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Abstract We propose a method of detecting the period in which a burst of infor-
mation diffusion took place from an observed diffusion sequence data over a social
network and report the results obtained by applying it to the real Twitter data.
We assume a generic information diffusion model in which time delay associated
with the diffusion follows the exponential distribution and the burst is directly
reflected to the changes in the time delay parameter of the distribution. The shape
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of the parameter’s change is approximated by a step function and the problem of
detecting the change points and finding the values of the parameter is formulated as
an optimization problem of maximizing the likelihood of generating the observed
diffusion sequence. Time complexity of the search is almost proportional to the
number of observed data points and has been shown to be very efficient. We first
demonstrated that the proposed method can detect the burst using a synthetic data
and showed that it performs better than one of the representative state-of-the-art
methods, confirming that the proposed method covers a wider range of change
patterns. Then, we extended our evaluation on synthetic data to show that it is
efficient and effective comparing it with a naive exhaustive search and a simple
greedy method. We then apply the method to the real Twitter data of the 2011 To-
hoku earthquake and tsunami, and reconfirmed its efficiency and effectiveness. Two
interesting discoveries are that a burst period detected by the proposed method tends
to contain massive homogeneous tweets on a specific topic even if the observed
diffusion sequence consists of heterogeneous tweets on various topics, and that
assuming the information diffusion path to be a line shape tree can give a good
approximation of the maximum likelihood estimator when the actual diffusion path
is not known.

Keywords Social networks · Information diffusion · Change point detection ·
Burst detection

1 Introduction

Recent technological innovation and popularization of high performance mo-
bile/smart phones has drastically changed our communication style and the use of
various social media such as Twitter1 and Facebook2 has been substantially affecting
our daily lives. In these social media, information propagates through the social
network formed based on friendship relations. Especially, Twitter, micro-blog in
which the number of characters is limited to 140, is now very popular among
the young generation owing to its handiness and easiness of usage. Besides, it is
fresh to our memory that Twitter played a very important role as the information
infrastructure during the recent natural disaster, both domestic and abroad, including
the 2011 To-hoku earthquake and tsunami in Japan.

In the domain of social network analysis, several measures, called centrality,
have been proposed so far to characterize nodes in the network based on its
structure (Bonacichi 1987; Katz 1953; Wasserman and Faust 1994). While such
centrality measures can be used to identify those nodes that play an important role
in diffusing information over the network, it has also been shown that measures
based solely on the network structure are not good enough to such a problem of
influence maximization (Kempe et al. 2003; Kimura et al. 2010) in which the task
is to identify a limited number of nodes which together maximize the information
spread and that explicit use of information diffusion mechanism is essential (Kimura

1https://twitter.com/
2https://www.facebook.com/
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et al. 2010). In general, the mechanism is represented by a probabilistic diffusion
model. Most representative and basic ones are the Independent Cascade (IC) model
(Goldenberg et al. 2001; Kempe et al. 2003) and the Linear Threshold (LT) model
(Watts and Dodds 2007; Watts 2002) including their extended versions that explicitly
handle asynchronous time delay, Asynchronous time delay Independent Cascade
(AsIC) model (Saito et al. 2009) and Asynchronous time delay Linear Threshold
(AsLT) model (Saito et al. 2010). In fact, the nodes and links that are identified to
be influential using these models are substantially different from those identified by
the existing centrality measures.

In reality, we observe that the information on a certain topic propagates explo-
sively for a very short period of time. Because such information affects our behaviour
strongly, it is important to understand the observed event in a timely manner. This
brings in an important and interesting problem, which is to accurately and efficiently
detect the burst from the observed information diffusion data and to identify what
caused this burst and how long it persisted. Any of the above mentioned probabilistic
models cannot handle this kind of problem because they assume that information
diffuses in a stationary environment, i.e. model parameters are stationary. Zhu and
Shasha (2003) approached this problem without relying on a diffusion model. They
detected a burst period for a target event by counting the number of its occurrences
in a given time window and checking whether it exceeds a predetermined threshold
or not. Zhang (2006) proposed a data structure called Shifted Aggregation Tree
that allows to count the frequency of an event more efficiently. Ebina et al. (2011)
extended this approach and devised a more compact form of the tree structure to
avoid unfruitful aggregation operations. Araujo et al. (2006) introduced a stochastic
model that generates an observed sequence of frequencies of an event recorded
within a certain time unit, and estimated the model parameters that are hidden
variables representing the true frequencies at individual time points using genetic
algorithm. All of these methods focus on the frequency within a certain time period,
which are different from our approach that directly deals with the change of time
interval between occurrences of a target event. There are studies, similar to ours, that
tried to solve this problem focusing on the time interval. Kleinberg (2002) challenged
this problem using a hidden Markov model in which bursts appear naturally as state
transitions, and successfully identified the hierarchical structure of e-mail messages.
Sun et al. (2010) extended Kleinberg’s method so as to detect correlated burst
patterns from multiple data streams that co-evolve over time.

We handle this problem by assuming that parameters in the diffusion model have
been changed due to unknown external environmental factors and devise an efficient
algorithm that accurately detects the changes in the parameter values from a single
observed diffusion data sequence. In particular, we note that the parameter related
to the time delay is most crucial in the burst detection and focus on detecting the
changes in the time delay parameter that defines the delay distribution. We modeled
the time delay in AsIC and AsLT models by the exponential distribution, thus we do
the same in this paper. This corresponds to associating the burst with the information
diffusion with a shorter time delay. A typical burst is a phenomenon in which a
parameter value changes abruptly for a short period of time and returns back to the
normal value. In this paper we allow a more general change pattern of the parameter
value. By focusing only on this time delay, we can devise a generic algorithm that
does not depend on a specific information diffusion model, e.g. be it either AsIC or
AsLT.

J Intell Inf Syst (2015) 44: –3 224 69 245



More precisely, we assume that time delay parameter changes are approximated
by a step function and propose an optimization algorithm that maximizes the
likelihood ratio that is the ratio of the likelihood of observing the data assuming
the time delay parameter changes (change points and parameter values between
the successive change points) to the likelihood of observing the data assuming that
there is no changes in the time delay parameter. The algorithm relies on an iterative
search based on a recursive splitting with a delayed backtracking, and requires no
predetermined threshold. The time complexity is almost proportional to the number
of observed data points (candidates of possible change points). We first demonstrate
that the proposed method can detect the burst assuming two simple change patterns
(narrow up-and-down and wide stepwise) on a synthetic data and compare the result
with Kleinberg’s method (Kleinberg 2002) which is considered to be the state-of-the-
art technique for burst detection. The proposed method successfully detects both
changes accurately whereas Kleinberg’s method is found to have some problem with
a wide stepwise change pattern. We then conduct experiments on synthetic data to
show that the proposed method is efficient and effective comparing it with a naive
exhaustive search and a simple greedy method. We further test that the number of
change points can also be estimated by the proposed method. After confirming that
the proposed method works satisfactorily on synthetic data, we apply it to the Twitter
data observed during the 2011 To-hoku earthquake and tsunami and confirm that
the proposed method can efficiently and accurately detect the change points. We
further analyze the content of the tweets and report the discovery that even use
of the diffusion sequence data of the same user ID (not necessarily the data on a
specific topic) allows us to identify that a specific topic is talked intensively around
the beginning of the period where the burst is detected, and the assumption we made
that the information diffusion path is a line shape tree gives a good approximation
of the maximum likelihood estimator in this problem setting. Finally, we discuss that
although the detected change points do not correspond exactly to nodes in a social
network that caused the burst period, the detected change points are useful to find
such nodes because we can limit nodes to be considered by focusing on those around
them.

The paper is organized as follows. Section 2 briefly describes the framework
of information diffusion model on which our problem setting is based. Section 3
elucidates the problem setting, and Section 4 describes the change point detection
method including two other methods that are used for comparison together with
the model selection method. Section 5 demonstrates that the proposed method can
detect bursts and compare the result with Kleinberg’s method. Section 6 evaluates
the proposed method on synthetic data. Section 6 reports experimental results using
real Twitter data. Section 7 summarizes what has been achieved in this work and
addresses issues of future work.

2 Information diffusion model framework

We consider information diffusion over a social network whose structure is defined as
a directed graph G = (V, E), where V and E (⊂ V × V) represent a set of all nodes
and a set of all links, respectively. Suppose that we observe a sequence of information
diffusion C = {(v0, t0), (v1, t1), · · · , (vN, tN)} that arose from the information released
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at the source node v0 at time t0. Here, vn is a node where the information has been
propagated and tn is its time. We assume that the time points are ordered such
that tn−1 < tn for any n ∈ {1, · · · N}. We further assume, as a standard setting, that
the actual information diffusion paths of a sequence C correspond to a tree that is
embedded in the directed graph G representing the social network (Sadikov et al.
2011), i.e., the parent node which passed the information to a node vn is uniquely
identified to be vp(n).3 Here, p(n) is a function that returns the node identification
number of the parent of the node vn in the range of {0, · · · , n − 1}.

The information diffusion model we consider here is any model that explicitly
incorporates the concept of asynchronous time delay such as AsIC model (Saito
et al. 2009) and AsLT model (Saito et al. 2010) in contrast to the traditional IC
model (Goldenberg et al. 2001; Kempe et al. 2003) and LT model (Watts and
Dodds 2007; Watts 2002) that do not consider the time delay. Said differently, it is
a model that allows any real value for the time tn at which the information has been
propagated to a node vn and assumes a certain probability distribution for the time
delay tn − tp(n). In this paper, we use the exponential distribution for the time delay,
but any other distribution such as power law is feasible exactly in the same way.

3 Problem settings

In this section we formally define the change point detection problem. As mentioned
in Section 1, we assume that some unknown change took place in the course of
information diffusion and what we observe is a sequence of information diffusion
of some topic in which the change is encapsulated. Thus, our goal is to detect each
change point and how long the change persisted from there. Note that we basically
pay attention to a diffusion sequence of a certain topic. From our previous result
that people’s behaviors are quite similar when talking the same topic (Saito et al.
2009, 2010), we can assume that the time delay parameter ru,v which is in principle
defined for each link (u, v) ∈ E takes a uniform value regardless of the link it passes
through. In other word, we set ru,v = r (∀(u, v) ∈ E) and thus, the time delay of
information diffusion is represented by the following simple exponential distribution
p(tn − tp(n); r) = r exp(−r(tn − tp(n))).

With this preparation, we mathematically define the change point detection
problem. Let’s assume that we observe a set of time points of information diffusion
sequence D = {t0, t1, · · · , tN}. Let the time of the j-th change point be T j (t0 < T j <

tN). The delay parameter that the distribution follows switches from r j to r j+1 at
the j-th change point T j. Namely, we are assuming a step function as a shape of
parameter changes. Let the set comprising J change points be SJ = {T1, · · · , TJ},
and we set T0 = t0 and TJ+1 = tN for the sake of convenience (T j−1 < T j). Let the
division of D by SJ be D j = {tn; T j−1 < tn ≤ T j}, i.e., D = {t0} ∪ D1 ∪ · · · ∪ DJ+1, and
|D j| represents the number of observed points in (T j−1, T j]. Here, we request that
|D j| �= 0 for any j ∈ {1, · · · , J + 1} and there exists at least one tn such that tn ∈ D j is
satisfied.

3Observed sequence C does not tell which parent activated which child. Without this assumption, we
have to introduce hidden variables.
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These settings are fully illustrated in Fig. 1, in which an information diffusion path
is depicted as a tree drawn with thick lines, where the diffusion starts from the root
node v0. The white and black nodes on the diffusion path represent inactive and
active nodes, respectively. We observe the sequence of time points t0, t1, · · · , tN , each
of which is the time the corresponding node was activated. The time interval t2 − t1
between two adjacent active nodes v1 and v2 can be expressed as t2 − tp(2) with the
function p(·). Since the time delay parameter r changes from r1 to r2 at the time point
t3 in this figure, the first change point T1 is t3, and then the first partition of the set
of observed time points D, i.e., D1, contains three time points t1, t2, and t3. It is noted
that t0 is not contained in D1. Such changes of r shapes a step function as depicted at
the bottom of the figure. Given a set of observed time points D, our aim in this paper
is to find a set of J change points SJ and corresponding J + 1 values of the time delay
parameter r by solving the optimization problem described below.

Fig. 1 An illustration of the problem setting
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The log-likelihood for D for a given set of change points SJ is calculated, by
defining the parameter vector rJ+1 = (r1, · · · , rJ+1), as follows.

L(D; rJ+1,SJ) = log
J+1∏

j=1

∏

tn∈D j

r j exp(−r j(tn − tp(n)))

=
J+1∑

j=1

|D j| log r j −
J+1∑

j=1

r j

∑

tn∈D j

(tn − tp(n)). (1)

Thus, the maximum likelihood estimate of the parameter of (1) is given by

r̂−1
j = 1

|D j|
∑

tn∈D j

(tn − tp(n)), j = 1, · · · , J + 1. (2)

Further, substituting (2) to (1) leads to

L(D; r̂J+1,SJ) = −N −
J+1∑

j=1

|D j| log

⎛

⎝ 1
|D j|

∑

tn∈D j

(tn − tp(n))

⎞

⎠ . (3)

Therefore, the change point detection problem is reduced to the problem of finding
the change point set SJ that maximizes (3). However, (3) alone does not allow us to
directly evaluate the effect of introducing S j. We, thus, reformulate the problem as
the maximization problem of log-likelihood ratio. If we do not assume any change
point, i.e., S0 = ∅, then (3) is reduced to

L(D; r̂1,S0) = −N − N log

(
1
N

N∑

n=1

(tn − tp(n))

)
. (4)

Thus, the log-likelihood ratio of the case where we assume J change points and the
case where we assume no change points is given by

LR(SJ) = L(D; r̂J+1,SJ) − L(D; r̂1,S0)

= N log

(
1
N

N∑

n=1

(tn − tp(n))

)
−

J+1∑

j=1

|D j| log

⎛

⎝ 1
|D j|

∑

tn∈D j

(tn − tp(n))

⎞

⎠ . (5)

We consider the problem of finding the set of change points SJ that maximizes
LR(SJ) defined by (5).

We note that, in general, it is conceivable that we are not able to acquire the
complete tree structure of the diffusion sequence data. Thus, here, we consider two
extreme cases, one in which the information spreads fastest (star shape tree) and the
other in which the information spread slowest (line shape tree). The function which
defines the parent node becomes p(n) = 0 for the former and p(n) = n − 1 for the
latter. In case where there is no change point, the maximum likelihood estimator
is r−1 = (t1 + · · · + tN)/N − t0 for the former and r−1 = (tN − t0)/N for the latter.
While we conjecture that in reality the optimal value lies in between these two
extreme values, under the assumption that the actual tree structure of the diffusion
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data is unknown, we consider to approximate the optimal value by using either one
of them. Here, note that in the former case, the maximum likelihood estimator
represents the average diffusion delay time between the source node v0 and each
node vi which is assumed to be connected to v0 by a direct link, while in the latter
case, it represents the average time interval between successive observation time
points. Considering that the burst period we want to detect is much shorter than the
other non burst periods, the latter case (line shape tree) seems to be more suitable
for our aim. Therefore, LR(SJ) defined by (5) becomes

LR(SJ) = N log
(

tn − t0
N

)
−

J+1∑

j=1

|D j| log
(

T j − T j−1

|D j|
)

. (6)

We compared the bursts detected by using the two extreme values, and found that the
use of line shape tree gave better results and decided to use (6) in our experiments.

4 Change points detection method

We consider the problem of detecting change points as a problem of finding a subset
SJ ⊂ D when the set of time points of information diffusion result D = {t0, t1, · · · , tN}
is given. In other words, we estimate the number J of change points, and search for
J time points SJ that are most likely to be the change points from a sequence of N
observation points.

First, for a given J, we present three methods of finding SJ . Here, the three
methods are naive method (an exhaustive search), simple method (a greedy search),
and the proposed method that is a combination of a greedy search and a local one.
Next, we present a method of finding the value of J, and describe our proposed
method for solving the change points detection problem. Finally, we have a brief
discussion about methods of detecting change points from D.

4.1 Naive method

The simplest method is to exhaustively search for the best set of J change points SJ .
Clearly the time complexity of this naive approach is O(N J). Thus, the number of
change points detectable would be limited to J = 2 in order for the solution to be
obtained in a reasonable amount of computation time when N is large enough.

4.2 Simple method

We describe the simple method which is applicable when the number of change
points J is large. This is a progressive binary splitting without backtracking. We fix
the already selected set of ( j − 1) change points S j−1 and search for the optimal j-th
change point T j and add it to S j−1. We repeat this procedure from j = 1 to J.

The algorithm is given below.

Step1. Initialize j = 1, S0 = ∅.
Step2. Search for T j = arg maxtn∈D{LR(S j−1 ∪ {tn})}.
Step3. Update S j = S j−1 ∪ {T j}.
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Step4. If j = J, output SJ and stop.
Step5. j = j + 1, and return to Step2.

Here note that in Step3 elements of the change point set S j are reindexed to
satisfy Ti−1 < Ti for i = 2, · · · , j. Clearly, the time complexity of the simple method
is O(N J) which is fast. Thus, it is possible to obtain the result within a reasonable
computation time for a large N. However, since this is a greedy algorithm, it can be
trapped easily to a poor local optimal.

4.3 Proposed method

We propose a method which is computationally almost equivalent to the simple
method but gives a solution of much better quality. We start with the solution
obtained by the simple method SJ , pick up a change point T j from the already
selected points, fix the rest SJ \ {T j} and search for the better value T ′

j of T j, where
· \ · represents set difference. We repeat this from j = 1 to J. If no replacement is
possible for all j ( j = 1, · · · J), i.e. T ′

j = T j for all j, then no better solution is expected
and the iteration stops.

The algorithm is given below.

Step1. Find SJ by the simple method and initialize j = 1, k = 0.
Step2. Search for T ′

j = arg maxtn∈D{LR(SJ \ {T j} ∪ {tn})}.
Step3. If T ′

j = T j, set k = k + 1, otherwise set k = 0, and update SJ = SJ \ {T j} ∪
{T ′

j}.
Step4. If k = J, output SJ and stop.
Step5. If j = J, set j = 1, otherwise set j = j + 1, and return to Step2.

It is evident that the proposed method requires computation time several times larger
than that of the simple method, but it is much less than that of the naive method.
How much the computation time increases compared to the simple method and how
much the solution quality increases await for the experimental evaluation, which we
will report in Section 7.

4.4 Model selection

So far, we have fixed the number of change points J, and proposed a method of
finding the optimal parameter vector r̂J+1 and inferring the change points SJ for the
observed data D = {t0, t1, · · · , tN}. Now, we present a method of estimating the value
of J from D, and incorporate it into the proposed method in Section 4.3 for solving
the change points detection problem. To this end, we employ the likelihood ratio
test.

For any non-negative integer J, let YN(J + 1) be the log-likelihood ratio test
statistic of the model of J + 1 change points against the model of J change
points; i.e.,

YN(J + 1) = L(D; r̂J+2,SJ+1) − L(D; r̂J+1,SJ). (7)

By definition, we have

YN(J + 1) = LR(SJ+1) − LR(SJ). (8)
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Thus, YN(J + 1) can be easily calculated from (6) and (8). We note that the model
of J change points is equipped with the J + 1-dimensional parameter vector rJ+1

and the J-dimensional parameter vector SJ . It is well known that 2YN(J + 1)

asymptotically approaches to the χ2 distribution with two degrees of freedom as N
increases, since the difference in dimensionality of the parameter spaces of the two
models is two. Thus, we first set a significance level α (0 < α < 1), say α = 0.05. Next,
by comparing 2YN(J + 1) to χ2,α , we evaluate whether the model of J + 1 change
points fits significantly better than does the model of J change points. Here, χ2,α is
the upper α point of the χ2 distribution of two degrees of freedom; i.e., the positive
number defined by

1
2

∫ χ2,α

0
exp

(
− x

2

)
dx = 1 − α. (9)

The proposed algorithm incorporating model selection is as follows:

Step1. Initialize J = 0, S0 = ∅.
Step2. Find SJ+1 by the proposed method in Section 4.3.
Step3. Calculate 2YN(J + 1) from (6) and (8).
Step4. If 2YN(J + 1) ≤ χ2,α , output SJ and stop.
Step5. Set J = J + 1, and return to Step2.

Here, we note that for model selection, we can consider employing various
methods other than the likelihood ratio test, that include AIC (Akaike’s Information
Criterion) (Akaike 1974) and MDL (Rissanen’s Minimum Description Length)
(Rissanen 1989), although we used the likelihood ratio test for simplicity. Our
immediate future work is to extensively compare those methods for the task of
detecting change points from D.

4.5 Discussion

As described above, the change points detection method proposed in this paper is
based on a top-down divisive approach. As an alternative strategy, we can consider
employing a method based on a bottom-up merge (or agglomerate) approach.
More specifically, an intuitive bottom-up method is designed as follows: for each
information diffusion path from vp(n) to vn, we consider assigning an individual initial
cluster with the parameter value rn = 1/(tn − tp(n)), and performing the merge steps
with respect to the pairs of adjacent clusters. Then, by repeating this merge steps
(N − J) times, we can obtain the J change points as its solution.

However, in terms of computational load, the top-down method works more
efficiently than the bottom-up one in case of J 
 N. This is because the former
needs only J times of the division process, while the latter requires (N − J) times
of the merge process. Quantifying the differences of these two opposite methods is
an interesting future study.

5 Detectability of change pattern

We have assumed that maximizing the log-likelihood is a good way to detect
unknown change points, and proposed an efficient method to solve this optimization
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problem. We show in this section that the proposed method indeed finds the change
points at least as good as the state-of-the-art method that takes a different approach.
We chose Kleinberg’s method that uses a hidden Markov model (Kleinberg 2002) as
one of the representative methods.

We tested both methods for two simple change patterns of parameter values on
a line shape information diffusion tree. In both cases we set the true number J∗
of change points to J∗ = 2, and the period we considered is between T0 = 0 and
T3 = 3,000. The first pattern is a narrow up-and-down change pattern, where the
change points are set to T1 = 1,000 and T2 = 1,200 and the corresponding time-
delay parameters are set to r1 = r3 = 1 and r2 = 2. Namely, the normal time-delay
parameter is set to r0 = 1 except for the relatively short time interval between T1 =
1,000 and T2 = 1,200 with the parameter r2 = 2 as the bursty one. This change pattern
is considered to be the simplest and the most typical change for burst, and is referred
to as a simple burst pattern. The second pattern is a wide stepwise change pattern,
the change points are set to T1 = 1,000 and T2 = 2,000, and the corresponding time-
delay parameters are set to r0 = r1 = 1, r2 = 2 and r3 = 4. Namely, the time-delay
parameter increases step by step as time proceeds. This type of change patterns are
likely to be seen when the observation time periods are relatively short, like Twitter’s
bursty information diffusion of the 2011 To-hoku earthquake and tsunami in our
limited data. The second change pattern is referred to as a simple change pattern.

We first show the results of a simple burst pattern. Figure 2 shows the estimated
change patterns by the proposed method with the settings J = 1, 2 and 3 from the
pseudo observation time points {t0, t1, · · · , tN} generated according to the simple
burst pattern. Here, we plot three results, 1) {(t1, r̂1), · · · , (tN, r̂N)} by using blue dots,
where r̂n = 1/(tn − tn−1), 2) the change patterns of true time-delay parameters by
the wide green line and 3) the estimated ones by the thin red line. Note that r̂n is
the maximum likelihood estimator for time-delay parameter for the successive two
observation time points {tn−1, tn}. As expected, we confirmed that by selecting the
true number of change points, i.e., J∗ = 2, our proposed method could successfully
detect this change pattern with reasonable accuracy as shown in Fig. 2b, in which
the wide and thin lines are indistinguishable from each other. Actually, under
the setting α = 0.05 which brings about χ2,α = 5.99, the algorithm described in
Section 4.4 selected the correct number of change points, J = 2, from the obtained
log-likelihood ratio test statistics, 2YN(1) = 9.39, 2YN(2) = 71.29 and 2YN(3) = 3.84,
because 2YN(3) < χ2,α . On the other hand, as shown in Fig. 2a and c, we obtained
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Fig. 2 Results of the proposed method for the simple burst pattern
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Fig. 3 Result of Kleinberg’s
method for the simple burst
pattern
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some under-fitting and over-fitting change patterns in case we set J = 1 and J = 3,
respectively.

Figure 3 shows the estimated change pattern (state change trace) by Kleinberg’s
method from the same pseudo observation time points, where the scaling parameter
s is set to s = 2 to reflect the change of our simple burst pattern, i.e., r0 = r1 = r3 =
1 and r2 = 2, and the cost τ(i, j) of moving from state i to j is defined by τ(i, j) =
( j − i)γ log(N) if j > i; otherwise τ(i, j) = 0, where we employed γ = 1. Here, the
scaling parameter s determines the delay parameter at the state j by r j = s jr0 and
the parameter r0 is estimated by r0 = N/T3 as described in (Kleinberg 2002). As
expected, we confirmed that Kleinberg’s method could also successfully detect this
change pattern with reasonable accuracy, as good as could our proposed method.

Next we show the results of a simple change pattern. Figure 4 shows the estimated
change patterns by the proposed method with the settings J = 1, 2 and 3 from the
pseudo observation time points generated according to the simple change pattern.
Again, as expected, we confirmed that by selecting the true number of change points,
i.e., J∗ = 2, our proposed method could successfully detect this change pattern with
reasonable accuracy as shown in Fig. 4b. From the obtained log-likelihood ratio
test statistics, 2YN(1) = 854.19, 2YN(2) = 166.58 and 2YN(3) = 4.22, our proposed
method selected the correct number of change points, J = 2, as 2YN(3) < χ2,α . On
the other hand, as shown in Fig. 4a and c, we obtained some under-fitting and over-
fitting change patterns in case we set J = 1 and J = 3, respectively.
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Fig. 4 Results of proposed method for the simple change pattern
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Fig. 5 Results of Kleinberg’s method for the simple change pattern

Figure 5 shows the estimated change patterns by Kleinberg’s method with the
settings γ = 1 and 2 from the same pseudo observation time points. Here we
employed the same experimental settings as in the case of the simple burst pattern.
From Fig. 5a, we point out two shortcomings: (1) since the normal time delay
parameter r0 = r1 was incorrectly estimated to be a significantly larger value, the
method missed the change point T1 = 1, 000, and inaccurately estimated the time
delay parameters r2 and r3; (2) the method produced a slightly over-fitted change
patterns in the time periods between T2 = 2, 000 and T3 = 3, 000 in case of γ = 1.
As shown in Fig. 5b, we can easily resolve the second shortcoming by increasing the
cost coefficient γ to 2.

In order to more closely examine the effects of the incorrect estimation of r0, we
slightly modified Kleinberg’s algorithm so that the normal time delay parameter is
set to the correct one. Figure 6 shows the estimated change patterns by Kleinberg’s
method with the settings γ = 1 and 2 after this fix (r0 = 1). As expected, we
confirmed that Kleinberg’s method could also successfully detect this change pattern
with reasonable accuracy except for a slightly over-fitted change pattern around
T2 = 2, 000 in case of γ = 1, as shown in Fig. 6a. Again, we can resolve the over-
fitting problem by increasing the cost coefficient γ to 2, as shown in Fig. 6b.

In summary, Although Kleinberg’s method is expected to work well for a typical
burst pattern, as shown in Fig. 3, this method is likely suffer from an incorrect
r0 estimation problem in case of general change patterns, as shown in Fig. 5. In
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Fig. 6 Results of Kleinberg’s method for the simple change pattern by fixing at r0 = 1
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addition, in order to improve the performance of the method, we might need some
criteria to determine both the scaling parameter s and the cost coefficient γ , just
like our proposed method employs the log-likelihood ratio test statistic for selecting
the adequate number of change points. Here recall that the scaling parameter s of
Kleinberg’s method was preferably determined in our experiments, so as to reflect
the change level of time delay parameters. Therefore, we consider that Kleinberg’s
method has some limitations, compared with our proposed method, to cope with
general change patterns which are generally wider and more complex than a simple
burst pattern.

6 Experimental evaluation on synthetic data

We experimentally compare the proposed method with the simple method described
in the previous section in terms of how accurately they can detect change points
and estimate the time delay parameters in an information diffusion sequence, using
systematically generated observation sequence data. First, we conduct the experi-
ments assuming that we know the true number of underlying change points. Then,
we investigate whether the model selection method based on the likelihood ratio test
shown in Section 4.4 can work well to detect the number of underlying change points
in a given sequence.

6.1 Synthetic datasets

We systematically generated temporal sequences of pseudo observation time points
of information diffusion in which J change points were embedded. First, we specified
both the period [0, T] and the number of change points J to be embedded in
the period. Then, we equally partitioned the whole period into J + 1 intervals of
length T/(J + 1), i.e., [0, T/(J + 1)], (T/(J + 1), 2T/(J + 1)], · · · , (JT/(J + 1), T],
and generated observation time points in the j-th interval ( j = 1, · · · J + 1) according
to the exponential distribution with the parameter r j, where r1 was set to 1.0 and r j for
j > 1 was randomly chosen from either 21/2r j−1 or 2−1/2r j−1. In fact, we considered
the first observation time point in each period as a change point, and updated the
value of the time delay parameter at that time point as mentioned above. Finally,
we generated 10 datasets varying J from 1 to 10 with T = 100,000, each of which
contains 1,000 sequences.

6.2 Experimental results using true number of underlying change points

First, we evaluate how the simple and the proposed methods can accurately detect
the change points in a sequence when the true number of underlying change points
J is given. To this end, we investigated the mean absolute error of detected change
points SJ for each sequence, which is defined as follows:

MAESJ = 1
J

J∑

j=1

|T j − T̂ j|, (10)
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Fig. 7 Comparison between
the simple and proposed
methods in terms of the mean
average error of detected
change points
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where T j and T̂ j are the true and the detected change points, respectively. Figure 7
shows the average of MAESJ over the 1,000 sequences for each J. From this figure,
we can clearly see that the proposed method can detect the change points more
accurately than does the simple method. MAESJ for the proposed method shows
little change even if the number of change points J increases, while MAESJ for the
simple method almost linearly increases as J becomes larger. This is attributed to the
fact that the number of observation time points in each period (T j−1, T j], which serve
as training examples to learn optimal change points, gets smaller as the number of
underlying change points J gets larger. This result shows the local search employed
by the proposed method is highly effective to reduce the error for a large J.

Next, to evaluate how these methods can accurately estimate the time delay
parameters, we investigated the mean relative error of the estimated parameter
values, MREr, defined as follows:

MREr = 1
J + 1

J+1∑

j=1

|r j − r̂ j|/r j, (11)

where r j and r̂ j are the true and the estimated parameters, respectively. Figure 8
illustrates how the average of MREr over the 1,000 sequences changes according

Fig. 8 Comparison between
the simple and proposed
methods in terms of the mean
relative error of estimated
time delay parameters
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to the increase of the number of underlying change points J. It is found that the
average of MREr increases in proportion to the value of J for both methods. This is
because the parameter r j is estimated based on the relation r−1

j = (T j − T j−1)/|D j| as
mentioned in Section 3. This means that, even if D j is incorrectly estimated, it would
not affect the estimation of r j so much if J is small and the estimation error of D j is
limited, because T j − T j−1 is sufficiently large for a small J under the setting of our
experiments. On the other hand, the estimation error of D j has a larger influence
on the estimation of r j as J becomes large because T j − T j−1 gets smaller. Thus,
considering the error for T̂ j observed in Fig. 7, it is interpretable that the errors of
both methods are comparable to each other for a small J, while the proposed method
is slightly better than the simple method even though the errors of both methods are
getting large similarly as J increases.

6.2.1 Experimental results of model selection

We used the true number of underlying change points J for the experiments in
the previous section. However, in reality, we never know it for a given observed
sequence. Thus, we have to investigate whether the model selection method that
is based on the likelihood ratio test, described in Section 4.4, can correctly detect
the number of underlying change points. For this purpose, in Fig. 9, we present
and compare the accuracy of the model selection method for the proposed method
and the simple method, where the accuracy is defined as the ratio of the number of
sequences for which the number of underlying change points is correctly detected by
the model selection method over all 1,000 sequences for each J. In this experiment,
we adopted 0.01 as the significance level α of the likelihood ratio test. This result
demonstrates that combining the model selection method with the proposed method
works well and achieves high accuracy. However, combining the model selection with
the simple method does not work well and its accuracy gets worse as J becomes
larger. Here, it is worth mentioning that these results are correlated to the results
shown in Fig. 7, meaning that the ability of correctly detecting the change points for
given J significantly affects the performance of the model selection method.

Fig. 9 Comparison between
the simple and proposed
methods in terms of the
accuracy of the number of
detected change points
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Finally, we show the correctness of the selected model, more precisely the
estimated step function r̂(t) that determines the value of the delay parameter r for
a given time t, using the following relative measure:

Dif fr(t) =
∫ Tn

0 |r̂(t) − r(t)|dt
∫ Tn

0 r(t)dt
, (12)

where Tn is the final observation time point in a given sequence, and r(t) is the
true underlying step function that generated the synthetic sequence. Figure 10 shows
the average of Dif fr(t) over the 1,000 sequences for each J. From this figure, it is
found that the average value increases for both the methods as J becomes larger.
The reason of this tendency is the same as the reason why the mean relative error
increases in Fig. 8. Namely, this is because the estimation error of change points
causes the error of |D||, which has a larger impact on the estimation error of r j as the
period T j − T j−1 gets shorter due to J being larger. Interestingly the results obtained
by using the simple method are comparable to those by using the proposed method
although the proposed method detected the number of underlying change points
more accurately than does the simple method as shown in Fig. 9. Actually, when the
simple method makes a mistake, we observed that the simple method detects one or
two more incorrect change points in addition to the correct ones, which worsen its
accuracy as shown in Fig. 9. However, in many cases, those incorrect change points
merely partition correct periods into sub parts. In other words, the error of the time
delay parameters estimated by the simple method for the true number of change
points J is mitigated by introducing additional more accurate change points although
the accuracy in the number of detected change points reduces. It is noted that this
does not mean the simple method can be an alternative to the proposed method since
we need to know the change points as accurately as possible in order to investigate
what caused the bursts of the information diffusion we observed in the real world.
In that sense, these experimental results that demonstrate the proposed method that
can more correctly detect the change points is more suitable for that purpose.

Fig. 10 Comparison between
the simple and proposed
methods in terms of the
relative difference between the
true step function r(t) and the
estimated step function r̂(t)
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7 Experimental evaluation by real data

Next, we experimentally evaluate the computation time and the accuracy of the
change point detection using the real world Twitter information diffusion sequence
data based on the methods we described in Section 4. We, then, analyze in depth
the top 6 diffusion sequences in terms of the log-likelihood ratio based on the
detected change points and burst periods. We also apply the model selection method
introduced in Section 4.4 to the Twitter data and show its usefulness. Besides, we
show that the line shape tree approximation is much better than the star shape based
one, and investigate whether we are able to identify which node in a social network
caused the burst from the detected change points.

7.1 Experimental Settings

The information diffusion data we used for evaluation are extracted from 201,297,161
tweets of 1,088,040 Twitter users who tweeted at least 200 times during the three
weeks from March 5 to 24, 2011 that includes March 11, the day of 2011 To-hoku
earthquake and tsunami. It is conceivable to use a retweet sequence in which a
user sends out other user’s tweet without any modification. But there exist multiple
styles of retweeting (official retweet and unofficial retweet), and it is very difficult
to accurately extract a sequence of tweets in an automatic manner considering all
of these different styles. Therefore, in our experiments, noting that each retweet
includes the ID of the user who sent out the original tweet in the form of “@ID”, we
extracted tweets that include @ID format of each user ID and constructed a sequence
data for each user. More precisely, we used information diffusion sequences of 798
users for which the length of sequences are more than 5,000 (number of tweets).
Note that each diffusion sequence includes retweet sequences on multiple topics.
Since we do not know the ground truth of the change points for each sequence if
there are changes in it, we used the naive method which exhaustively search for all
the possible combinations of the change points as giving the ground truth. We had
to limit the number of change points to 2 (J = 2) in order for the naive method to
return the solution in a reasonable amount of computation time. The experimental
results explained in the next subsection is obtained by using a machine with Intel(R)
Xeon(R) CPU W5590 @3.33 GHz and 32 GB memory.

7.2 Main results

7.2.1 Performance evaluation

Figure 11 shows the computation time that each method needed to produce the
results. The horizontal axis is the length of the information diffusion data sequences,
and the vertical axis is the computation time in second. The results clearly indicate
that the naive method requires the largest computation time. The computation time
is quadratic to the sequence length as predicted. In contrast, the computation time for
the simple and the proposed methods is much shorter and it increases almost linearly
to the increase of the sequence length for both. The proposed method requires more
computation time due to the extra iteration needed for delayed backtracking. In fact,
the number of extra iteration is 2.2 on the average and 7 at most.
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Fig. 11 Comparison of
computation time among the
three (naive, simple, and
proposed) methods
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Figure 12 shows the accuracy of the detected change points. We regarded that the
solution obtained by the naive method is the ground truth. The horizontal axis is
the sequence ranking of the log-likelihood ratio for the naive method (ranked from
the top to the last), and the vertical axis is the logarithm of the likelihood ratio of
the solution of each method. The results indicate that the simple method has lower
likelihood ratio for all the range, meaning that it detects change points which are
different from the optimal ones, but the proposed method can detect the correct
optimal change points except for the low ranked sequences for which the likelihood
ratio is small as is evident from the result in that the red curve representing the
proposed method is indistinguishable from the blue curve representing the naive
method. The reason why the accuracy of the proposed method for sequences with low
likelihood decreases may be because the burst period is not clear for these sequences.
In summary, out of the 798 sequences in total, the proposed method gave the correct
results for 713 sequences (98.4 %), whereas the simple method gave the correct
results for only 171 sequences (21.4 %). The average ratio of the likelihood ratio of
the proposed method to that of the naive method (optimal solution) is 0.976, whereas
the corresponding ratio for the simple method is 0.881, revealing that the proposed
method gives much closer ratio to the optimal likelihood ratio. These results confirm
that the proposed method can increase the change point detection accuracy to a great

Fig. 12 Comparison of
accuracy among the three
(naive, simple, and proposed)
methods
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extent compared to the simple method with only a small penalty for the increased
computation time.

7.2.2 In depth analysis of detected change points and burst periods

Next, we had a closer look at the top 6 diffusion sequences in terms of the log-
likelihood ratios. Table 1 shows the total number of tweets included in the sequence,
the starting and the ending time of the burst period, and the main topics that
appeared near the beginning of the burst. Figure 13 shows how the cumulative
number of tweets increases as time goes for each diffusion sequence. The horizontal
axis is time and the vertical axis is the cumulative number of tweets. The two vertical
lines indicated by small arrows in each graph are the change (starting and ending)
points detected by the proposed method, and the interval between them is the burst
period.

As is understood from Table 1, explosive retweeting of the information of urgent
need about the earthquake for a short period of time triggered the start of the burst
(with the exception of the 4th ranked sequence). The 4th ranked sequence is for the
account called “ordinary timeline” which was set up for allowing to tweet everyday
topics by adding “@itsumonoTL” at the beginning of the tweet when people are
in voluntary restraint mood after the disastrous earthquake. We can say, with the
exception of such a special case of “ordinary timeline”, that we are able to detect
efficiently a time period where tweets on a specific topic (of urgent need in this
example) are intensively retweeted by looking at the change points detected by the
proposed method even from the diffusion sequence that contains multiple topics.

Table 1 Major topics appearing at the beginning of the burst periods of the top 6 diffusion results in
terms of log-likelihood ratio

Ranking Length Detected burst period Major topics at the beginning of the burst period

Start End

1 450,739 2011/3/11 2011/3/13 Retweets of the earthquake bulletin posted
14:48:13 23:13:04 by the PR department of Japan Broadcasting

Corporation, NHK (@NHK_PR).a

2 27,372 2011/3/11 2011/3/11 Retweets of the article on to-do list at the time
15:13:57 16:19:26 of earthquake onset posted by a victim of the

Great Hanshin-Awaji Earthquake.b

3 167,528 2011/3/12 2011/3/14 Retweets of the article on measures against cold
00:18:19 22:08:20 at an evacuation site posted by the news

department of NHK (@nhk_seikatsu).
4 423,594 2011/3/13 2011/3/19 Ordinary tweets irrelevant to the earthquake

18:38:50 02:20:58 posted to a special account “@itsumonoTL”.
5 63,485 2011/03/11 2011/03/12 Retweets of the earthquake bulletin posted by

15:05:08 01:52:13 the Fire and Disaster Management Agency
(@FDMA_JAPAN).

6 18,299 2011/3/11 2011/3/11 Retweets of a call for help posted by a user who
15:45:17 17:19:02 seemed to be buried under a server rack

(later found to be a false rumor).
aNHK is the government operated broadcaster.
bGreat Hanshin-Awaji Earthquake occurred on January 17, 1995 in Kobe area and 6,434 people lost
their lives
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Fig. 13 Temporal change of cumulative number of tweets in the top 6 diffusion results in terms of
the highest log-likelihood ratio

We note that the cumulative number of the tweets for the 2nd and 6th ranked
diffusion sequences is smaller than the other 4 sequences from Table 1, and the
burst period of these 2 sequences are much shorter than others and there is little
changes in the number of tweets before and after the burst from Fig. 13. This
difference is considered to come from whether the account is private or public.
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Among these 4 sequences, except for the exceptional 4th one, the remaining 3 are
all from the public organization accounts (1st and 3rd are NHK and 5th is FDMA).
Information posted by these accounts tends to disseminate widely everyday. Thus,
considering this situation, it is natural to observe that the cumulative number of
tweets shows a relatively smooth increase as seen in Fig. 13 by adding multiple bursts
of short periods about the earthquake-related information of urgent need as shown
in Table 1. Figure 13e has only one smooth change during the burst period, which
indicates that the earthquake bulletin in Table 1 is the only source of the burst. On
the other hand, we see multiple smooth changes with discontinuity of the gradient at
each boundary during the burst period in Fig. 13a and c. This implies that there can
be other sources of the burst than shown in Table 1. Indeed, it is possible to identify
these change points by increasing the value of J (an example explained later). On the
other hand, Fig. 13b and f show that the information posted by an individual that is
rarely retweeted in ordinary situations can be propagated explosively if it is of urgent
need, e.g. timely information about earthquake.

Here, we report the result when we increase the number of change points.
Figure 14 shows the result for the 3rd ranked sequence in Fig. 13c when J is set to 9.
There are 9 vertical lines corresponding to each change point, but the first two change
points are too close and indistinguishable. Note that horizontal axis is enlarged and
the range shown is different from that in Fig. 13c. We see that the detected change
points are located at the boundary points where the gradients of the curves change
discontinuously. Those 4 broken lines in green are considered to indicate the end of
the burst because the gradient change across each boundary is rather smaller. In fact,
we investigated the most recent 10 tweets for these 4 change points and confirmed
that no more than half of the retweets is talking about the same topic except the
one second from the last in which 7 of them are on the same topic. The remaining 5
change points (red lines) all contain at least 7 retweets (10, 8, 7, 7, 9) that are on the
same topic. From this fact, we can reconfirm that there appear many tweets on the
same topic during the burst period.

7.2.3 Results of model selection

Next, we show the results obtained by applying the model selection method described
in Section 4.4 to the Twitter data. Here, based on the results shown in Section 6.2.1,

Fig. 14 Finer burst detection
for the 3rd ranked sequence in
Fig. 13c when J is set to 9
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Fig. 15 Distribution of the
number of detected change
points for the Twitter data
applying the model selection
method to the proposed
method (α = 0.01)
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we applied only the model selection method to the proposed method adopting
the significance level α = 0.01. Figure 15 shows the distribution of the number of
detected change points for the retweet sequences. The horizontal axis means the
number of change points detected, and the vertical axis means the frequency of
sequences that have the corresponding number of change points. We aborted the
algorithm described in Section 4.4 if it does not terminate even at J = 100. In fact we
could not identify the number of change points for 36 out of a total 798 sequences.
Figure 15 shows the distribution for the remaining 762 sequences. From this figure,
we can observe many sequences that have about 10 to 40 change points. For example,
12 change points were detected for the 1st ranked sequence shown in Fig. 13a as
illustrated in Fig. 16. This result demonstrates the model selection method works well
even for the real Twitter data. On the other hand, we also observed that it detected
30 change points for the 2nd ranked sequence shown in Fig.13b as shown in Fig. 17, in
which some change points are again too close and indistinguishable from each other.
The number may sound too high, but actually these change points are consolidated
into the 4 bursts in the corresponding step function of the time delay parameter r
depicted in Fig. 18. The first biggest peak corresponds to the burst shown in Fig. 13b.
Interestingly, the lowest peak corresponds to one of big afterquakes of the main
quake. From this analysis, it can be said that even if the model selection method

Fig. 16 Finer burst detection
for the 1st ranked sequence in
Fig. 13a when J is determined
by the model selection method
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Fig. 17 Change points
detected for the 2nd ranked
sequence in Fig. 13b by the
model selection method
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detects many change points, we could find much fewer peaks in the corresponding
step function of the time delay parameter.

7.2.4 Line hape tree vs. star shape tree

Note that all of these results were obtained by assuming that the information diffuses
along the line shape tree as discussed in Section 3. Here, we show that use of line
shape tree gives better results than use of star shaped tree. To this end, we compared
the bursts detected for the 2nd and 6th ranked information diffusion sequences which
include only one burst.

The results are illustrated in Fig. 19, where red solid and green broken vertical
lines denote the change points detected by the naive method with the line shape
and star shape settings, respectively. Only the time range of interest is extracted and
shown in the horizontal axis. From these figures, we observe that use of line shape
tree detects the change points more precisely as expected, which means that line
shape tree gives a better approximation of the maximum likelihood estimator than
star shape tree even if the actual tree shape of the diffusion path is not known to us.

7.2.5 Change points in a time line and nodes in a network

Remember that each observed time point corresponds to a node in a social network.
In this sense, it can be said that the proposed method detects not only the change

Fig. 18 Step function of the
time delay parameter r
corresponding to the results
shown in Fig. 17
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Fig. 19 Comparison of bursts detected by use of line shape tree and star shape tree for the 2nd and
6th ranked information diffusion sequences in Table 1

points in a time line, but also the change points in a network. However, unfortunately,
those nodes do not necessarily correspond to those which actually caused the burst
period. For example, in the second ranked sequence in Table 1, we observed at least
1 retweet of the article described in Table 1 per second after the start of the burst,
2011/3/11 15:13:57, while we observed at most 20 per minute before the burst started.
This shows the accuracy of the detected change point, but it also means that the node
that actually influenced nodes within the burst period could exist in the period before
the change point. Indeed, we observed the first retweet at 2011/3/11 15:07:05 and 69
retweets thereafter before the change point. It is natural to think that some of them
played an important role on the explosive diffusion of the article. We need to know
the actual information diffusion path to find such important nodes, but detecting
change points in a time line would significantly reduce the effort needed to do so
because the search can be focused on the limited sub-sequences around the change
points. Devising a method to find such important nodes is one of our future work.

8 Conclusion

We addressed the problem of detecting the period in which information diffusion
burst occurs from a single observed diffusion sequence under the assumption that the
delay of the information propagation over a social network follows the exponential
distribution. To be more precise, we formulated the problem of detecting the change
points and finding the values of the time delay parameter in the exponential distri-
bution as an optimization problem of maximizing the likelihood of generating the
observed diffusion sequence. We devised an efficient iterative search algorithm for
the change point detection whose time complexity is almost linear to the number of
data points, and presented the model selection method that determines the optimal
number of change points to detect from the viewpoint of the likelihood ratio test.
We tested the algorithm against the synthetic and the real Twitter data of the 2011
To-hoku earthquake and tsunami, and experimentally confirmed that the algorithm
is much more efficient than the exhaustive naive search and is much more accurate

J Intell Inf Syst (2015) 44: –3 224 69 267



than the simple greedy search. By analyzing the real information diffusion data,
we revealed that even if the data contains tweets talking about plural topics, the
detected burst period tends to contain tweets on a specific topic intensively. We also
observed that the model selection method detected many change points for some
sequences, but at the same time, we confirmed that much fewer bursts could be
detected from the step function derived from the estimated values of the time delay
parameter. In addition, we experimentally confirmed that assuming the information
diffusion path to be the line shape tree results in much better approximation of the
maximum likelihood estimator than assuming it to be the star shape tree. This is
a good heuristic to accurately estimate the change points when the actual diffusion
path is not known to us. These results indicate that it is possible to detect and identify
both the burst period and the topic diffused without extracting the tweet sequence for
each topic and identifying the diffusion paths for each sequence, and the proposed
method can be a useful tool to analyze a huge amount of information diffusion
data. Our immediate future work is to compare the proposed method with other
existing burst detection methods, especially with those which focus on the frequency
within a certain time unit, since we have already empirically compared it with the
representative method focusing on the time interval between occurrences of a target
event. We also plan to quantify the differences between our top-down method and
the bottom-up method mentioned in Section 4.5. Besides, we need to extensively test
out and compare the other criteria for model selection including AIC and MDL, in
addition to likelihood ratio test we adopted in this paper. We also plan to devise a
method of finding nodes that caused the burst based on the change points detected,
which evolves into a spatio-temporal analysis of the tree structure representing the
information diffusion path.
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