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The Apriori-based graph mining method is an extension of the Apriori algorithm for association rule
mining. It constructs a lattice of graph nodes, in which a node at the -th level of the lattice has & vertices
and the number of supporting instances exceeds a user-specified minimum support. The method can
devise a rule “IF subgraph G, is in transaction G, the union of subgraphs G,00 G, is also contained in G
with a ceratin confidence level”. When we give a transaction consisting of a chemical graph and virtual
vertices expressing molecular properties, we can obtain rules representing structure activity relationships.
The method was used to analyze mutagenicity data for 230 aromatic nitro compounds. Several interesting
substructures were found to affect the mutagenicity.
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We investigated algorithms for mining frequently
occurring subgraph patterns from graph-structured data.
Our recent study introduced algebraic graph theory to the
framework of Basket Analysis. The method is called
Apriori-based graph mining (AGM)." It extends the

1. Introduction

Data with a graph structure appear in many practical
fields, such as the molecular structure of chemical

compounds and information flow patterns on the Internet.

: motoda@ar.sanken.oosaka-u.ac.jp

conventional Apriori algorithm,2 and can efficiently
mine a complete set of frequent subgraphs from a
general class of graph structures. Graphs can be either
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directed or undirected, and can have loops including
self-loops; the vertices and edges can have labels, e.g., C
(carbon) and N (nitrogen), or single and aromatic bonds
in chemical compounds. Furthermore, it can mine
unconnected subgraph patterns.

The KDD Challenge 2000 Workshop was held to
bring together researchers and practitioners interested in
discovering knowledge from real-world databases.” One
of the target datasets was the mutagenesis activity of 230
aromatic and heteroaromatic nitro compounds, compiled
by Debnath et al.* Our algorithm was applied to this
dataset in order to obtain rules of value to the
investigation of the mutagenicity of chemical
compounds. Many association rules with meaningful
confidence were discovered, identifying characteristic
substructures with either higher or lower mutagenesis
activity.” We inspect the resulting rules referring the
structures of supporting compounds in this paper.

2. Apriori-based Graph Mining

The method is intended to find all the association
rules from a database of graphs, satisfying user-specified
minimum support and minimum confidence thresholds. A
rule takes the following form:

G, =G,

Here, G, and G, represent a graph. The rule means, “If
transaction graph G contains G, as a subgraph, G also
contains G, as a subgraph”. The occurrence of the union
of the graphs, G, G,, in the database is called the
support of the rule. The ratio of the occurrences of G,[]

G, to G, 1s called the confidence of the rule. This method
mines all rules whose support and confidence values
exceed threshold values.

This method constructs a lattice of frequent graphs to
obtain association rules. The details of the algorithm are
in our original paper.! Here, we briefly introduce the
method.

2.1 Representing graph-structured data

In the framework of this paper, one graph in a
database constitutes one transaction. We employ an
adjacency matrix representation of a graph. The vertex
that corresponds to the i-th row (the i-th column) is
called the i-th vertex v; and the number of vertices
contained in a graph is its size. Let an adjacency matrix
of a graph whose size is k be X}, the ij-element of X}, x;;
and its graph, G(X,). The vertex labels are defined as N,
(p = 1,..., a) and the edge labels as L, (g = 1,..., B).
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Vertex and edge labels are indexed using natural
numbers for computational efficiency.

Let the set of vertices of G be V(G), and the set of
edges of G be E(G). An induced subgraph G' of G is
defined as follows.

nG)uraG
EG)DEG)

Du,vDV(G') {u,v} DE((} c{ u}v D{Eb' ,

where {u, v} represents an edge connecting the vertices u
and v.

Based on this definition, the support of an induced
subgraph G, G, in the database and the confidence of

an association rule G,[J G}, are defined as follows.

sup(G,0G,) = cnt((ilmﬂ G.) )

conf(Ga = Gb) = W

where cnt is the total number of transaction graphs and
cent(G,0 Gy) is that including G,00 G, as an induced
subgraph.

Our algorithm generates association rules with
support and confidence exceeding user-specified
minimum support and minimum confidence, respectively.
A graph whose frequency exceeds the minimum support
is called a “frequent graph”.

2.2 Candidate gener ation of frequent graphs

The adjacency matrix of a graph is defined as
follows:

0 x, x; - Xy

Xp o 00 xyy e Xy,

X, = X X3, 0 - x5
Xep Xeo Xy oo 0

where an element x; denotes the edge label between
vertices i and j.

Two frequent graphs of size k are joined in order to
generate a candidate frequent graph of size k+1. Let X
and Y, be adjacency matrices of two frequent graphs
G(X) and G(Y}) of size k. If G(X}) and G(Y}) share equal
matrix elements except for the elements in the k-th row
and the k-th column, then they are joined to generate a
candidate graph Z;.,.
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where X}, is the adjacency matrix representing the graph
of size k-1; x; and y; (i = 1,2) are (k-1)x1 column vectors.

Here, the (k, k+1) and the (k+1, k) elements of the
adjacency matrix Z;, are not determined by X; and Y.
For an undirected graph, two possible cases are
considered: 1) there is an edge labeled L, between the
k-th vertex and the k+1-th vertex of G(Z,.;) or 2) there is
no edge between them. Accordingly, we must generate
p+1 adjacency matrices whose (k, k+1)-element and
(k+1, k)-element are one of “0” and “L,’s. In case of
undirected graphs, the number of necessary Zi.,’s is
(p+1)".

Graph G of size k+1 can be a candidate frequent
graph only when the adjacency matrices of all the
induced subgraphs of size k are confirmed to be frequent
graphs. Conversely, if one of the induced subgraphs of
G(Zy+) is not a frequent graph, Z;, cannot be a
candidate frequent graph. This is because any induced
subgraph of a frequent graph must be a frequent graph,
due to the monotonicity of the support values in the
lattice.

2.3 Lattice construction

Construction of the lattice follows the Apriori
algorithm in association rule mining. It starts from nodes
with single vertex graphs at the top level of the lattice.
The frequencies of the supporting graphs in the database
are counted, and candidate graph nodes at the next level
of the lattice are generated from the frequent graphs. The
procedure is repeated until no new candidate graphs
appear.

3. Results and Discussion

3.1 Computation procedure

Debnath* originally compiled the mutagenesis data
used in this work. It contains 230 aromatic nitro
compounds. An SDF format file for these compounds
was provided for KDD Challenge 2000 and it is attached
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in a separate paper.’ A record contains a chemical graph
as well as activity, LogP, and LUMO values.

Association rule mining cannot handle numerical
attributes. Activity value is categorized as inactive, low,
medium, and high using the threshold values (-90.0, 0.0,
3.0) suggested on the KDD Challenge 2001 web page.
The respective percentage of transactions with high,
medium, low, and inactive classes is 15.2, 45.7, 29.5, and
9.6%.

LogP and LUMO are categorized by an AIC (Akaike
Information Criterion)-based method that we proposed.’
The method discretizes the numeric features so that the
AIC of the following equation is minimized in a greedy
manner.

AIC = 22 n(r)Ent(r) +2m

where n(r) is the number of transactions located in
discretized region r of the feature space, Ent(r) is the
information entropy of the data in r, and m is the total
number of cut points. This method produces two
threshold values: LogP = 3.3 and LUMO = -1.834.

These categories for a chemical compound are added
to the transaction in the form of isolated vertices, as
shown in Fig. 1. Furthermore, we add artificial edges
between a pair of vertices when the number of
intervening edges between the vertices is between 2 and
6. These artificial edges are introduced because they
decrease the computation time, and they are also useful
in recognizing subgraphs that include unspecified
vertices and edges.

H H
AN ey
7
H N‘\
H H

Fig. 1 A sample transaction.

The algorithm explained above was implemented,
and association rules were derived from the mutagenesis
dataset. In this application, there were 64,973 frequent
graphs derived for a minimum support of 20%.

We selected rules, G,=G,, that contained the activity
feature in G,. Some of the rules contained trivial graphs
that consisted of isolated vertices. Others showed no
meaningful changes in the activity distribution. We
selected rules indicating lower and higher activity with
meaningful substructures. They are discussed below.

3.2 Lower activity patterns

Two patterns leading to lower activity are depicted in
Fig. 2. In Fig. 2(a), the support of a frequent subgraph
consisting of a nitrobenzene substructure, low-LogP, and
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high-LUMO is 33.5%, and it is employed as G,. Adding
the low-activity vertex to this graph, we get another
frequent subgraph, G,10G,, with 20.0% support. These
two frequent subgraphs give us an association rule with
59.7% confidence. Since it is interesting to know the
entire activity distribution for G,, we counted the number
of supporting compounds for the graphs with high,
medium, low, and inactive activity. The results are
shown in the table to the right in Fig. 2 (a).

o activity | support | confidence

4 High 0.0% 0.0%

\ Medium 5.7% 16.9%

o Low | 20.0% 59.7%

Inactive 7.8% 23.4%

0, 0,
[LogP<3.3J [LUMO>—1.834} Sum 33.5% 100.0%
(a)

activity | support | confidence
High 0.0% 0.0%
H Medium 6.1% 17.9%
Low 20.0% 59.0%
. Inactive 7.8% 23.1%
Sum 33.9% 100.0%

(LogP<3.3 J {LUMO>-1.834J

Fig.2 L&Wer activity patterns.

Scatter Plot
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The distribution indicated by the confidence values
clearly shifts to lower activity than for the 230
compounds. The substructure and features shown in Fig.
2 (b) indicate a similar tendency. The features in Fig. 2
(a) and (b) specify 77 and 78 compounds, respectively,
of which 76 are shared. Eighty-five compounds have a
low LogP and high LUMO, and the substructural features
excluded molecules consisting of 5-membered rings.
Therefore, the results in Fig. 2 indicate the lower
mutagenicity of nitrobenzene derivatives, when they
have low LogP and high LUMO. Figure 3 is a scatterplot
of the activity levels for 213 nitrobenzene derivatives,
using LogP and LUMO as the x- and y-axes,
respectively. We can see that the categorization using the
AIC-based method is quite functional.

3.3 Higher activity patterns

Two frequent graphs shown in Fig. 4 indicate
substructures leading to higher activities. The symbol
“Any” for an atom or a bond shows that its label is
arbitrary. The meaning of Fig. 4 (a) is well understood
referencing Fig. 2 (a). We can see that the high-LogP
feature leads to higher mutagenicity, when we look at the
scattergram in Fig. 3. The LUMO feature is absent from
this rule because there are too few supporting
compounds in the lower right area of the scattergram.
Another interesting difference is the presence of an ortho
hydrogen atom. There are 94 supporting compounds in
this pattern, but the number increases to 104 if we omit
the ortho hydrogen condition. The 10 compounds
without an ortho-H had differing activity: 3 inactive, 4
low, and 3 medium. Two typical structures are illustrated
in Fig. 5, and we hypothesize that the steric hindrance to
the coplanarity of the benzene ring and NO, may
decrease the mutagenicity of a molecule. This hypothesis
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Fig. 3 Scatterplot of activity for nitrobenzene
derivatives using LUMO and LogP.

B inactive, [: low, []: medium, [l: high.

Brown lines show categorization thresholds.

V4 activity | support | confidence
“\ High 13.5% 33.0%
0™ Medium | 20.4% 54.3%
' Low 4.8% 11.7%
Inactive 0.4% 1.0%
LogP>3.3 Sum 40.9% 100.0%
(a)
//O activity | support | confidence
o N high 7.8% 23.1%
pn/ \, - [Medium| 204% 60.2%
\ AV Low 5.7% 16.7%
fon " Inactive 0.0% 0.0%
Sum 33.9% 100.0%
(b)
Fig. 4 Higher activity patterns.
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Fig. 5 Typical structures without ortho hydrogens.

is the same as that derived in a separate paper by one of
the authors.’

Figure 4 (b) shows another substructure leading to
higher activities. The derived graph contains an artificial
edge of length 4 illustrated by an arrow. It is interesting
that no isolated vertex for LogP and LUMO appears.
However, the supporting compounds consist of various
skeletons, and we could not reach any working
hypothesis from this pattern.

4. Related work

Propositional classification techniques, e.g., C4.5,
and inductive logic programming (ILP) techniques have
been applied to carcinogenesis predictions of chemical
compounds.* ° However, these approaches can only
discover limited characteristic substructures, because the
graph structures must be predefined by some specific
features or grounded instances of predicates, such as that
a benzene ring is involved in the compound. This data
preprocessing is inevitably necessary for propositional
classification techniques, since they can handle only
feature tables. This preprocessing is also necessary for
ILP techniques, to reduce the computation time in the
mining process. However, our algorithm can directly
handle graph structures in general.

Recently, Dehaspe et al. '° proposed a technique to
mine the frequent substructures characterizing the
carcinogenic activity of chemical compounds that does
not require conversion of substructures to specific
features. They used the framework of the ILP combining
level-wise search to minimize the access frequency to
the database. Since the efficiency achieved by this
approach is better than that of previous ILP approaches,
the discovery of some substructures characterizing
carcinogenesis was expected. However, the full search
space was still so large that the search had to be limited
to the sixth level, where the substructures consist of a
few atoms at maximum, and they reported that no
significant substructures were obtained within the search
level.

Another analysis of the same data set was done in a
separate paper.® Both methods employ level-wise search
of the lattice. The resolving power is better when we use
the cascade model and linear substructure patterns. On
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the other hand, the readability of a common substructure
is better in the current approach.

5. Conclusions

By applying the Apriori-based graph mining method,
we obtained many association rules with the subgraph
representation. Some had meaningful confidence and led
to deeper understanding of the mutagenesis data. The
limitation of the current method is that it prevents us
from using a low support level for frequent graphs. We
will be able to find many reasonable hypotheses in the
SAR region if we can obtain frequent graphs with
weaker support. Developing the system in this direction
is in progress.

Part of this research is supported by Grant-in-Aid for
Scientific Research on Priority Areas (B) 13131206,
13131210 and Grant-in-Aid for Scientific Research (B)
12480088.
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