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Abstract

The study in the field of scientific discovery from data has been di-
rected to the discovery of plausible law equations representing the first
principles underlying objective systems. In this paper, a novel princi-
ple and an algorithm to predictively discover new scientific law equation
formulae consisting of newly given quantities are proposed based on the
candidate law equations governing the other quantities under current ob-
servation. The first principle based scientific law equation formulae must
follow some mathematical admissibility and consistency. These conditions
enable efficient reasoning of the law equation formulae in the prediction
process. The soundness and the reproducibility of the equation prediction
by this approach have been tested through numerical simulations of phys-
ical examples, and moreover its practicality has been confirmed through a
real socio-psychological analysis. The approach can discover a set of sci-
entific law equations representing common first principles under different
set of quantities, and enables to capture general scietific features of the
objective system under analysis.

Introduction

Many of the conventional approaches to identify numerical models from mea-
surement data, e.g., ‘system identification theory’ (Ljung 1987) and ‘artificial
neural network’ (Wasserman 1989), derive an asymptotic model of an objective




system over a narrow range of its state. Their plausibility 1s based on the as-
sumption that the characteristics of the objective system over the state range
can be sufficiently well captured by the presumed structure of the adopted equa-
tions such as linear and/or sigmoid formulae. However, this assumption usually
does not hold over a wide range of states in the objective system because the
presumed structure is merely an approximation within the narrow range. Ac-
cordingly the conventional approaches usually do not identify the law equations
to represent the first principle governing the objective system over a wide state
range.

In contrast, the main goal of scientific law equation discovery is to discover
the first principle based law equations from measurement data. The most well
known pioneering system to discover scientific law equations is ‘BACON’ (Lan-
gley et al. 1987). This system tries to figure out an invariant and its associated
relation between two quantities over a wide state range by bi-variate fitting
under a given laboratory experiment where some quantities are actively con-
trolled. The found bi-variate relations are successively composed with the other
relations, and finally equations representing the multiple measurement quanti-
ties are resulted. ‘FAHRENHEIT’ (Koehn and Zytkow, 1986) and ‘ABACUS’
(Falkenhainer and Michalski 1986) are successors that basically use similar algo-
rithms to BACON to discover law equations. ‘LAGRANGE’ and ‘LAGRAMGE’
(Dzeroski and Todorovski 1995, Todorovski and Dzeroski 1997) are another type
of scientific law equation discovery systems based on the ILP-like generate and
test reasoning to discover equations representing the dynamics of the objects.

To reduce the ambiguity in their results under noisy measurements and the
high computational cost of their algorithms, some subsequent discovery systems,
e.g., FAHRENHEIT’, ‘ABACUS’ and ‘COPER’ (Kokar 1986), introduced the
use of the unit dimension of physical quantities to prune the meaningless solu-
tions. A problem of this approach is its narrow applicability only to the quan-
tities whose units are clearly known. Our system named ‘SDS’ has overcome
these difficulties (Washio and Motoda 1997, 1998). It discovers scientific law
equations by limiting its search space to mathematically admissible equations in
terms of the constraints of scale-type and identity. These constraints come from
the basic characteristics of the quantities’ definitions and the relations necessar-
ily standing in the objective systems. The admissible equations discovered by
SDS are considered to represent plausible relations among quantities reflecting
the fundamental mechanisms governing the objective system. Since the knowl-
edge of scale-types is widely obtained in various domains, SDS is applicable to
non-physical domains including biology, sociology, and economics.

The framework has been further extended to the passively observed data
where any active control on quantities are not admitted. Aforementioned FAHREN-
HEIT has a function to discover law equations from the observed data. LA-
GRANGE and LAGRAMGE can handle this task in their generate and test
framework. More recently, SDS has been also extended to this task (Washio
et al. 1999). Tts excellent features of the robustness against observation noise




and the limited computational complexity have been demonstrated.

In spite of these efforts, the state of the art is that the techniques have only
succeeded in discovering the plausible candidates of law equations in a weak
sense that the soundness, the reproducibility and the mathematical admissibil-
ity of the candidates hold within a given experimental environment. However,
a law equation should hold over various objects and/or measurements sharing
the common first principle. Accordingly, ’generality’ of the candidate equa-
tions should be assessed under various environments so as to retain only highly
plausible law equations in a strong sense.

More strictly speaking, two types of generality should be considered. One is
the generality of the law equation over multiple objects sharing some identical
first principle. Another is the generality over multiple combinations of measure-
ment quantities. The first generality is explained through the following example
of Kepler’s third law,

— =0, (1)

where T 1s the period of revolution, a the major radius of elliptic orbit, and
C' a constant. This relation between 7' and a holds not only for all planets in
the solar system but also for every pair of mass points in a free space. Thus, it
has the generality over multiple planets. Given an experimental or observation
environment, the current law equation discovery systems can figure out the
generality of this equation only limited to the given objects such as the planets
in the solar system. The automatic generalization of the equation for wider
domains such as every pair of mass points in a free space 1s beyond the scope
of the current research field.

The second generality is demonstrated through the following irregular ex-
pression of Kepler’s laws for any elliptic orbits having a certain eccentricity,

TS =, (2)

where w, is the angular velocity of the planet on the major axis of the elliptic
orbit and C” a constant. Kepler initially discovered this type of law equations
because the distance information on the planet orbits was hardly obtained.
Later, he generalized Eq.(2) into Eq.(1) in concert with the following his second

law,

9.
§="S =, (3)
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where S is the areal velocity, r the distance between the sun and the planet, w the
angular velocity of the planet and C* a constant. Both Eq.(1) and Eq.(2) are the
relations associated with the period of revolution under different combinations
of measurement quantities. Because the consistency between the two equations
are ensured by Eq.(3), these two equations are considered to represent a unique
first principle and show the second generality.

The objectives of this paper are:



1. to propose a principle to reason some mathematically admissible and con-
sistent law equation formulae for a newly given set of quantities based
on the candidate law equation formulae discovered from another set of
quantities and their measurement data in advance,

2. to propose an algorithm to predict mathematically admissible and con-
sistent law equation formulae by the above principle and to check the
plausibility of the candidate law equations in terms of the second general-
ity, 1.e., if the predicted formulae are well supported by the measurement
of the newly given set of quantities, and

3. to evaluate and demonstrate the practicality of the proposed algorithm
through a real world scientific law discovery in socio-psychology.

When two candidate law equations are independently discovered by a law
equation discovery system from two different sets of measurement quantities @
and @, their second generality can be mutually assessed by checking the con-
sistency between the two candidates based on the proposed principle. However,
the algorithm proposed in this study predicts law equation formulae for @; from
the candidate law equation for @5, and check if the predicted formula explains
the data of @);. This approach has the following advantages:

A. Amount of data and reasoning cost required to check the applicability
of the predicted formulae to the measurement data of (J; are much less
compared with those needed to apply the law equation discovery system
to the data of ();.

B. The applicability checking of the predicted formulae to ; is more robust
against the noise than the case to derive candidate law equations for ¢
by using the law equation discovery system.

C. Complex but admissible law equations which may be missed by some
conventional law equation discovery systems can be discovered.

These advantages are demonstrated through the performance evaluation and
the practical application of the proposed approach in this paper.

2 Scale-type Constraints

The background theory of the proposing principle is provided by the scale-types
of measurement quantities and the constraints on the admissible relations of
pair wise quantities associated with the scale-types. The discussion on the scale-
types was given by Stevens (1946). He defined the measurement process as ’the
assignment of numerals to objects or events according to some rules.” He claimed
that different kinds of scale-types and different kinds of measurement are derived
if numerals can be assigned under different rules, and categorized the scale-types



of quantities based on the operation rule of the assignment. He mathematically
characterized and categorized quantitative quantities into two major scale-types
of interval scale and ratio scale. Examples of the interval scale quantities are
temperature in Celsius and sound tone where the origins of their scales are
not absolute, and are changeable by human’s definitions. Its admissible unit
conversion follows Generic linear group: ' = kx + ¢. Examples of the ratio
scale quantities are physical mass and absolute temperature where each has
an absolute zero point. Its admissible unit conversion follows Similarity group:
v =kez.

imsert table 1 and 2 here

Luce (1959) claimed that the basic formula of the functional relation among
quantities of ratio and interval scales can be determined by their scale-type
features, if the quantities have direct dependency without being coupled through
any dimensionless quantities. Under this condition, some unit dimensions of
the quantities are related to each other, and consequently the unit change of
a quantity affects the value of other quantity. Suppose z; and z; are both
ratio scale quantities, and z; is defined by z; through a logarithmic functional
relation «; = u(x;), i.e., ‘z; = logz;”. We multiply a positive constant k to
zj, t.e., ‘a change of unit’, without violating the group structure of the ratio
scale quantity z;, then this leads u(kx;) = logk + log x;. This fact causes the
shift of the origin of z; by logk, and violates the definition of x; which is the
ratio scale quantity. Hence, the direct functional relation from z; to x; must
not be logarithmic. As the admissible transformations of z; and z; in their
group structures are #; = Kz; and x"y = kx; respectively, the generic formula of
#; = u(x;) must satisfy the invariant condition of z} = u(x;) & Kz = u(kz;)
under the unit conversion. The factor K of the changed unit of z; depends on
k, but it shall not depend upon z;, so we denote it by K (k). Consequently, we
obtain the following constraints on the continuous function wu(z;),

u(ke;) = K(k)u(z;),

where k > 0 and K (k) > 0 as these are the factors of the unit change. The
constraints for all combinations of the scale types are summarized in table 1.
Luce (1959) derived each solution of u(z;) under the condition of z; > 0 and
u(z;) > 0. We have extended his theory to cover the negative values of z and
u(z;) (Washio and Motoda 1996). The generic solution of u(x;) in each case is
summarized in table 2. The impossibility of the definition of a ratio scale from
an interval scale is because the ratio scale involves the information of an absolute
origin, but the interval scale does not. In this table, the inverse functions of the
cases 2.1 and 2.2 are listed at 3.1 and 3.2 for use in the algorithm shown in the
next section.



3 Principle and Algorithm

Let @5 be a source set of measurement quantities, and ¥, = 0 a source equation
where all of its arguments belong to @,. Furthermore, let d;; be an operator
to commute a quantity «; to another z; in a set of quantities, and d;;% = 0
an equation where the argument z; is changed to z; in ¢ = 0 by substituting
the relation z; = u(xz;). Our task is to derive a set of the admissible target
equation By = {iyx = 0,k = 1,...,m} from the source equation ¥y = 0 where
all arguments of each 9, = 0 belong to a target set of measurement quantities
Q¢, and m 1s the number of candidate equations. @ is derived from s by
applying a set of the commutation operators A, = {d;;]|¢; € Qs, 2; € Q¢ }, and
thus the cardinality of @; i1s equal to that of Q5.

If v = 0 and #; = u(x;) is known in a priori, then the equation formula
di;0 = 0 is easily derived. However, our interest is to derive d;;¢ = 0 when
#; = u(z;) is unknown in advance. In this paper, the situation, where the
following two assumptions hold, is considered.

Assumption 1 The scale types of the quantities for commutations are known.

Assumption 2 The quantities z; and x; have direct dependency without being
coupled through any dimensionless quantities.

The first assumption does not yield any strong limitations since the scale-types
of measurement quantities are widely known (Washio and Motoda 1997). The
second assumption holds, when z; and z; are the quantities to measure an
identical feature through different processes and/or when they are known to
have direct dependency based on the background knowledge in the domain as for
the case of Kepler’s laws. This type of quantity pairs are widely seen in various
domains as shown later. When the two assumptions hold, some unit dimensions
are shared by z; and x;, and thus the scale-type constraints indicated in table 2
can be applied. Starting from the source equation s = 0, the application of
all operators &;; € Ay derives the target equation ¥y, = 0. In each application
of i, #; = u(z;) is selected from table 2 based on the scale-types of #; and
x;. Multiple solutions of %y, = 0 may be derived since both two candidates of
#; = u(x;) are applied in case that #; and z; are the pair of interval and ratio
scale quantities. Accordingly, these commutation operations may result in a set
of target equations F;. In case of a pair of interval and ratio scale quantities, the
relations of 2.1 and 2.2 in table 2 must be used since the interval scale quantity
is always defined by the ratio scale quantity. The relations 3.1 and 3.2 which
is the inverse of 2.1 and 2.2, must be applied in case to commute a ratio scale
quantity to an interval scale quantity.

msert table 3 here



By using this principle, the algorithm shown in table. 3 tries to discover the
law equation formulae 1y, = 0 for the target set of measurement quantities @y,
and confirms the second generality of the candidate law equations if ¢y, = 0 is
checked to be consistent with the measurement data of ;. For a comprehensive
explanation, this algorithm is demonstrated through a simple example shown by
the aforementioned Kepler’s third law. Let Eq.(2) be a source equation ¢, = 0,
and consider the case to commute the angular velocity w, to the major radius
a where both are ratio scale. Hence, Qs = {T,w,} and @Q; = {T,a}. In the step
(S1), the candidate law equations under s are discovered by a law equation
discovery system such as SDS. In this example, Kepler discovered the candidate
law equation Eq.(2).

In the step (52), the target equation formulae under @; are reasoned through
the procedure REASONING. In REASONING, when A is not empty, a
commutation operator d¢;; is popped from A, and z; in v is commuted to z;
by the operator. If x; = wu(z;) is one of the cases 2.1, 2.2, 3.1 and 3.2 in
table 2, two candidate formulae are derived, i.e., h = 1,2, otherwise a unique
candidate formula is derived. This procedure is recursively applied to each
candidate formula until A becomes empty. In the example of Eq.(2), w, =
a*|a|ﬁ is selected from table 2 for the commutation in REASONING of the
step (S2). By substituting this relation to Eq.(2), the following equation formula
1s predicted,

T*a’ = ¢'al®, (4)

Without using the measurement data on a, the shape of Kepler’s third law is
obtained.

Finally, in the step (S3), the least square fitting of the predicted target
equations to the measurement data of ) is conducted, and their consistency
with the data is assessed. The following statistical F-test is used to judge if a
target equation shows the consistency with the data of ¢);. This is the standard
F-test to judge if the data fitting of an equation is acceptable in statistical sense.

If Fo > F(d—1,n—d a) (5)
then the fitting is acceptable, else unacceptable,
where Vg = Sr/(d—1),V. = S./(n—d) and Fy = Vg /V..

Here, Sg is the regressive component, S, the residual error component, d the
number of measurement quantities in the equation, n the total number of mea-
surement data used for the fitting and F(d — 1,n — d, &) the lower bound of F
value under the degree of freedom (d — 1,n — d) and o a risk rate. « is set to
be 0.05 throughout this paper. When the target equation ¢ = 0 is accepted,
both ¥; = 0 and ¥y = 0 are considered to have the second type of generality.
In the example, the formula Eq.(4) is adopted to the equation fitting on the



measurement data Q; = {7, a} of the planet orbits, and the value of # becomes
known to be —2. The resultant equation involves an absolute value operator
| | on a, however, this does not have any essential effect on the relation since
the major radius a is always positive. Thus, Eq.(1) is obtained, and the mutual
generality of Eq.(1) and Eq.(2) has been confirmed. This algorithm can be fur-
ther applied, if the measurement data of other ); on the same objective system
are available.

Assumption 2 is a sufficient condition that z; and z; have the relations
represented in table 2, i.e., if they have a direct dependency, then the target
law equation formula 5, = 0 holds. In other words, if the measurement data
of )y do not follow any target law equation formulae, the strong evidence that
z; and z; do not have any direct dependency is provided. Otherwise, ;5 = 0
can be accepted as a law equation formula for (); as far as it well fits to the
measurement data of ;.

4 Performance Evaluation

The basic performance of the proposed method has been evaluated through
simulation examples. One of the major 1ssues of the performance is the noise
robustness of the equation fitting and the statistical F'-test to judge if the derived
target equation shows the consistency with the data of ;. The second impor-
tant issue is the performance to identify a correct target equation from the
multiple candidate target equations in case that the commutations between the
interval and ratio scale quantities are involved. The third important issue is the
performance to judge if the commuted quantity z; has the direct dependency
with ;.

imnsert table 4 here

Table 4 shows the evaluation result for the four artificial simulation exam-
ples. The second column indicates the original candidate law equations which
have been discovered in the step (S1) in table 3. SDS has been used to discover
these equations since the scale-types of the quantities are all known in these
examples, and the performance of SDS is known to be high from the past ex-
periments (Washio and Motoda 1997, 1998). The third column shows the true
formulae of the target equations used in the simulations. The fourth indicates
the candidate target equations deduced in the step (S2). The symbols of the
constants appearing in table 2 are retained in these expressions. The fifth shows
the equations resulted in the least square fitting in the step (S3). The data of
@: was generated through the simulation using the true target equations, and
the nonlinear least squares fitting method of Levenberg-Marquardt has been
applied (More 1977). Some constants in the candidate equations have been put



together into a smaller number here. They are represented, only when the equa-
tions are accepted by F-test in the majority of trials. The rest of the columns
shows the percentage of the accepted cases for each candidate target equation
under 50 measurement data of (; with the noise level of 0%, 5% and 20%. The
aforementioned fifth column indicates the equations identified under the 5%
noise level. The noise level stands for the standard deviation of the Gausian
random noise relative to the absolute value of each quantity. Totally, 100 trials
were conducted for each candidate, and the percentage of the acceptance was
calculated.

The first example is the case of the aforementioned Kepler’s third law. The
candidate target equation has been successfully accepted even under the large
noise of 20%. The second is an example of heat transfer across a surface between
materials of temperature T, and T3 in Celsius unit which are interval scale. K
is the heat transfer coefficient, and H is the heat transfer rate. In this example,
the temperature is commuted to the absolute temperature T,; and T3 in Kelvin
unit which are ratio scale. Because of the two candidate relations of 2.1 and
2.2 1n table 2 for each commutation, totally four candidate target equations are
obtained. The second candidate is the correct one, and it is perfectly accepted
by F-test under any noise levels, while the others are mostly rejected. The
target equation has been successfully reconstructed in the equation formula
shown in the fifth column. The third example is the relation between the input
and the output voltage differences V; and V, of the electric emitter follower
amplifier depicted in figure 1 consisting of a transistor and a resistance. Epp
is the resistance between the base and the emitter of the transistor and h;. the
amplification ratio between the base and the collector electric currents. V; and
V, which are ratio scale are represented in form of the logarithmic intensity, A;
and A, in dB in the target equation. Since A; and A, are interval scale, again
four candidate target equations are deduced, where the first candidate is correct.
As shown in the columns of F-test, only the first is accepted in the majority of
the trials. The robustness against noise is slightly degraded since the candidate
target equations are quite complex for the data fitting. The identified equation
in the fifth column shows the almost perfect reconstruction of the true target.

insert figure 1 here

The fourth example is the relation among the velocity of a pendulum z, the
elapsed time ¢, the oscillation angle velocity w and the oscillation amplitude A.
The elapsed time t which is a ratio scale quantity is commuted to the position
of a pendulum z which is another ratio scale quantity. In this case, the true
target equation formula does not match to the candidate since ¢ and & have an
indirect relation wt = arcsin(z/A) where they are coupled by the dimensionless
quantities wt and «/A. In fact, the candidate equation formula was rejected in
all F-tests.



msert table 5 here

Table b indicates some advantages of the proposed method in comparison
with the case to discover target equations by a law equation discovery system
and check its mathematical consistency with the source equation. SDS is used
for the discovery of the target equations. The performances of the proposed
method and SDS have been evaluated for the three aforementioned examples
under the 5% noise level. The task of the nonlinear least squares fitting occupies
the major portion of the computation time of the proposed method because
the search space of the reasoning needed to derive the candidate equations is
quite limited. The complexity of the nonlinear least squares fitting is O(m?) ~
O(m??%), where m is the number of quantities involved in the target equations.
This is almost comparable with O(m?) ~ O(m?) of SDS. However, the actual
computation time of the proposed method indicated for the 50 samples case in
the third column is far smaller than that of SDS, since the task of the data fitting
is the heaviest process, and the required number of the data fitting in SDS is
proportional to O(m?), whereas the proposed method performs only once. The
fourth and the fifth columns in the table show the error percentage averaged
over the coefficient errors relative to the absolute values of the coefficients in
each equation. The proposed method shows very strong noise robustness in case
of the larger number of quantities and the small sample data. This is because
the noise involved in the data does not affect the reasoning to derive candidate
equations. Only the F-test at the final step can be distorted by the noise. In
contrast, the reasoning of SDS can be statistically affected by the noise since
the least squares fitting is essentially involved in the reasoning mechanism of the
equation formulae. This is a common feature of the conventional law equation
discovery systems.

5 Application to a Practical Problem

The power of the proposed method is demonstrated through a real world prob-
lem in the socio-psychological domain. The objective of the application is to
enhance the plausibility of the candidate law equations governing the mental
preference of people on their houses subject to the cost to buy the house and
the earthquake risk at the place of the house.

In the step (S1) of table. 3, we designed a questionnaire sheet to ask the pref-
erence of the house in the trade off between the frequency of huge earthquakes,
z1 (earthquake/year), and the cost to buy, z3 (Yen). In the questionnaire, 9
cases of the combinations of the cost and the earthquake frequency are presented,
and each person chooses his/her preference from the 7 levels for each case. We
distributed this questionnaire sheet to the people owning their houses in the
suburb area of Tokyo, and totally 400 answer sheets were collected back. The
answer data has been processed by following the method of successive categories
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which is widely used in the experimental psychology to compose an interval scale
preference index yr (Torgerson 1958). The basic principle of this method is to
evaluate the quantitative interval distances among the categorical preference
levels based on the answer distributions on the categorical levels. The answers
on the 7 levels have been transformed to the range of [—1.37,2.04] on the in-
terval scale. Hence, a set of observed data OBSr = {Xi, X5, ..., Xago} where
X; = [#14, @2i, y1i] 1s obtained. Because this is a passively observed data set,
the original SDS is not applicable. Accordingly, we adopted the extended SDS
which can discover law equations from passively observed data (Washio et al.
1999). The extended SDS seeks law equations of the form y; = f(#1, 22), where
x1 and xs are ratio scale quantities. The discovered candidate law equations
are the following two,

yr = 0.63logx; + 0.34logas — 2.9, (6)
yr = —7.927" ;0 35, (7)

The plot of Eq.(6) is depicted in figure 2 and that of Eq.(7) figure 3. Each black
dot in the plots stands for the average point of all cases subject to the cost and
the earthquake frequency. Both of Eq.(6) and Eq.(7) fit nicely to the data, and
show the monotonic relations among the three quantities.

insert figure 2 and 3 here

In the step (S2), we designed another style of the questionnaire sheet to ask
the identical contents to the same people. In this questionnaire, the preference
was asked in form of the paired comparison among the 9 cases of the combi-
nations of the cost and the earthquake frequency. Each person compares two
cases at a time, and chooses its relative preference from the 7 levels in each com-
parison. The answer data have been processed by following the constant-sum
method which is also widely used in the experimental psychology to compose
a ratio scale preference index yr (Comrey 1950). The basic principle of this
method is to evaluate the quantitative ratios among the categorical relative
preference levels based on the statistical expectations. The answers have been
transformed to the range of [0.04, 12.06] on the ratio scale. Through this process,
a set of observed data OBSr = {X1, X, ..., Xaoo} where X; = [x1;, 225, yr;] 18
obtained. Because both y; and yr measure the identical psychological feature,
they are considered to have the direct dependency. Thus, the commutation of
yr to yr based on the scale-types is applied to both candidates of Eq.(6) and
Eq.(7). By substituting 2.1 and 2.2 in table 2 to the equations, the following
four candidate target equations are deduced,

Byt2.9
yr = e« x10'63/ax20'34/a from Eq.(6), (8)
§42.9\°
yr = (logx10'63/ax20'34/a—+—) from Eq.(6), 9)
a
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—B«+3.5 _ 7.9, —0.23, —0.11
Yyr = € =« ¢ a 't 2 from Eq.(7), (10)
79 _ _ —5+3.5\/F
yr = (——xl 023 4y 0'11—1—7—1— ) from Eq.(7). (11)
Ox Ox

In the step (S3), these equations are subject to the least square fitting and
F-test under the data OBSg. Only Eq.(8) and Eq.(11) have been accepted by
F-test, and their resultant equation formulae are as follows,

YR = 0.0812,° %8 2,°2%% from Eq.(8), (12)
yr = (1.2721 %% 5,70 £2.46)7"% from Eq.(11). (13)

This fact indicates that both Eq.(6) and Eq.(7) are plausible in terms of the
generality over the two questionnaire investigations.

6 Discussion and Related Work

The extended SDS has also been applied to the data OBSgk obtained from the
second questionnaire investigation. The following unique candidate law equation
has been discovered by the extended SDS based on the data.

Yr = 0.146l’10'449l‘20'207. (14)

The structure of the equation is identical with Eq.(12). Furthermore, their
power coefficients are almost the same to each other. This evidence supports the
high plausibility of the equations of Eq.(6), Eq.(12) and/or Eq.(14). However,
the equation similar to the more complex Eq.(13) has not been discovered by the
extended SDS. This may be because the basic algorithm of SDS seeks the law
equations starting from the simpler formulae in a bottom up manner. Many of
the conventional law equation discovery systems apply similar search strategies
taking into account the principle of parsimony. Though this i1s one of the most
important criteria of the first principle law equation, the extra equations meeting
with the other important criteria such as the mathematical admissibility and
the statistical goodness of fitting are considered to be also plausible, and should
be retained in the candidate law equations. In this sense, Eq.(13) should not be
missed.

insert figure 4 here

The plot of Eq.(14) depicted in figure 4 shows some fitting error. Eq.(12)
and Eq.(13) have the same tendency. The cause of this error is considered to be
the higher work load of the people to answer the pair wise comparisons in the
questionnaire sheet. Because the pair wise comparison requires to judge over
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multiple cases and to answer many questions, the answers of some people can
become inconsistent due to the workload.

The generality over the multiple types of measurement conditions has hardly
been discussed in the past study of the scientific discovery. In the field of
qualitative reasoning, the modeling of physical process based on multiple views
has been actively studied (Forbus 1984), and some automated systems such as
SIMGEN have been developed to build the model of a given object and conduct
the simulation while taking into account the consistency among multiple domain
descriptions (Forbus and Falkenhainer 1990). In more recent study, the hybrid
modeling approach have been proposed to apply quantitative and qualitative
descriptions to the process involving discontinuous phenomena (Mosterman and
Biswas 1996). In the research field of multi agent learning and organizational
learning, many studies have investigated the learning of generic knowledge in
the space where the agents explore (Weis 1996). Some of them addressed the use
of heterogeneous agents having mutually different combinations of sensors, and
reported the increase of efficiency and/or quality of the learning under certain
conditions. However, most of the past studies have not paid much attention
on the contents of the required axioms which enable mutual translation and
sharing the knowledge among the models.

7 Conclusion

This paper pointed out the importance of the use of the second generality cri-
terion over multiple combinations of measurement quantities to enhance the
plausibility of the scientific discovery. The proposed method based on the ad-
missible relations yielded by the scale-type constraints has the performance of
the efficient reasoning, the superior noise robustness and the applicability to the
small sample data. These features are highly beneficial since the data acquisi-
tion and/or sensing in high quality for the new set of measurement quantities
1s very expensive in many practical fields. In addition, the ability of the pro-
posed method has been demonstrated to capture the complex but admissible
law equations which may be missed by some conventional law discovery systems
as demonstrated in the aforementioned application. Moreover, the ability to de-
tect the indirect dependency between the quantities for commutation has been
also demonstrated. Finally, the practicality of the proposed method has been
confirmed through the real world scientific law discovery in socio-psychology.
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Table 1: Constraints on functional relations under scale-type characteristics.

ScALE TYPES

Cn,  INDEPENDENT DEPENDENT CONSTRAINTS™ COMMENTS*
NO. VARIABLE (DEFINED)
z; VARIABLE &;

1  RATIO RATIO u(kz;y) = K(k)u(z;) k>0,K(k)>0

2 RATIO INTERVAL u(kzy) = K(k)u(z;) + C(k) k>0,K(k)>0

3 INTERVAL RATIO u(kz; +¢) = K(k,c)u(z;) k>0,K(kc)>0

4  INTERVAL INTERVAL u(kz; +¢) = K(k,c)u(z;)+ C(k,c) k>0,K(k,c)>0
*c AND C CAN BE ANY REAL NUMBERS.

Table 2: The admissible relations under scale-type characteristics

ScALE TYPES

Fq. INDEPENDENT DEPENDENT PossIBLE RELATIONS COMMENTS*
NO. VARIABLE (DEFINED)

T, VARIABLE &;
1 RATIO RATIO T = o]z Bz, Bz
2.1  RATIO INTERVAL x; = alog |z;| + B« alz;
2.2 xi:o‘*|%|ﬁ+5 Blxy;Blri; 6/,
3.1 INTERVAL RATIO T = auge®i Bz,
3.2 zi = ovalz; ‘|‘5|/6 Blxy;Blri;6/w;
4 INTERVAL INTERVAL T = axlzi| + 8 Bz,

1) THE NOTATIONS a«, 3« ARE ay, 4 FOR x; > 0 AND a_,3_ FOR z; < 0, RESPECTIVELY.
2) THE NOTATIONS @rxq IS a4 FOR z; > 0 AND a_ FOR z; < 0, RESPECTIVELY.
3) THE NOTATIONS @y IS @44 FOR x; > 0,2; — 6 > 0, ay_ FOR z; > 0,5; —§ < 0,

a_4 FOR #; < 0,2; —6 >0, AND v—_ FOR z; < 0,2; —§ < O, RESPECTIVELY.

4) THE NOTATIONS a/z MEANS “a IS INDEPENDENT OF THE UNIT z”.

5) THE RELATIONS IN 3.1 AND 3.2 ARE NOT DERIVED FROM THEIR CONSTRAINTS,
BUT ARE INVERSE FUNCTIONS OF 2.1 AND 2.2.
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Table 3: Algorithm to check the generality.

(S1) Given measurement environments for Qs,
apply a law equation discovery system to the
measurements of Qs. Let ¥, = 0 be a dis-
covered candidate law equation.

(S2) Given Qy, and let Ay be a stack of the com-
mutation operators to derive Q¢ from Q.
Ey=¢. For avs =0, apply the procedure
REASONING(¢s =0, Ay, By).

(S3) Ey = ¢. For every oy, =0 € Ey {
apply the least square fitting of ¢, = 0
to the measurements of J;.
If the goodness of the fitting is accepted
by F-test, Ey < Er U{tpy, =0}.}
The set of pairs Ege = {(¢¥s = 0,9y =
0)|ee = 0 € E¢} contains highly plausible
law equations in terms of the generality.

REASONING(¢ = 0,A, Ey) {
(P1) If A = ¢, then By + E, U {y =0},

and return E;.

(P2) Pop an operator §;; from A.
apply &;; to ¢ = 0, and oblain the equation
set Il ={6fip =0lh =1 or 1,2}.

(P3) For every equation in I,
apply REASONING((Sfjd) =0,AF).

(P4) Push the operator 6;; to A,
and return A and Ey.}
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Table 4: Performance evaluation for simulation examples.

F'-TEST
CASES SOURCE TRUE TARGET CANDIDATE IDENTIFIED 0% 5% 20%
KEPLER T = 0.75 T = T = T = 100% 100% 100%
207.20; 5.39 x 10~ 10415 297,20, ~0-75 || =3/ 48 5.67 X 10
HEAT TRANS. H = H = H = K(ay log [Ta1| — 0% 0% 0%
K(Tc1 — Te2) K(Tq1 — Ta2) aglog |Tg2| +
(B1s = B2+)) .
= K(a1sITa1lP1 — H= 100%  100%  100%
K(0.993T,; —
@24 1Taz1P2 + (81 = 62)) o ST
. . a
H = K(aj log |Tq1| — 0% 0% 0%
a4 |Taz!P2 +
(Bix — 82))
H= I\(al*lTallﬂl - 0% 12% 0%
aglog |Taal| +
(81 = B2+))
EL. Vo = Ao = A, + Ay = S—’Al + Ao = Ay + 100% 100% 53%
Aup. R(i4hye) R(1+hye) 9 R(14h s o)
—-=TE— 4.34log ——7— e 4.71log 71—
RfEgg ¢ ¢ R¥R 1 Siugq ! g R+R
BE Bo '°8 | @ova RTREE BE
= % 0% 0%
1/Bo
ojay RO4RFO)
%oup ATEBE
| it |ﬂo - 3o
= 0% 0% 0%
1/Bo
oieg FORE )
Yoxb KYRBE
Bi 4
Bt S0
Ay = S_glog|A,+5,|+ % % %
oy (isy ROARgO)
Bo aoxa R+RpRE
PENDULUM & = & = & = 0% 0% 0%

Aw coswt

Aw cos arcsin(z/A)

Awcosway |x|?

Table 5: Computation time and noise robustness.

The upper row for each example shows the results for the
proposed method and the lower row the results for SDS.

Num. of Num. of data
Example quanti- 50 500
ties CPU Error % Error %

time(sec)

Kepler 2 2.4 5.2% 2.1%
10.3 3.4% 2.5%
Heat 4 3.6 0.5% 0.4%
Trans. 27.7 24% 3.2%
El 5 4.9 8.5% 4.9%
Amp. 74.9 46% 3.7%
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Figure 3: Plot of Eq.(7): yr = —7.927 %% +3.5.
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