturbance. The variation of neutron flux caused
by the introeduction of a number of square dis-
turbances can then be obtained by the principle
of superposition. - Based on the result, thus obtained,
a simplified method is developed for predicting
the local variation of the neutron flux distribution
caused by a square disturbance added to a reactor
already disturbed by a number of square dis-
turbances.

II. EqQuATION TO BE SOLVED

The diffusion equation describes the neutron
flux distribution which directly determines the
power distribution in a one-group diffusion model.
At critical steady state, in one-dimensional geometry,
the diffusion equation of a homogeneous reactor
takes the form :

d%po_
dx?
Here, ¢o(x) means the neutron flux, Ao the eigen-
value, and By is the material buckling defined by

o Oko kw1
TMr M

Aopo(x), Ao=—B¢ g ta)=0. (1)

By

(2)

where k. is the infinite multiplication factor of
neutrons and M? the migration area. When the
material buckling is disturbed, the equation changes
in form to

d*p(x)

-—;i—F—}—éBZ(x)qo(x) =A¢(z), @(£a)=0,
(3)

where 0B%x) is the additional buckling, which
usually takes the form of square pulse, and 4
the eigenvalue after the perturbation. We may
write the solution of this equation

P=@o+0p (4)
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A=Ag+0A. (5

The problem is to determine the form of 8y and
oA,

M. SoLutioN oF THE EqQuATioN

1. Summary of the Perturbation Method

The equation of a state that is not perturbed
generally written in the form

Hogn(z)=Angpa(z), (n=0,1,2, ) (6)

where Hyg is an unperturbed operator, 1. and ¢,
are the eigenvalue and the eigenfunction of H,,
respectively. Here we adopt the assumption that
the functions @o, ¢1,++, @n, -+ compose a complete
set of orthonormal functions. As a rule, the equa-
tion of a perturbed state is written

(Hot+-eV)p(z)=2¢(z), (7)
wheré V is the perturbation operator or function
of z, and € a small parameter. The solution of
Eq. (7) is expanded into polynomials of €

90=§00+8§0(D—|—82(p(2)+~“ (8)

A= Ao+EAD 22D 4. (9)
Here o means the solution of the unperturbed
state. In order to simplify the ensuring discussion,
we adopt the first approximation of the solution,
which is given by™

oW =-S5V, (10)

AL =(Vgo, po). (11)
Here, S is an inverse operator of (Hy—74,). It
should be noted that (Hy—Ac) has no inverse
operator for @, but has it in a subspace which

consists of functions orthogonal to ¢, We define
Som=—27 =1,2, )
o= o, PH B (12)
Sgoo=0

Thus, the key to the solution is to find a complete
set of orthonormal functions and corresponding
eigenvalues that satisfy Eq. (6).

2. Superposition of the Solutions

Suppose that the pertubation term of Eg. (7)
consists of the numerous functions

(Hﬁi éle,,‘v,,)q)-_- Ao, (13)

Then it can easily be shown that the solution of
Eq. (13) can be written in a simple form such as

413

-given below if the terms of the second order of

£ can be neglected.

=0+ 2:31'5,,@7‘(1) ‘

R (14)
A=o+ S endn®

n=1

Here, ¢ and A:? are the second terms of the
right-hand side of Eqs. (8) and (9 ) respectively,
which are obtained when €,, V', are inserted into
g, Vin Eq. (7).
3. General Form of the Equation
and its Solution

-The unperturbed equation
d2¢ ;
=10, plxa)=0 (15)
has an infinite number of solutions and correspond-
ing eigenvalues. They are classified into two
types, one for symmetric and the other for antisym-

metric. They are expressed by
1
#\/I Cos —*~<n+5)ﬂ x
Pncos= 2 2
2
-
2"005:‘"_‘;2-"—’ (n=0, 1, 2, ---) ,
(186)
\/1‘. N
Dnsin=4/—SID —&
a a
a2 (17)
Ansin= - (n=1, 2, )

In the critical state, the solution of Egq. (15)
is ¢o, which is symmetric and belongs to the
minimum eigenvalue 2. From the procedure given
above, it can easily be shown that the perturbed
equation cannot be solved unless the product Vo
has the form represented by Egs. (16) and (17).
Then the perturbation V' should have the forms

' 1
kr . (k_7>”
a

cos —z, sin z, (k=1, 2, -).
a

If V is given in another form, we must>begin by
expanding it into these series of functions. Next
we solve the equation
d’¢
) dz?
The solutions of Eq. (18) are calculated from Egs.
(10) and (11):

—|~(8 cos %x)g@ =29, @(+a)=0. (18)
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T4tV @ 2a (19)
AV=0, (k=1 ],

1
(1’(1)=i,\/I i cos (k+7>7tx
2N a| R(k+1)n? a

=

Ta— T

2(1):% (k#l)
(20)

In the same way, the solutions of the equation

2 ,
d <04— €sin p=2p, ¢(+a)=0
(21)
are obtained. They are
= 1\/ sin (k+1)753;,
{k+1)2——} @
2
-+ al —sin k—:c
2. % 2
g
A0 g ' '
(22)

These results are easily extended to more general
cases making use of the principle of superposition.

4. Application to Square Disturbance

Since the disturbance added to the material
buckling is usually given in- the form of square
pulse, we will apply these solutions to the case of
square pulse perturbation.

Figure 1 shows the shape of a symmetric pair
of square pulses, and Fig, 2 the shape of an
antisymmetric pair.
two pairs of pulses gives a single pulse such as

The arithmetic mean of these

J. Nucl. Sci. Technol,

shown in Fig. 3

Let @ and b represent the half Wldths of the
core ‘and “disturbed - region, respectively. The
puiseheight ¢ is related to the magnitude of the
perturbing buckling by

Ok

=3 @)
The symmetric pair in Fig. 1 is expanded in series :
_2be | N4 o onmd
Vi(x) sym.= +n21 o 2
«sin nb cos 22 (24)
a a

Similarly, the antisymmetric pair in Fig. 2 is ex-
pressed by

1
o dc (?Z——?)ﬂfb
Viz)ans.= 2 sin
n=1 <n——1->7c a
2 .
‘ (n—%)ﬂ.’d ' (n——%—)?rx
«sin - sin
a a

(25)
The arithmetic mean of these functions represents
the single pulse in Fig. 3:

nd . nmh _ nmx

V(x) =.@+ i ~2—C~éos 222 sin P22 cos
a n=1u% a a a
w n—-——)fcb
+ 2¢ sin (
n=1<n_i - ]
) 2
(n—l)nd" (n«—i)n:
. 2 R 2 ~
s 510 L.
' a - a "»
(26)
Inserting V(z) into 8B%x) in Eq. (3),
L L V(z)p=20, o(+a)=0 @
dx? . ’ - '

The solutions of this equation are obtained by

2b 2b

2b 2b

. ¢ .

H" l l X~
-a -d o d a -a

Fig. 1 Symmetric pair of
square pulses

Fig. 2 Antisymmetric pair
of square pulses

|
d _a

Fig. 3 Single square pulse

-a o
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using Egs. (18)~(22) and the principle of super-

position :
\/——co Tz, a c\/_
27:2
1
T
. i Antnsy cos <n+ 2) x
a=1\ n{n+1) a
(28)
+‘8»——"'1+’8" sin 2%,
n2~—1—
4
,1(1>={7£+CL‘1 A=y AW
a 2,
Here, an and Ba are defined by
2  amd . nmbh
Qp=-—C08 — = gin ——
T a a
1
<n+— b n-+-—\rd
2 . 2 .
Brn= sin sin
(n+l ) a a
2
(29)
[‘\7
\
\\
‘\\/q/CasaIV
AN
RN Cose I
\(\/\1/
15 .
Bo2=247x 107 -
%
L
= 2
3 E—3
= X
8
E : a
23 °
2 -
46xBg B
=
2xB}
\ 132
100
% {em)

Distance from center
Fig. 4 Comparison between exact and
approximated solutions

115

The combination of this result and the principle
of superposition makes it possible to obtain the
solution of an equation representing a state of
disturbance by a number of square pulses. Figure
4 shows an example of such calculation, where the
summation is carried out for the first ten terms.
The results are in good agreement with the exact
solution for the small disturbance taken up in
this example.

IV. Procepure ror ESTIMATING
THE LocAL VAriatioN Factor

1. Definition of the Local
Yariation Factor
The first approximation of the neutron flux
disturbed by an additional buckling is represented
by o , ,

9(x)=po(x) + 9 (). V (30)

The local variation factor is defined by
~Aed) 31
B= oo(d) . (31)

Here, d indicates the position-where the perturba-
tion is introduced; and - A is a normalizing factor
defined by

SiaAgo(x)dx:S:;(Do(x)d‘x.‘A (32)

‘By defining So and A4S in-thé forms

SQE q}o(x)dx

—a

. » (33)
ASES eV (x)dx
the constant A is represented by
S
=SetdS. 3
‘Accordingly, Eq. (31) becomes
So { ¢c1)(d)}
= 35
A5t 25" ) . (35

2. Local Variation Factor
in the General Case

In the preceding section, we have defined the
local variation factor in a homogeneous reactor.
However, it is more desirable to have an expres-
sion of the local variation factor caused by an
additional perturbation to a state which has already
been disturbed by a number of square disturbances.
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In this case, it is expected that the local variation
factor depends essentially on the state before
perturbation.  Then the formulation will be some-
what complicated.

A simple approximate expression of such a local
variation factor is obtained by analogy to the
homogeneous reactor. But as it might be expected,
the method is not useful for the case in which the
state before perturbation is remote from the homo-
geneous reactor.

First we define the neutron flux which has
already been disturbed by a number of square
disturbances :

$nlx)= An(@o(x)+91P(z)+ - +¢a V()
' (36)

Here, Ay is the normalizing factor defined in the
same way as before:

So , 1
P St ASit -+ A4S,
oa 1+ , @)
AS.’ES 0P (z)dz f

When a disturbance is added to this state, the local
variation factor is represented by

Annghl ()
Gn(d)

In order to simplify the form of 8, it is assimed
that

¢'u+1(d) . An+1

B=—.0 = a. (38)

V Prerm @atoihe. {39)
Then £ in Eq. (38) becomes
1
$ni1(d)
== 1
=100 .

The error intreduced by this approximation is given
by the difference between Eq. (38) and (40), i. e,

(40)

;- Anvr (05,1} 1(6[)
ﬁ«ﬂ <An ) (A”"'l—l) (/)+<d

(41)

The first term of Eq. (41) is approximated in the
simple form given below, based on the fact that
4S8 (f=1, 2, ---, n+1) are not only negligibly small
compared with So, but also that they can be either
positive or negatlve

An+1 1 mAS:ﬁ-l
An ~ SO

(42)

J. Nucl, Sci. Technol.,

The second term of Eq. (41) may be regarded as
negligible under the assumption that qo§,1i1<<gbﬂ,
ie.,

Paha(d)
$a(d)

Thus, the approximated expression for 8 is

14 Enhi(@)_ ASn

¢ald) So
It should be noted that the suffix i (i=1, -, n}
is not included except for ¢»(d) which is given
as a known quantity. Then the expression can
be simplified to

(Ane1—1) «1. (43)

B=1+“’;()g) —gg (44)

3. Renormalization of Neutron Flux

The neutron flux is usually given in the form
of a peaking factor that is normalized to give an
averagej’/ value of unity. " Hence, it is desirable that
9 and ¢ are expressed in the same magnitude.
A constant factor 7 can be introduced to give ¢
and ¢ defined by Eq. (45), such that the average
of @ becomes unity :

PlR)=rxd= ]

« ¢“’<3x)=7><¢“’(x)}
Strictly spéaking, the second of the two expres-
(45) is an approximation. From the

definition qf the peaking factor, the constant 7 is
defined by

(45)

sions in Eq.

9o(z)

QDQ(JC) average - 7990(:‘:)

Polz)=
(46)
T: {@0('7«") average} “1y= 2—6:—

The contribution of the disturbance is, then,

¢<1)(d (pm(d) (47)
THhe local variation factor becomes
¢(l)(d> AS
1 = 48
B=1+% 4d) 5. (48)

4. Representatlon using Parameters

By normalizing the parameters b,dand vanabie
z by

b_p, “-p,.
a a

FoX, (49)
a

the second term of Eq.' (28) is transformed into

— 8 —
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POX)

“ont

a¥c 1“{an+an+1
a g=1

n(n+1)

+Bn—1+i5n

2

- nt—=

-where 5 -and B are:

4

cos <n —}——i—)nX

»

sin nwX } (50)

AS:%VZ-P(B, D).

P(B,D)=

(=1)" ,
n(n—i—l)(n—[—

In the same way, 4S is calculated :

Dpt-One
1

2

4u7.

(53)

Therefore, the last term of Eq. {48) becomes

2 . 2
»=-—cos ntDsin nt B ﬁ:a—CPB D 54
? nw SO An? ( ) ) ( )
Ba= __21__ sin (n i % ) 2B sin (n i % )7; D From Egs. (45), (46) and (50),
, =7 2
("+ 2) $(d)=2Q(B, D)
(51) - n 1
anta
‘Integrating @o(x) from z=—a to x=a, S, is QB, D)= T |=—"cos <”+““> =D
N n=l ﬂ(ﬂ+ 1) 2
-obtained : (55)
@ 1 Tz
S.,:S_“\/;— cos é-;dx +~—~—ﬁ”2"+1‘8" sin awD
n——
1 X 41, 4
=V aS cos T2 g X = 52
-1 2 T 52) Thus we obtain the final form of the local varia-
Table1 Confficient P(B, D) for local variation factor
'N 0.00 | 0.10 | 0.20 | 0.3 | 040 | 0.5 | 060 | 0.70 | 0.80 |- 0.90
0.05 —0.0562] —0.0507| —0.0356| --0.0145} 0. 00760 0. 0252 0.0340 0.0323F 0.0216; 0.00780
0.10 | —0.110 | —0.990 | —0.0697| —0.0287! 0.0141 0.0482| 0.0654] 0.0622| 0.0423| 0.0172
0.15 | —0.158 | —0.142 | —0.101 | —0.0425| 0.0183 0.0668! 0.0015; 0.0879| 0.0616 —
0.20 | —0.198 | —0.179 | —0.128 | —0.0556| 0.0195 0.0794! 0.110 0.108 0.0795 —
0.25 | —0.229 | —0.208 | —0.149 | —0.0680| 0.0168 0.0846 0.121 0.121 — —
0.30 —0.249 | —0.227 | —0.165 | —0.0795} 0.00977 0. 0817 0.122 0.128 — —
0.35 | —0.258 | —0.236 | —0.175 | —0.0901{—0. 00166 0.0706 0.114 — — —-—
0.40 | —0.255 | —0.235 | —0.178 | —0.0998 [—0. 0172 0.0521, 0.0990 — — —
0.45 | —0.242 | —0.225 | —0.176 | —0.109 |—0.0363 0.02771  0.0792 — — —
0.50 | —0.221 | —0.207 | —0.169 | —0.116 |—0.0575 0. 0000 — — — -—
Table 2 Coefficient Q(B, D) for local variation factor
52| 000 | 010 [ o2 | o3 | 04 | 050 | o6 | 07 | 08 | 0.9
0. 05 0.176 0,188 0.220 0. 256 0.279 0.275 0. 237 0.169 ] 0.0902 | 0.0253
0.10 0. 305 0.329 0.3892 0. 466 0.516 0.513 0. 442 0.316 | 0.168 0. 0486
0.15 0.393 0. 429 0. 523 0.633 0.711 0.712 0.618 0.443 | 0.238 —
0.20 0.443 0.490 0.612 0.758 0. 863 0.873 0.761 0.550.{ 0.303 e
0.25 0.461 0.518 0. 665 0.843 0.975 0.995 0.875 0. 640 — —
0.30 0.453 0.517 0. 686 0.891 1. 046 1.080 0. 960 0.716 — —_
0.35 0.425 0. 495 0. 680 0.906 1.082 1.130 1.019 — — —
0. 40 0.382 0. 456 0. 651 0.892 1.085 1. 149 1,055 — — —
0.45 0. 330 0. 406 0. 605 0.854 1. 059 1.142 1.073 — — _
0.50 0.273 | 0.348 0. 546 0.796 1. 009 1.111 . — — -

— 35 —
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tion factor:

atc 1

A= 5@

Q(B,D) — (B D).

(56)
The coefficients P(B,D), Q(B,D) are calculated

for some values of B and D. The results are
presented in Tables 1 and 2.
5, Further Approximation
for a Particular Case

It is expected that the-wariation of the neutron
flux will be proportional to the width of the ad-
ditional square pulse when it is'very small com-
pared with the width of the region. This condi-
tion, noted by B« 1, reduces the expression of a,
B in Eq. (51) to

an=2Bcos nuD
. 1 (57)
Br==2Bsin (n—{—E)TL‘D

Using this result, the local variation factor is re-
presented by

a’c B
A=t o 5@

where, Ri(D) and Ry(D) are defined by
E‘, (=1)" -
":ln(n—i—l)(ﬂ—i——)
2
« {cos nm.D +cos (n+1)wD}

. 'COS (n—{—%)n:D
RZ(D)En§1 n(n+1)

« {cos ntD~-cos (n+1)nD}

R@%%B&@L (58)

1(%1(1.))'5

(59)

= sinnw D
tE T
n=7

-[sin (n—%)nD—}-sm <n+ 1)7513} |

J. Nugl. Sci-Technbl,

These two tcoefficients, Ri(D) and ‘Ry(D) have
been ¢éalculated, the result being as shown in Fig.
5.

o8}
06 -
=) o
= o4} <
o &
- a2l
= =3
. @
2 a0 2
‘ § -o2} £
o
S -o04} o
~-06¢F
(o] 05 [Ke]
D

Fig. 5 Coeflicients R(D) necessary to
estimate local variation factor

V. REsuLts AND Discussion

The procedure of estimating the local variation
factor is illustrated in Fig. 6. It should be noted,
however, that the process of deriving Eqs. (56)
and (58) includes several approximations. Con--
sequently, the estimation of the errors accumulated.
thereby is somewhat complicated and is not
practical. The wvalidity of these approximations.
has been otherwise examined through comparison.
with exact solutions. Figure 7 shows the exact
shapes of the neutron fluxes and the corresponding
The solid line:
describes the state adopted as the unperturbed one
although it does not correspond exactly to the
solution of the homogeneous reactor. The dotted
lines represent the shapes of additional bucklings.
and the corresponding perturbed fluxes. The local
variation factors caused by each additional buckling:
are estimated by using Eq. (56). The results are:

material buckling distribution.

Table 3 Exact and approximated local uariation factors

Qo | il | 60y | s, p) | Nomrsrsubed | Ferried || Bt | Apposimard
I By? +—0.110 0. 305 1. 585 1. 660 1.048 1. 045
il 2B4* —0.110 |- 0.305 1.585 1.739 1.088 1.089 -
hii1 3By* —0.110 0. 305 1. 585 1.820 1,148 1.134
v 5B,* —0.110 0. 305 1. 585 1.692 1,257 1.223
A 10By? —0.110 0. 305 1. 585 2. 457 1.550 1.447

— 836 —
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Regeon . .- Perturbation - Normalized
width. parameter flux before
perturboﬁon

oy
o« 1k
’ Xed
Ri{D).R2{ D)
d
B 1+ 250(8.0)- & Srte.0r
...02CB ozoa
pr1+ e Ry (0)- SRR 0)

Fig. 6 Iilustration of procedure for
estimating local variation factor

given in Table 3 together with the exact values.
It is clear that the relative error of the quantity
(B—1) grows with the degree of perturbation. This
table indicates the limit to which the present

419,

5
g‘d‘ 1.5F -
- 2
s 2
— ¥ !
2 o Lor
z & . exact
x approximate\d
2
osr8*Bo  \ a
. -42x|o
j 8%
' , _\-zuo“
0 50 oo (cm)

Disfance from center of core
Fig. 7 Change of neutron flux due to
disturbances in material buckling

method can be applied and it also reveals the local

variation factor to be in good agreement with the

solutions obtained from the exact calculations.
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