
An Accurate and Efficient Method to Detect
Critical Links to Maintain Information

Flow in Network

Kazumi Saito1(B), Kouzou Ohara2, Masahiro Kimura3, and Hiroshi Motoda4,5

1 School of Administration and Informatics, University of Shizuoka, Shizuoka, Japan
k-saito@u-shizuoka-ken.ac.jp

2 Department of Integrated Information Technology, Aoyama Gakuin University,
Sagamihara, Japan

ohara@it.aoyama.ac.jp
3 Department of Electronics and Informatics, Ryukoku University, Kyoto, Japan

kimura@rins.ryukoku.ac.jp
4 Institute of Scientific and Industrial Research, Osaka University, Suita, Japan

motoda@ar.sanken.osaka-u.ac.jp
5 School of Computing and Information Systems,

University of Tasmania, Hobart, Australia

Abstract. We address the problem of efficiently detecting critical links
in a large network. Critical links are such links that their deletion exerts
substantial effects on the network performance such as the average node
reachability. We tackle this problem by proposing a new method which
consists of one existing and two new acceleration techniques: redundant-
link skipping (RLS), marginal-node pruning (MNP) and burn-out follow-
ing (BOF). All of them are designed to avoid unnecessary computation
and work both in combination and in isolation. We tested the effective-
ness of the proposed method using two real-world large networks and
two synthetic large networks. In particular, we showed that the new
method can compute the performance degradation by link removal with-
out introducing any approximation within a comparable computation
time needed by the bottom-k sketch which is a summary of dataset and
can efficiently process approximate queries, i.e., reachable nodes, on the
original dataset, i.e., the given network.

1 Introduction

Studies of the structure and functions of large networks have attracted a great
deal of attention in many different fields of science and engineering [9]. Devel-
oping new methods/tools that enable us to quantify the importance of each
individual node and link in a network is crucially important in pursuing fun-
damental network analysis. Networks mediate the spread of information, and it
sometimes happens that a small initial seed cascades to affect large portions of
networks [11]. Such information cascade phenomena are observed in many situa-
tions: for example, cascading failures can occur in power grids (e.g., the August
c© Springer International Publishing AG 2017
M. Kryszkiewicz et al. (Eds.): ISMIS 2017, LNAI 10352, pp. 116–126, 2017.
DOI: 10.1007/978-3-319-60438-1 12

An Accurate and Efficient Method to Detect Critical Links 117

10, 1996 accident in the western US power grid), diseases can spread over net-
works of contacts between individuals, innovations and rumors can propagate
through social networks, and large grass-roots social movements can begin in
the absence of centralized control (e.g., the Arab Spring). These problems have
mostly been studied from the view point of identifying influential nodes under
some assumed information diffusion model. There are other studies on identify-
ing influential links to prevent the spread of undesirable things. See Sect. 2 for
related work.

We have studied this problem from a slightly different angle in a more gen-
eral setting [10], that is to answer “Which links are most critical in maintaining
a desired network performance?”. For example, when the desired performance
is to minimize contamination, the problem is reduced to detecting critical links
to remove or block. If the desired performance is to maximize evacuation or
minimize isolation, the problem is to detect critical links that reduce the over-
all performance if these links do not function. This problem is mathematically
formulated as an optimization problem when a network structure is given and
a performance measure is defined. In this paper, we define the performance to
be the average node reachability with respect to a link deletion, i.e. average
number of nodes that are reachable from every single node when a particular
link is deleted/blocked. The problem is to rank the links in accordance with the
performance and identify the most critical link(s).

Since the core of the computation is to estimate reachability, an efficient
method of counting reachable nodes is needed. In our previous work we borrowed
the idea of bottom-k sketch [4] which can estimate the approximate number of
reachable nodes efficiently by sampling a small number of nodes. Our focus was
how to implement bottom-k sketch algorithm to make it run fast and devised two
acceleration techniques, called redundant-link skipping (RLS) and marginal-link
updating (MLU). The difference from the previous paper is that, in this paper,
we compute reachability accurately without resorting to approximation method,
evaluate the accuracy of the approximation method and reduce the computation
time to a comparable level by generalizing MLU which was tailored to bottom-k
sketch, now called marginal-node pruning (MNP), and further devising the third
technique called burn-out following (BOF).

We have tested our method using two real-world benchmark networks taken
from Stanford Network Analysis Project and two synthetic networks which we
designed to control the structural properties. We confirmed that the new method
can compute the performance degradation by link removal without introducing
any approximation within a computation time comparable to that needed by
bottom-k sketch. We showed that depending on the network structure bottom-k
sketch needs a larger k (than those used in the experiments) to obtain a result
close to the correct one and in this case it needs much larger computation time
even using all three techniques. We also analyzed which acceleration technique
works better. The results depend on the network structure, but using all three
together always works best.

118 K. Saito et al.

The paper is organized as follows. Section 2 briefly explains studies related to
this paper. Section 3 explains the proposed method with the three acceleration
techniques. Section 4 reports four datasets used and the experimental results:
computational efficiency and comparison with the results obtained by bottom-k
sketch. Section 5 summarizes the main achievement and future plans.

2 Related Work

The problem of finding critical links in a network is related to the influence
maximization problem, which has recently attracted much attention in the field
of social network mining [3,6]. This is the problem of finding a limited number of
influential nodes that are effective for the spread of information under an appro-
priate diffusion model. This problem is motivated by viral marketing, where in
order to market a new product, we target a small number of influential individ-
uals and trigger a cascade of influence by which their friends will recommend
the product. Kempe et al. [6] introduced basic probabilistic diffusion models
called the independent cascade and linear threshold models, and formulated this
problem as a combinatorial optimization problem under these diffusion models.
However, their algorithm was inefficient since it used the Monte-Carlo simula-
tion to evaluate the influence function. Thereafter, a large number of studies
have been made to reduce the running time to solve this problem, and several
techniques [3,6] that efficiently prune unnecessary evaluations of the influence
function have been proposed to speed up the greedy algorithm.

Recently, Borgs et al. [2] proposed an algorithm based on reverse reach-
ability search, which can be regarded as a kind of sketch-based method, and
proved that it runs in near liner time and provides theoretical guarantees on the
approximation quality. Cohen et al. [5] presented another bottom-k sketch-based
method of the greedy algorithm for influence maximization, which is called the
greedy Sketch-based Influence Maximization (SKIM). Bottom-k sketch is a sum-
mary of dataset and can efficiently process approximate queries on the original
dataset [4]. It is obtained by assigning a random value independently drawn from
some probability distribution to each node. The bottom-k estimator requires the
set of nodes having the k smallest values, and the kth smallest value is used for
the estimation. This estimate has such a Coefficient of Variation (CV) that is
never greater than 1/

√
k − 2 and well concentrated [4], where CV is defined by

the ratio of the standard deviation to the mean. Moreover, for any c > 0, it is
enough to set k = (2 + c)ε−2 log N to have a probability of having relative error
larger than ε bounded by N−c [4], where N is the number of nodes. The bottom-
k sketch in the network can be efficiently calculated by reversely following links
over the network. In Sect. 4 we compare the proposed method with the bottom-k
sketch method.

The problem we pose is more closely related to efficiently preventing the
spread of undesirable things such as contamination and malicious rumors. Many
studies have been made on finding effective strategies for reducing the spread of
infection by removing nodes in the network [1]. Moreover, there exists a study of

An Accurate and Efficient Method to Detect Critical Links 119

contamination minimization [7] that is converse to the influence maximization
problem, where an effective method of minimizing the spread of contamination by
blocking a small number of links was explored under a probabilistic information
diffusion model. In this paper, we deal with the problem of efficiently finding
critical links in terms of reachability degradation.

3 Proposed Method

Let G = (V, E) be a given simple directed network without self-loops, where
V = {u, v, w, · · · } and E = {e, f, g, · · · } are sets of nodes and directed links,
respectively. Each link e is also expressed as a pair of nodes, i.e., e = (u, v).
Below we denote the numbers of nodes and links by N = |V| and M = |E|,
respectively. Let R(v;G) and Q(v;G) be the sets of reachable nodes by forwardly
and reversely following links from a node v over G, respectively, where note that
v ∈ R(v;G) and v ∈ Q(v;G). Also, let R1(v;G) and Q1(v;G) be the sets of
those nodes adjacent to v, i.e., R1(v;G) = {w ∈ R(v;G) | (v, w) ∈ E} and
Q1(v;G) = {u ∈ Q(v;G) | (u, v) ∈ E}, respectively. Now, let Ge = (V, E \ {e})
be the network obtained after removing a link e = (v, w), then we can define the
reachability degradation value with respect to e ∈ E as follows:

F (e;G) =
∑

x∈V
(|R(x;G)| − |R(x;Ge)|)/N. (1)

In this paper, we focus on the problem of accurately and efficiently calculating
F (e;G) for every e ∈ E . Of course, network performance measure is not unique.
It varies from problem to problem, but computing R(v;Ge) for every node v ∈ V
can be a fundamental task. Note that our proposed method and techniques can
directly contribute to this task.

A simple method would be to straightforwardly compute the reachability
size, i.e., |R(x;Ge)|, for every node x ∈ V after removing every link e ∈ E .
Let R(G) be the average number of reachable nodes by forwardly following
links over G, i.e., R(G) =

∑
x∈V |R(x;G)|/N . Then, the computational com-

plexity of this simple method is approximately O(M × N × R(G)) under the
situation that R(G) ≈ R(Ge) for most links e ∈ E , and it generally requires
a large amount of computation for large-scale networks. In fact, we obtain
M ×N ×R(G) ∈ [2.6×1013, 2.0×1014] for our networks used in our experiment.
In order to overcome this problem, we propose a new method by borrowing and
extending the basic ideas of pruning techniques proposed in [8,10]. Below we
revisit an existing technique called redundant-link skipping (RLS) [10] for the
sake of readers’ convenience. After that, we describe a revised technique called
marginal-node pruning (MNP) which shares a basic idea of the marginal compo-
nent pruning (MCP) technique proposed in [8] and the marginal link updating
(MLU) tailored to bottom-k sketch in [10], and then propose a new acceleration
technique called burn-out following (BOF).

120 K. Saito et al.

3.1 RLS: Redundant-Link Skipping

The RLS technique selects each link e ∈ E for which F (e;G) = 0 and prune
some subset of such links. Here, we say that a link e = (v, w) ∈ E is a skippable
link if there exists some node x ∈ V such that f = (v, x) ∈ E and g = (x,w) ∈ E ,
i.e., x ∈ R1(v;G) ∩ Q1(w;G), which means |R1(v;G) ∩ Q1(w;G)| ≥ 1. Namely,
we can skip removing the link e for the purpose of solving our problem due to
F (e;G) = 0. Moreover, we say that a link e = (v, w) ∈ E is a prunable link if
|R1(v;G) ∩ Q1(w;G)| ≥ 2. Namely, we can prune such a link e for our problem
by setting G ← Ge due to F (f ;Ge) = F (f ;G) for any link f ∈ E .

For each node v ∈ V, let S(v) and P(v) be sets of skippable and prunable
links from v. We can compute S(v) and P(v) as follows: for each child node
w ∈ R1(v;G), we first initialize c(v, w;G) ← 0, S(v) ← ∅ and P(v) ← ∅. Then,
for each node x ∈ R1(v;G), we repeatedly set c(v, w;G) ← c(v, w;G) + 1 and
S(v) ← S(v) ∪ {(v, w)} if w ∈ R1(x;G), and set P(v) ← P(v) ∪ {(v, w)} and
G ← G(v,w) if c(v, w;G) ≥ 2.

3.2 MNP: Marginal-Node Pruning

The MNP technique recursively performs pruning every node with degree 1
such that its in- and out-degrees are 1 and 0 (or 0 and 1), respectively. Let v
be such a node with degree 1, i.e., |Q1(v;G)| = 1 and |R(v;G)| = |{v}| = 1
(|R1(v;G)| = 0). Then, after removing a link e = (u, v), we can compute the
reachability degradation value as F (e;G) = |Q(u;G)||R(v;G)|/N where note
that |R(x;Ge)| = |R(x;G)|−1 if x ∈ Q(u;G); |R(x;Ge)| = |R(x;G)| otherwise.
Now, let η(x) be the number of the pruned nodes which are reachable from
node x, i.e., after initializing η(w) ← 1 for each w ∈ V, we count the number
of forwardly reachable nodes |R(x;Ge)| by adding η(w) when the node w is
followed. Then, by updating η(u) as η(u) ← η(u) + η(v), we can recursively
prune each node whose in- and out-degrees are 1 and 0 with keeping the accurate
calculation of the reachability size for each node.

Clearly, we can apply the similar arguments for each node v such that in- and
out-degrees are 0 and 1. Namely, after removing a link e = (v, w), we can also
compute the reachability degradation value as F (e;G) = |Q(v;G)||R(w;G)|/N .
By introducing μ(x) for counting the number of reversely reachable nodes
|Q(x;Ge)|, just like η(x), and updating μ(w) as η(w) ← η(w) + η(v), we can
recursively prune each node whose in- and out-degrees are 0 and 1 with keeping
the accurate calculation of the reachability size for each node. Namely, we can
see that the MNP technique can recursively perform pruning every node with
degree 1.

3.3 BOF: Burn-Out Following

For a removed link e = (v, w), we can state that |R(x;G)| = |R(x;Ge)| if
x
∈ Q(v;G) or x ∈ Q(w;Ge). Namely, the reachable size of a node x ∈ V
changes when x is reachable to v, i.e., x ∈ Q(v;G), but becomes not reachable

An Accurate and Efficient Method to Detect Critical Links 121

to w after removing a link e, i.e., x
∈ Q(w;Ge). Thus, we can obtain a baseline
method which computes the reachability size |R(x;Ge)| for every node x ∈
Q(v;G)\Q(w;Ge) after removing every link e ∈ E . Then, by noting that Q(G) =
R(G) where Q(G) means the average number of reachable nodes by reversely
following links over G, we can see that the computational complexity of this
baseline method can be bounded by O(M · R(G)2). Thus, the baseline method
also requires a large amount of computation for large-scale networks. In fact, we
still obtain M × R(G)2 ∈ [1.6 × 1011, 6.8 × 1012] for our networks used later.

The BOF technique further reduces the computation time needed to follow
the same links repeatedly. More specifically, for each node x ∈ Q(v;G)\Q(w;Ge)
that is utilized by the baseline method when a link e = (v, w) is removed,
we propose to compute the reachable size of x by |R(x;Ge)| = |R(v;Ge)| +
|R(x;Ge)\R(v;Ge)|. Namely, after calculating (burning out) the set of reachable
nodes from v, i.e., R(v;Ge), we can compute the reachable size |R(x;Ge)| by
only following the nodes uniquely reachable from x, i.e., R(x;Ge) \ R(v;Ge).
Below we summarize the BOF technique that computes F (e;G) from a network
G and its removal link e = (v, w) ∈ E .

B1: Compute R(v;Ge) by forwardly following links from v over Ge, and if it
happens that w ∈ R(v;Ge), output F (e;G) ← 0 and terminate.

B2: Compute Q(w;Ge) by backwardly following links from w over Ge, and then
compute Q(v;G)\Q(w;Ge) by backwardly following each link x from v over
G unless x ∈ Q(w;Ge).

B3: After initializing F (e;G) ← 0, for each node x ∈ Q(v;G) \ Q(w;Ge), com-
pute |R(x;Ge) \ R(v;Ge)| forwardly following each link y from x over Ge

unless y ∈ R(v;Ge), and then set F (e;G) ← F (e;G)+|R(v;Ge)|+|R(x;G)\
R(v;Ge)|.

B4: Output F (e;G) ← F (e;G)/N and terminate.

Here we should note that the above step B1: can be regarded as a generalized
version of skippable link calculation by the RLS technique.

3.4 Summary of Proposed Method

In our proposed method referred to as PM, we apply the RLS, MNP and BOF
techniques to the baseline method in this order, since it is naturally conceivable
that the RLS and MNP techniques decrease the numbers of links and nodes in
our network G. Clearly we can individually incorporate these techniques into
the baseline method. Hereafter, we refer to the proposed method without the
RLS technique as the \RLS method, the method without the MNP technique as
the \MNP method, and the method without the BOF technique as the \BOF
method. Since it is difficult to analytically examine the effectiveness of these
techniques, we empirically evaluate the computational efficiency of the proposed
method in comparison to these three other methods in which only two techniques
are used and the remaining one not used.

122 K. Saito et al.

4 Experiments

We evaluated the effectiveness of the proposed method using two benchmark and
two synthetic networks as we did in [10]. Namely, we employed two benchmark
networks obtained from SNAP (Stanford Network Analysis Project)1. The first
one is a high-energy physics citation network from the e-print arXiv2, which
covers all the citations within a dataset of 34,546 papers (nodes) with 421,578
citations (links). If a paper u cites paper v, the network contains a directed link
from u to v. The second one is a sequence of snapshots of the Gnutella peer-
to-peer file sharing network from August 20023. There are total of 9 snapshots
of Gnutella network collected in August 2002. The network consists of 36,682
nodes and 88,328 directed links, where nodes represent hosts in the Gnutella
network topology and links represent connections between the Gnutella hosts.
In addition, we utilized two synthetic networks (around 35,000 nodes and 350,000
links) with a DAG (Directed Acyclic Graph) property, which were generated by
using the DCNN and DBA methods described in [8], respectively. Here, networks
generated by DCNN have both the small-world and scale-free properties, while
those by DBA have only the scale-free property.

We refer to these two benchmark networks of citation and pear-to-pear and
those generated by the DCNN an DBA methods as CIT, P2P, DCN and DBA
networks. Table 1 summarizes the basic statistics of these networks, consisting
of the numbers of nodes and links, N and M , the average number of reachable
nodes R(G), the number of nodes with in-degree 1 and out-degree 0, |D1,0|, the
number of node with in-degree 0 and out-degree 1, |D0,1|, and the numbers of
skippable and prunable links, |S| and |P|. From this table, we can conjecture that
the \BOF method will be comparable to the PM method for the DCN network
because R(G) is relatively small. On the other hand, the \MNU method may
work poorly for the P2P network because |D1,0| is relatively large, and the \RLS
method may also work poorly for the CIT and DCN networks because |S| and |P|
are relatively large. Here note that the numbers of skippable and prunable links
in the DCN network inevitably become larger than the DBA network because
the DCNN method has a link creation mechanism between potential pairs.

Table 1. Basic statistics of networks

Name N M R(G) |D1,0| |D0,1| |S| |P|
CIT 34,546 421,578 14,059.0 469 858 302,248 176,224

DBA 35,000 351,317 12,225.1 1,651 1,649 85,815 24,690

DCN 35,000 350,807 2,137.6 2,943 2.839 289,398 175,211

P2P 36,682 88,328 8,482.6 16,409 24 1,502 29

1 https://snap.stanford.edu/.
2 https://snap.stanford.edu/data/cit-HepPh.html.
3 https://snap.stanford.edu/data/p2p-Gnutella30.html.

https://snap.stanford.edu/
https://snap.stanford.edu/data/cit-HepPh.html
https://snap.stanford.edu/data/p2p-Gnutella30.html

An Accurate and Efficient Method to Detect Critical Links 123

4.1 Evaluation of Acceleration Techniques

First, we evaluated the efficiency of the proposed acceleration techniques by
comparing the computation times of the \BOF, \MNP, \RLS, and the proposed
(PM) methods. Figure 1 shows our experimental results which compares the
actual processing times of these methods, where our programs implemented in C
were executed on a computer system equipped with two Xeon X5690 3.47 GHz
CPUs and a 192 GB main memory with a single thread within the memory
capacity. From Fig. 1, we can clearly see that except for the DCN network,
the \BOF method required much computation times compared with the other
three methods. As described earlier, these experimental results can be naturally
explained from our conjecture that the \BOF method would work well for the
DCN network because R(G) is relatively small. We can also see that the \MNU
method exhibited the worst performance for the P2P network, while the \RLS for
the DCN network. These experimental results are to be expected and explained
from the |D1,0| value and the pair of the |S| and |P| values in Table 1.

Which technique works best depends on the network characteristics. Over-
all BOF which was newly introduced in this paper works the best. MNP and
RLS are similar and work less. The proposed method PM combining all the
three techniques BOF, MNP and RLS is most reliable and produces the best
performance, but the actual reduction of computation time depends on network
structure. These results demonstrate the effectiveness of the proposed method.

CIT DBA DCN P2P104

105

106

107

pr
oc

es
si

ng
 ti

m
e

(s
ec

.) \BOF \MNP \RLS PM

Fig. 1. Evaluation of acceleration tech-
niques

CIT DBA DCN P2P104

105

106

107

pr
oc

es
si

ng
 ti

m
e

(s
ec

.) b:29 r:29 r:210 PM

Fig. 2. Comparison with approxima-
tion method

4.2 Comparison with Approximation Methods

Next, we evaluated the efficiency of the proposed method in comparison to the
approximation method based on bottom-k sketch [4]. The merit of bottom-k
sketch is mentioned in Sect. 2. Here, we briefly revisit the implementation algo-
rithm and describe the way to estimate the number of the reachable nodes from

124 K. Saito et al.

each node v ∈ V, i.e., |R(v;G)|. First, we assign to each node v ∈ V a value r(v)
uniformly at random in [0, 1]. When |R(v;G)| ≥ k, let Bk(v;G) be the subset of
the k smallest elements in {r(w) | w ∈ R(v;G)}, and bk(v;G) = max Bk(v;G) be
the k-th smallest element. Here, Bk(v;G) is set to R(v;G) when |R(v;G)| < k.
Then, we can unbiasedly estimate the number of the reachable nodes from v by
H(v;G) = |Bk(v;G)| if |Bk(v;G)| < k; otherwise H(v;G) = (k − 1)/bk(v;G).
We can efficiently calculate the bottom-k sketch Bk(v;G) for each node v ∈ V
by reversely following links k|E| times. Namely, we first initialize Bk(v;G) ← ∅
and sort the random values as (r(v1), · · · , r(vi), · · · , r(v|V|)) in ascending order,
i.e., r(vi) ≤ r(vi+1). Then, from i = 1 to |V|, for w ∈ Q(vi;G), we repeatedly
insert r(vi) into Bk(w;G) by reversely following links from vi if |Bk(w;G)| < k.

Based on the bottom-k sketches described above, we can estimate our reach-
ability degradation value F (e;G) as J(e;G) = N−1

∑
v∈V(H(v;G) − H(v;Ge)).

Then, we can straightforwardly obtain a baseline approximation method which
re-calculates the bottom-k sketches, Bk(v;Ge) with respect to Ge for all nodes
each time from scratch. We can accelerate this baseline approximation method by
introducing two acceleration techniques: RLS and MLU as mentioned in Sect. 1.
RLS is the same as the first acceleration technique explained in Sect. 3. MLU
locally updates the bottom-k sketches of some nodes when removing links inci-
dent to a node with in-degree 0 or out-degree 0 in the network G. Hereafter, the
baseline approximation method is referred to as baseline BKS, while the revised
approximation method that uses these two acceleration techniques as revised
BKS.

Figure 2 shows our experimental results by setting the parameter k of the
baseline BKS method to 29 and the revised BKS method to 29 and 210, denoted
as b:29, r:29, and r:210, respectively. From these results, we can see that the pro-
posed method substantially outperforms both the baseline BKS and the revised
BKS methods for the DCN network. For the other networks, it is better than
the baseline BKS method for k = 29 and the revised BKS method for 210. Below
we will see that setting k at 210 is not large enough to attain a good accuracy
especially for the P2P network. We can say that the proposed method is com-
petitive to the approximation method in terms of computation efficiency and
has a merit of computing the correct values for reachability degradation.

The exact solutions obtained by our method can be used as the ground-truth
for evaluating the approximation method. Let E(m) be the set of the top-m links
according to F (e;G). Figure 3 shows the average relative error of the estimated
value J(e;G) over E(5), i.e.,

∑
e∈E(5) |1 − J(e;G)/F (e;G)|/5, where we set k

to one of {27, 28.29, 210} for each network. From these experimental results, we
observe that quite accurate estimation results were obtained for the CIT network,
and the relative errors decreased monotonically by using a larger k. If we request
the relative error to be less than 0.01, we need the parameter settings greater
than k = 28. For other networks we observe that the results of the DBA and DCN
networks are somewhat accurate around 0.1 when k = 210, but the results of the
P2P network were quite inaccurate. We need much larger k and the computation
time for BKS will overly exceed that of the present method.

An Accurate and Efficient Method to Detect Critical Links 125

CIT DBA DCN P2P

10−2

100

102
av

er
ag

e
re

la
tiv

e
er

ro
r k:27 k:28 k:29 k:210

Fig. 3. Relative errors of approxima-
tion method

0 1 2 3 4
x 104

0

1

2

3

4x 104

rank

re
ac

ha
bl

e
si

ze

CIT
DBA
DCN
P2P

Fig. 4. Reachability distributions of
networks

We discuss below why the BKS method worked very poorly for the P2P
network. As a typical situation for a given removed link e = (u, v) ∈ E ,
assume that R(w;Ge) ∩ R(v;Ge) = ∅ for any w ∈ Q(u;Ge), then, we obtain
Q(u;G) = Q(u;Ge), R(v;G) = R(v;Ge), and the reachability degradation value
F (e;G) = |Q(u;G)| × |R(v;G)|/N . However, when |R(u;G)| ≥ k, the BKS
method returns its estimation as J(e;G) = 0 if bk(u;G) < minw∈R(v;G) r(w),
where recall that r(w) and bk(u;G) mean a random value assigned to the node
w and the k-th smallest element in {r(w) | w ∈ R(u;G)}. This situation is
likely to occur when |R(u;G)| ≈ N and |R(v;G)| is quite small. On the other
hand, when |R(u;G)| ≈ N , the BKS method may widely underestimate J(e;G)
if bk(u;G) > minw∈R(v;G) r(w). This is because for a large number |R(u;G)|
of nodes, say x ∈ R(u;G), H(x;Ge) substantially decreases due to the removal
of minw∈R(v;G) r(w) from Bk(x;G). We confirm that such situations are likely
to occur on the P2P network. Figure 4 shows distributions of reachability size
|R(v;G)| with respect to its rank. From this figure, we can clearly see that there
exist two groups of nodes in the P2P network, those reachable to almost all of
the other nodes, just like |R(u;G)| ≈ N discussed above, and those reachable to
almost only themselves, which includes the nodes in D1,0. These results clearly
support our above explanation.

5 Conclusion

In this paper we have proposed a novel computational method that can detect
critical links efficiently without introducing any approximation for a large net-
work. The problem is reduced to finding a link that reduces the network perfor-
mance substantially with respect to its removal. Such a link is considered critical
in maintaining the good performance. There are many problems that can be
mapped to this critical link detection problem, e.g. contamination minimization
be it physical or virtual, evacuation trouble minimization, road maintenance
prioritization, etc.

126 K. Saito et al.

There are many things to do. Reachability computation is a basic operation
and is a basis for many applications. We continue to explore techniques to further
reduce computation time, to elaborate other useful network performance mea-
sures, and to clarify the difference in characteristics of extracted critical links
from those of the links chosen by the existing measures such as edge betweenness
that has no notion of reachability. Our immediate future plan is to apply our
method to a real world application and show that it can solve a difficult prob-
lem efficiently, e.g. identifying important hot spots in transportation network or
evacuation network.

Acknowledgments. This material is based upon work supported by the Air Force
Office of Scientific Research, Asian Office of Aerospace Research and Development
(AOARD) under award number FA2386-16-1-4032, and JSPS Grant-in-Aid for Scien-
tific Research (C) (No. 17K00314).

References

1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex net-
works. Nature 406, 378–382 (2000)

2. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2014), pp. 946–957 (2014)

3. Chen, W., Lakshmanan, L., Castillo, C.: Information and influence propagation in
social networks. Synth. Lect. Data Manag. 5(4), 1–177 (2013)

4. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci. 55, 441–453 (1997)

5. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maxi-
mization and computation: scaling up with guarantees. In: Proceedings of the 23rd
ACM International Conference on Information and Knowledge Management, pp.
629–638 (2014)

6. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. Theory Comput. 11, 105–147 (2015)

7. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination
spread in a social network. ACM Trans. Knowl. Discov. Data 3, 9:1–9:23 (2009)

8. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Speeding-up node influence com-
putation for huge social networks. Int. J. Data Sci. Anal. 1, 1–14 (2016)

9. Newman, M.: The structure and function of complex networks. SIAM Rev. 45,
167–256 (2003)

10. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Detecting critical links in complex
network to maintain information flow/reachability. In: Proceedings of the 14th
Pacific Rim International Conference on Artificial Intelligence, pp. 419–432 (2016)

11. Watts, D.: A simple model of global cascades on random networks. Proc. Natl.
Acad. Sci. U. S. A. 99, 5766–5771 (2002)

