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The Apriori-based graph mining method is an extension of the Apriori algorithm for association rule 
mining. It constructs a lattice of graph nodes, in which a node at the k-th level of the lattice has k vertices 
and the number of supporting instances exceeds a user-specified minimum support. The method can 
devise a rule “IF subgraph Ga is in transaction G, the union of subgraphs Ga∪Gb is also contained in G 
with a ceratin confidence level”. When we give a transaction consisting of a chemical graph and virtual 
vertices expressing molecular properties, we can obtain rules representing structure activity relationships. 
The method was used to analyze mutagenicity data for 230 aromatic nitro compounds. Several interesting 
substructures were found to affect the mutagenicity. 
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1. Introduction 

Data with a graph structure appear in many practical 
fields, such as the molecular structure of chemical 
compounds and information flow patterns on the Internet. 

We investigated algorithms for mining frequently 
occurring subgraph patterns from graph-structured data. 
Our recent study introduced algebraic graph theory to the 
framework of Basket Analysis. The method is called 
Apriori-based graph mining (AGM).1 It extends the 
conventional Apriori algorithm,2 and can efficiently 
mine a complete set of frequent subgraphs from a 
general class of graph structures. Graphs can be either 
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directed or undirected, and can have loops including 
self-loops; the vertices and edges can have labels, e.g., C 
(carbon) and N (nitrogen), or single and aromatic bonds 
in chemical compounds. Furthermore, it can mine 
unconnected subgraph patterns. 

The KDD Challenge 2000 Workshop was held to 
bring together researchers and practitioners interested in 
discovering knowledge from real-world databases.3 One 
of the target datasets was the mutagenesis activity of 230 
aromatic and heteroaromatic nitro compounds, compiled 
by Debnath et al.4 Our algorithm was applied to this 
dataset in order to obtain rules of value to the 
investigation of the mutagenicity of chemical 
compounds. Many association rules with meaningful 
confidence were discovered, identifying characteristic 
substructures with either higher or lower mutagenesis 
activity.5 We inspect the resulting rules referring the 
structures of supporting compounds in this paper.  

2. Apriori-based Graph Mining 

The method is intended to find all the association 
rules from a database of graphs, satisfying user-specified 
minimum support and minimum confidence thresholds. A 
rule takes the following form: 
 

.ba GG �  
 
Here, Ga and Gb represent a graph. The rule means, “If 
transaction graph G contains Ga as a subgraph, G also 
contains Gb as a subgraph”. The occurrence of the union 
of the graphs, Ga∪Gb, in the database is called the 
support of the rule. The ratio of the occurrences of Ga∪
Gb to Ga is called the confidence of the rule. This method 
mines all rules whose support and confidence values 
exceed threshold values. 

This method constructs a lattice of frequent graphs to 
obtain association rules. The details of the algorithm are 
in our original paper.1 Here, we briefly introduce the 
method. 

2.1 Representing graph-structured data 

In the framework of this paper, one graph in a 
database constitutes one transaction. We employ an 
adjacency matrix representation of a graph. The vertex 
that corresponds to the i-th row (the i-th column) is 
called the i-th vertex vi, and the number of vertices 
contained in a graph is its size. Let an adjacency matrix 
of a graph whose size is k be Xk, the ij-element of Xk, xij 
and its graph, G(Xk). The vertex labels are defined as Np 
(p = 1,…, α) and the edge labels as Lq (q = 1,…, β). 

Vertex and edge labels are indexed using natural 
numbers for computational efficiency. 

Let the set of vertices of G be V(G), and the set of 
edges of G be E(G). An induced subgraph G' of G is 
defined as follows. 
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where {u, v} represents an edge connecting the vertices u 
and v. 

Based on this definition, the support of an induced 
subgraph Ga∪Gb in the database and the confidence of 
an association rule Ga⇒Gb are defined as follows. 
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where cnt is the total number of transaction graphs and 
cnt(Ga∪Gb) is that including Ga∪Gb as an induced 
subgraph. 

Our algorithm generates association rules with 
support and confidence exceeding user-specified 
minimum support and minimum confidence, respectively. 
A graph whose frequency exceeds the minimum support 
is called a “frequent graph”. 

2.2 Candidate generation of frequent graphs 

The adjacency matrix of a graph is defined as 
follows: 
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where an element xij denotes the edge label between 
vertices i and j. 

Two frequent graphs of size k are joined in order to 
generate a candidate frequent graph of size k+1. Let Xk 
and Yk be adjacency matrices of two frequent graphs 
G(Xk) and G(Yk) of size k. If G(Xk) and G(Yk) share equal 
matrix elements except for the elements in the k-th row 
and the k-th column, then they are joined to generate a 
candidate graph Zk+1. 
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where Xk-1 is the adjacency matrix representing the graph 
of size k-1; xi and yi (i = 1,2) are (k-1)×1 column vectors. 

Here, the (k, k+1) and the (k+1, k) elements of the 
adjacency matrix Zk+1 are not determined by Xk and Yk. 
For an undirected graph, two possible cases are 
considered: 1) there is an edge labeled Lq between the 
k-th vertex and the k+1-th vertex of G(Zk+1) or 2) there is 
no edge between them. Accordingly, we must generate 
β+1 adjacency matrices whose (k, k+1)-element and 
(k+1, k)-element are one of “0” and “Lq”s. In case of 
undirected graphs, the number of necessary Zk+1’s is 
(β+1)2.  

Graph G of size k+1 can be a candidate frequent 
graph only when the adjacency matrices of all the 
induced subgraphs of size k are confirmed to be frequent 
graphs. Conversely, if one of the induced subgraphs of 
G(Zk+1) is not a frequent graph, Zk+1 cannot be a 
candidate frequent graph. This is because any induced 
subgraph of a frequent graph must be a frequent graph, 
due to the monotonicity of the support values in the 
lattice. 

2.3 Lattice construction 

Construction of the lattice follows the Apriori 
algorithm in association rule mining. It starts from nodes 
with single vertex graphs at the top level of the lattice. 
The frequencies of the supporting graphs in the database 
are counted, and candidate graph nodes at the next level 
of the lattice are generated from the frequent graphs. The 
procedure is repeated until no new candidate graphs 
appear. 

3. Results and Discussion 

3.1 Computation procedure 

Debnath4 originally compiled the mutagenesis data 
used in this work. It contains 230 aromatic nitro 
compounds. An SDF format file for these compounds 
was provided for KDD Challenge 2000 and it is attached 

in a separate paper.6 A record contains a chemical graph 
as well as activity, LogP, and LUMO values. 

Association rule mining cannot handle numerical 
attributes. Activity value is categorized as inactive, low, 
medium, and high using the threshold values (-90.0, 0.0, 
3.0) suggested on the KDD Challenge 2001 web page. 
The respective percentage of transactions with high, 
medium, low, and inactive classes is 15.2, 45.7, 29.5, and 
9.6%. 

LogP and LUMO are categorized by an AIC (Akaike 
Information Criterion)-based method that we proposed.7 
The method discretizes the numeric features so that the 
AIC of the following equation is minimized in a greedy 
manner. 
 

( ) ( )� +=
r

mrEntrnAIC ,22  

 
where n(r) is the number of transactions located in 
discretized region r of the feature space, Ent(r) is the 
information entropy of the data in r, and m is the total 
number of cut points. This method produces two 
threshold values: LogP = 3.3 and LUMO = -1.834. 

These categories for a chemical compound are added 
to the transaction in the form of isolated vertices, as 
shown in Fig. 1. Furthermore, we add artificial edges 
between a pair of vertices when the number of 
intervening edges between the vertices is between 2 and 
6. These artificial edges are introduced because they 
decrease the computation time, and they are also useful 
in recognizing subgraphs that include unspecified 
vertices and edges. 

The algorithm explained above was implemented, 
and association rules were derived from the mutagenesis 
dataset. In this application, there were 64,973 frequent 
graphs derived for a minimum support of 20%. 

We selected rules, Ga�Gb, that contained the activity 
feature in Gb. Some of the rules contained trivial graphs 
that consisted of isolated vertices. Others showed no 
meaningful changes in the activity distribution. We 
selected rules indicating lower and higher activity with 
meaningful substructures. They are discussed below. 

3.2 Lower activity patterns 

Two patterns leading to lower activity are depicted in 
Fig. 2. In Fig. 2(a), the support of a frequent subgraph 
consisting of a nitrobenzene substructure, low-LogP, and 

N +

O –±

O

H

H

H H

H

L o g P < 3 . 3

L U M O > -1 .8 3 4

Fig. 1  A sample transaction. 
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high-LUMO is 33.5%, and it is employed as Ga. Adding 
the low-activity vertex to this graph, we get another 
frequent subgraph, Ga∪ Gb, with 20.0% support. These 
two frequent subgraphs give us an association rule with 
59.7% confidence. Since it is interesting to know the 
entire activity distribution for Ga, we counted the number 
of supporting compounds for the graphs with high, 
medium, low, and inactive activity. The results are 
shown in the table to the right in Fig. 2 (a). 

 

The distribution indicated by the confidence values 
clearly shifts to lower activity than for the 230 
compounds. The substructure and features shown in Fig. 
2 (b) indicate a similar tendency. The features in Fig. 2 
(a) and (b) specify 77 and 78 compounds, respectively, 
of which 76 are shared. Eighty-five compounds have a 
low LogP and high LUMO, and the substructural features 
excluded molecules consisting of 5-membered rings. 
Therefore, the results in Fig. 2 indicate the lower 
mutagenicity of nitrobenzene derivatives, when they 
have low LogP and high LUMO. Figure 3 is a scatterplot 
of the activity levels for 213 nitrobenzene derivatives, 
using LogP and LUMO as the x- and y-axes, 
respectively. We can see that the categorization using the 
AIC-based method is quite functional. 

3.3 Higher activity patterns 

Two frequent graphs shown in Fig. 4 indicate 
substructures leading to higher activities. The symbol 
“Any” for an atom or a bond shows that its label is 
arbitrary. The meaning of Fig. 4 (a) is well understood 
referencing Fig. 2 (a). We can see that the high-LogP 
feature leads to higher mutagenicity, when we look at the 
scattergram in Fig. 3. The LUMO feature is absent from 
this rule because there are too few supporting 
compounds in the lower right area of the scattergram. 
Another interesting difference is the presence of an ortho 
hydrogen atom. There are 94 supporting compounds in 
this pattern, but the number increases to 104 if we omit 
the ortho hydrogen condition. The 10 compounds 
without an ortho-H had differing activity: 3 inactive, 4 
low, and 3 medium. Two typical structures are illustrated 
in Fig. 5, and we hypothesize that the steric hindrance to 
the coplanarity of the benzene ring and NO2 may 
decrease the mutagenicity of a molecule. This hypothesis 

Fig. 2  Lower activity patterns. 
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LogP<3.3 LUMO>-1.834
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LogP<3.3 LUMO>-1.834
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activity support confidence
High 0.0% 0.0%

Medium 5.7% 16.9%
Low 20.0% 59.7%

Inactive 7.8% 23.4%
Sum 33.5% 100.0%

 

activity support confidence
High 0.0% 0.0%

Medium 6.1% 17.9%
Low 20.0% 59.0%

Inactive 7.8% 23.1%
Sum 33.9% 100.0%
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Fig. 3 Scatterplot of activity for nitrobenzene 
derivatives using LUMO and LogP. 

  : inactive,   : low,   : medium,   : high. 
Brown lines show categorization thresholds. 

LU
M

O
 

LogP 

N+

O–±

O

LogP>3.3

C Any

H

 (b)

(a)

H

N+

O–±

O

H

Any

Any

H

activity support confidence
High 13.5% 33.0%

Medium 20.4% 54.3%
Low 4.8% 11.7%

Inactive 0.4% 1.0%
Sum 40.9% 100.0%
 

activity support confidence
high 7.8% 23.1%

Medium 20.4% 60.2%
Low 5.7% 16.7%

Inactive 0.0% 0.0%
Sum 33.9% 100.0%

Fig. 4 Higher activity patterns. 
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is the same as that derived in a separate paper by one of 
the authors.6 

Figure 4 (b) shows another substructure leading to 
higher activities. The derived graph contains an artificial 
edge of length 4 illustrated by an arrow. It is interesting 
that no isolated vertex for LogP and LUMO appears. 
However, the supporting compounds consist of various 
skeletons, and we could not reach any working 
hypothesis from this pattern. 

4. Related work 

Propositional classification techniques, e.g., C4.5, 
and inductive logic programming (ILP) techniques have 
been applied to carcinogenesis predictions of chemical 
compounds.8, 9 However, these approaches can only 
discover limited characteristic substructures, because the 
graph structures must be predefined by some specific 
features or grounded instances of predicates, such as that 
a benzene ring is involved in the compound. This data 
preprocessing is inevitably necessary for propositional 
classification techniques, since they can handle only 
feature tables. This preprocessing is also necessary for 
ILP techniques, to reduce the computation time in the 
mining process. However, our algorithm can directly 
handle graph structures in general. 

Recently, Dehaspe et al. 10 proposed a technique to 
mine the frequent substructures characterizing the 
carcinogenic activity of chemical compounds that does 
not require conversion of substructures to specific 
features. They used the framework of the ILP combining 
level-wise search to minimize the access frequency to 
the database. Since the efficiency achieved by this 
approach is better than that of previous ILP approaches, 
the discovery of some substructures characterizing 
carcinogenesis was expected. However, the full search 
space was still so large that the search had to be limited 
to the sixth level, where the substructures consist of a 
few atoms at maximum, and they reported that no 
significant substructures were obtained within the search 
level. 

Another analysis of the same data set was done in a 
separate paper.6 Both methods employ level-wise search 
of the lattice. The resolving power is better when we use 
the cascade model and linear substructure patterns. On 

the other hand, the readability of a common substructure 
is better in the current approach.  

5. Conclusions 

By applying the Apriori-based graph mining method, 
we obtained many association rules with the subgraph 
representation. Some had meaningful confidence and led 
to deeper understanding of the mutagenesis data. The 
limitation of the current method is that it prevents us 
from using a low support level for frequent graphs. We 
will be able to find many reasonable hypotheses in the 
SAR region if we can obtain frequent graphs with 
weaker support. Developing the system in this direction 
is in progress. 

Part of this research is supported by Grant-in-Aid for 
Scientific Research on Priority Areas (B) 13131206, 
13131210 and Grant-in-Aid for Scientific Research (B) 
12480088. 
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アプリオリ型グラフマイニング法によるアプリオリ型グラフマイニング法によるアプリオリ型グラフマイニング法によるアプリオリ型グラフマイニング法による 
変異原性化合物の解析変異原性化合物の解析変異原性化合物の解析変異原性化合物の解析 

猪口明博a, 鷲尾隆a, 岡田孝b, 元田浩a* 

a 大阪大学産業科学研究所, 〒567-0047 大阪府茨木市美穂ヶ丘8-1 
b 関西学院大学情報メディア教育センター, 〒662-8501 兵庫県西宮市上ヶ原1-1-155 

アプリオリ型グラフマイニング法とは相関ルール探索におけるアプリオリアルゴリズムを
グラフ探索に適用するように拡張したものである。その際、k次のラティスレベルには、k個の
頂点を有するグラフの中から、与えられた最小サポート値以上のものが置かれる。本方法によ
り、”IF 事例中にサブグラフGa が存在するならば、THEN サブグラフGa∪Gb もその事例中に
ある確信度で存在する”というルールを導くことができる。本研究においては、事例を構成する
グラフとして、化学構造式および分子の各種性質を表現する仮想的な孤立グラフ頂点を与える
ことにより、構造活性相関関係を表現するルールを得ることができる。本方法を230種の芳香族
ニトロ化合物群における変異原性の解析に適用した結果、有効な作業仮説を得ることができた。
本方法は、一般的な構造活性相関研究の方法論として採用できるものである。方法の原理と応
用結果について述べる。 

キーワード: アプリオリ型グラフマイニング, 相関ルール, 変異原性, 芳香族ニトロ化合物, 構造活性
相関 
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