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Abstract
We address the combinatorial optimization problem of finding the most

influential nodes on a large-scale social network for two widely-used funda-
mental stochastic diffusion models. The past study showed that a greedy
strategy can give a good approximate solution to the problem. However, a
conventional greedy method faces a computational problem. We propose a
method of efficiently finding a good approximate solution to the problem un-
der the greedy algorithm on the basis of bond percolation and graph theory,
and compare the proposed method with the conventional method in terms of
computational complexity in order to theoretically evaluate its effectiveness.
The results show that the proposed method is expected to achieve a great re-
duction in computational cost. We further experimentally demonstrate that
the proposed method is much more efficient than the conventional method
using large-scale real-world networks including blog networks.
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1 Introduction

The rise of the Internet and the World Wide Web has enabled us to inves-
tigate large-scale social networks, and there has been growing interest in
social network analysis (Newman, 2001; McCallum et al., 2005; Leskovec et
al., 2006). Here, a social network is the network of relationships and inter-
actions among social entities such as individuals, groups of individuals, and
organizations. Examples include blog networks, collaboration networks, and
email networks.

The social network of interactions within a group of individuals plays a
fundamental role in the spread of information, ideas, and innovations. In
fact, a piece of information, such as the URL of a website that provides a
new valuable service, can spread from one individual to another through the
social network in the form of “word-of-mouth” communication. For exam-
ple, the information of free email services such as Microsoft’s Hotmail and
Google’s Gmail could spread largely through email networks. Thus, when
we plan to market a new product, promote an innovation, or spread a new
topic among a group of individuals, we can exploit social network effects.
Namely, we can target a small number of influential individuals (e.g., giving
free samples of the product, demonstrating the innovation, or offering the
topic), and trigger a cascade of influence by which friends will recommend
the product, promote the innovation, or propagate the topic to other friends.
In this way, we can spread decisions in adopting the product, the innovation,
or the topic through the social network from a small set of initial adopters
to many individuals. Therefore, given a social network represented by a di-
rected graph, a positive integer k, and a probabilistic model for the process
by which a certain information spreads through the network, it is an impor-
tant research issue in terms of sociology and viral marketing to find such a
target set A∗

k of k nodes that maximizes the expected number of adopters of
the information if A∗

k initially adopts it (Domingos and Richardson, 2001;
Richardson and Domingos, 2002; Kempe et al, 2003; Kempe et al., 2005).
Here, the expected number of nodes influenced by a target set is referred to
as its influence degree, and this combinatorial optimization problem is called
the influence maximization problem of size k.

Kempe et al. (2003) studied the influence maximization problem for two
widely-used fundamental information diffusion models, the independent cas-
cade (IC) model (Goldenberg, 2001; Kempe et al., 2003; Gruhl et al., 2004)
and the linear threshold (LT) model (Watts, 2002; Kempe et al., 2003). They
experimentally showed on large collaboration networks that for the influence
maximization problem under the IC and LT models, the greedy algorithm
significantly outperforms the high-degree and centrality heuristics that are
commonly used in the sociology literature. Here, the high-degree heuristic
chooses nodes in order of decreasing degrees, and the centrality heuristic
chooses nodes in order of increasing average distance to other nodes in the
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network. Moreover, they mathematically proved a performance guarantee
of the greedy algorithm under these information diffusion models (i.e., the
IC and LT models) by using an analysis framework based on submodular
functions.

For the influence maximization problem of size k, the greedy algorithm
iteratively finds a target set Ak of k nodes from the target set Ak−1 of k− 1
nodes that it has already found. Thus, it requires a method of computing
all the marginal influence degrees of a given set A of nodes in the network.
Here, for any node v that does not belong to A, the influence degree of
target set A ∪ {v} is referred to as the marginal influence degree of A at
v. However, it is an open question to compute influence degrees exactly by
an efficient method, and therefore, the conventional method had to obtain
good estimates for influence degrees by simulating the random process of the
information diffusion model (i.e., the IC or LT model) many times (Kempe
et al., 2003). Solving the influence maximization problem under the greedy
algorithm needed a large amount of computation for large-scale networks.

In this paper, for the IC and LT models, we propose a method of effi-
ciently estimating all the marginal influence degrees of a given set of nodes
on the basis of bond percolation and graph theory, and apply it to ap-
proximately solving the influence maximization problem under the greedy
algorithm. In order to theoretically evaluate the effectiveness of the pro-
posed method for solving the influence maximization problem, we compare
the proposed method with the conventional method in terms of compu-
tational complexity, and show that the proposed method is expected to
achieve a large reduction in computational cost. Further, using large-scale
real networks including blog networks, we experimentally demonstrate that
the proposed method is much more efficient than the conventional method.
Finally, we discuss some related work, and describe the conclusion.

2 Definitions

We examine the influence maximization problem on a network represented
by a directed graph G = (V,E) for the IC and LT models. Here, V and E
are the sets of all the nodes and links in the network, respectively. Let N
and L be the numbers of elements of V and E, respectively.

We first recall some basic notions from graph theory. Next, we define the
IC and LT models on G according to the work of Kempe et al. (2003). Last,
we give a mathematical definition of the influence maximization problem.

2.1 Graphs

We consider a directed graph G = (V,E). If there is a directed link (u, v)
from node u to node v, node v is called a child node of node u and node u is
called a parent node of node v. For any v ∈ V , let Γ(v) denote the set of all
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the parent nodes of v. For a subset V ′ of V , graph G′ = (V ′, E′) is called
the induced graph of G to V ′ if E′ = E ∩ (V ′ × V ′).

We call (u0, · · ·, u�) a path from node u0 to node u� if we have (ui−1, ui)
∈ E, (i = 1, · · · , �). We say that node u can reach node v or node v is
reachable from node u if there is a path from node u to node v. For a node
v of the graph G, we define F (v;G) to be the set of all the nodes that are
reachable from v, and define B(v;G) to be the set of all the nodes that can
reach v. For any A ⊂ V , we set

F (A;G) =
⋃
v∈A

F (v;G), B(A;G) =
⋃
v∈A

B(v;G).

A strongly connected component (SCC) of G is a maximal subset C of V
such that for all u, v ∈ C there is a path from u to v. For a node v of G,
we define SCC(v;G) to be the SCC that contains v.

2.2 Information Diffusion Models

We consider mathematically modeling the spread of certain information
through a social network G = (V,E). In the IC and LT models, the fol-
lowing assumptions are made:

• A node is called active if it has adopted the information.

• The state of a node is either active or inactive.

• Nodes can switch from being inactive to being active, but cannot
switch from being active to being inactive.

• The spread of the information through the network G is represented
as the spread of active nodes on G.

• Given an initial set A of active nodes, we suppose that the nodes in A
first become active and all the other nodes remain inactive at time-step
0.

• The diffusion process of active nodes unfolds in discrete time-steps
t ≥ 0.

2.2.1 Independent Cascade Model

First, we define the independent cascade (IC) model. In this model, we
specify a real value pu,v ∈ [0, 1] for each directed link (u, v) in advance.
Here, pu,v is referred to as the propagation probability through link (u, v).
When an initial set A of active nodes is given, the diffusion process of active
nodes proceeds according to the following randomized rule. When node u
first becomes active at time-step t, it is given a single chance to activate
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each of its currently inactive child nodes v, and succeeds with probability
pu,v. If u succeeds, then v will become active at time-step t + 1. Here, if
v has multiple parent nodes that become active at time-step t for the first
time, then their activation attempts are sequenced in an arbitrary order, but
performed at time-step t. Whether or not u succeeds, it cannot make any
further attempts to activate v in subsequent rounds. The process terminates
if no more activations are possible.

For an initial active set A (⊂ V ), let ϕ(A) denote the number of active
nodes at the end of the random process for the IC model. Note that ϕ(A)
is a random variable. Let σ(A) denote the expected value of ϕ(A). We call
σ(A) the influence degree of A.

2.2.2 Linear Threshold Model

Next, we define the linear threshold (LT) model. In this model, for any node
v ∈ V , we in advance specify a weight wu,v (> 0) from its parent node u
such that ∑

u∈Γ(v)

wu,v ≤ 1.

When an initial set A of active nodes is given, the diffusion process of active
nodes proceeds according to the following randomized rule. First, for any
node v ∈ V , a threshold θv is chosen uniformly at random from the interval
[0, 1]. At time-step t, an inactive node v is influenced by each of its active
parent nodes u according to weight wu,v. If the total weight from active
parent nodes of v is at least threshold θv, that is,∑

u∈Γt(v)

wu,v ≥ θv,

then v will become active at time-step t + 1. Here, Γt(v) stands for the set
of parent nodes of v that are active at time-step t. The process terminates
if no more activations are possible.

Note that the threshold θv models the tendency of node v to adopt
the information when its parent nodes do. Note also that the LT model
is a probabilistic model associated with the uniform distribution on [0, 1]N .
Further note that in the LT model it is the node thresholds that are random,
while in the IC model it is the propagations through links that are random.
Suppose that A is an initial set of active nodes. We define a random variable
ϕ(A) by the number of active nodes at the end of the random process for
the LT model. Let σ(A) denote the expected value of ϕ(A). We call σ(A)
the influence degree of A. Note that these notations are the same as those
for the IC model.
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2.3 Influence Maximization Problem

We mathematically define the influence maximization problem on a network
G = (V,E) under the IC and LT models. Let k be a positive integer with
k < N .

The influence maximization problem on G of size k is defined as follows:
Find a set A∗

k of k nodes to target for initial activation such that σ(A∗
k) ≥

σ(S) for any set S of k nodes, that is, find

A∗
k = argmaxA∈{S⊂V ; |S|=k} σ(A), (1)

where |S| stands for the number of elements of set S.

3 Conventional Method

Kempe et al. (2003) showed the effectiveness of the greedy algorithm for
the influence maximization problem under the IC and LT models. In this
section, we introduce the greedy algorithm, and describe the conventional
method for solving the influence maximization problem under the greedy
algorithm. We, then, consider evaluating the computational complexity for
the conventional method.

3.1 Greedy Algorithm

We approximately solve the influence maximization problem by the following
greedy algorithm:

(G1) Set A ← ∅.
(G2) for i = 1 to k do

(G3) Choose a node vi ∈ V maximizing σ(A ∪ {v}), (v ∈ V \ A).

(G4) Set A ← A ∪ {vi}.
(G5) end for

Let Ak denote the set of k nodes obtained by this algorithm. We refer to
Ak as the greedy solution of size k. Then, it is known that

σ(Ak) ≥
(

1− 1
e

)
σ(A∗

k),

that is, the quality guarantee of Ak is assured (Kempe et al., 2003). Here,
A∗

k is the exact solution defined by Equation (1).
To implement the greedy algorithm, we need a method for estimating all

the marginal influence degrees {σ(A∪{v}); v ∈ V \A} of A in Step (G3) of
the algorithm.
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3.2 Conventional Method for Estimating Marginal Influence
Degrees

For Step (G3) of the greedy algorithm, the conventional method estimated
all the marginal influence degrees {σ(A∪{v}); v ∈ V \A} of A in the following
way (Kempe et al., 2003): First, a sufficiently large positive integer M is
specified. For any v ∈ V \ A, the random process of the diffusion model
(IC or LT model) is run from the initial active set A ∪ {v}, and the number
ϕ(A∪{v}) of final active nodes is counted. Each σ(A∪{v}) is estimated as
the empirical mean obtained from M such simulations.

Namely, the conventional method independently estimated σ(A ∪ {v})
for all v ∈ V \ A as follows:

1. for m = 1 to M do

2. Compute ϕ(A ∪ {v}).
3. Set xm ← ϕ(A ∪ {v}).
4. end for

5. Set σ(A ∪ {v}) ← (1/M)
∑M

m=1 xm.

Here, each ϕ(A ∪ {v}) is computed as follows:

1. Set H0 ← A ∪ {v}.
2. Set t ← 0.

3. while Ht 
= ∅ do

4. Set Ht+1 ← {the activated nodes at time t + 1}.
5. Set t ← t + 1.

6. end while

7. Set ϕ(A ∪ {v}) ← ∑t−1
j=0 |Hj |

3.3 Computational Complexity of Conventional Method

We consider evaluating the computational complexity of solving the influ-
ence maximization problem. For this purpose, we introduce the notion of
examined nodes. Here, an examined node is a node that is actually vis-
ited by tracing incoming or outgoing links on the graph in question for the
method when all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \A} of
A are estimated in Step (G3) of the greedy algorithm. In Section 4.4, we
describe the reason why we investigate the examined nodes for evaluating
the computational complexity.
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The computational complexity of the conventional method is evaluated
in terms of the expected number of examined nodes. In order to estimate
σ(A ∪ {v}), (v ∈ V \ A), it is necessary for any v ∈ V \ A to simulate
M times the random process of the information diffusion model (IC or LT
model) from the initial active set A ∪ {v} on graph G. For each simulation,
the set of examined nodes are the same as the set of active nodes in the
process. Thus, we can estimate that the expected number C0 of examined
nodes for the conventional method is

C0 = M
∑

v∈V \A
σ(A ∪ {v}). (2)

4 Proposed Method

We propose a method for efficiently estimating all the marginal influence
degrees {σ(A ∪ {v}); v ∈ V \ A} of A in Step (G3) of the greedy algorithm
on the basis of bond percolation and graph theory, and evaluate the compu-
tational complexity, and compare it with that of the conventional method.

4.1 Bond Percolation

The IC and LT models are identified with bond percolation models which are
defined below, and all the marginal influence degrees {σ(A∪{v}); v ∈ V \A}
of A are efficiently estimated by exploiting graph theoretic methods.

A bond percolation process on graph G = (V,E) is the process in which
each link of G is randomly designated either “occupied ” or “unoccupied”
according to some probability distribution. Here, in terms of information
diffusion on a social network, occupied links represent the links through
which the information propagates, and unoccupied links represent the links
through which the information does not propagate. Let us consider the
following set of L-dimensional vectors,

RG =
{
r = (ru,v)(u,v)∈E ∈ {0, 1}L

}
,

where L is the number of links in G. A bond percolation process on G is
determined by a probability distribution q(r) on RG. Namely, for a random
vector r ∈ RG drawn from q(r), each link (u, v) ∈ E is designated “occupied”
if ru,v = 1, and it is designated “unoccupied” if ru,v = 0. Let Er denote the
set of all the occupied links for r ∈ RG, and let Gr denote the graph (V,Er).
For each r ∈ RG, we can consider the deterministic diffusion model Mr on
Gr such that F (A;Gr) becomes the final set of active nodes when A is an
initial set of active nodes, where F (A;Gr) is the set that is reachable from A
on Gr (see, Section 2.1). By associating the diffusion modelMr on Gr with
a probability distribution q(r) on RG, we define a stochastic diffusion model
on G. We call this diffusion model the bond percolation model on G, and
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refer to the probability distribution q(r) on RG as the occupation probability
distribution of the bond percolation model.

We easily see that the IC model on G can be identified with the so-called
susceptible/infective/recovered (SIR) model (Newman, 2003) for the spread
of a disease on G, where the nodes that become active at time t in the IC
model correspond to the infective nodes at time t in the SIR model. We
recall that in the SIR model, an individual occupies one of the three states,
“susceptible”, “infected” and ‘recovered”, where a susceptible individual
becomes infected with a certain probability when s/he is encountered an
infected patient and subsequently recovers at a certain rate (see, Newman,
2003; Watts and Dodds, 2007). It is known that the SIR model on a network
can be exactly mapped onto a bond percolation model on the same network
(Grassberger, 1983; Newman, 2002; Kempe et al., 2003; Newman, 2003).
Hence, we see that the IC model on G is equivalent to a bond percolation
model on G, that is, these two models have the same probability distribution
for the final set of active nodes given a target set. Here, for the IC model on
G, the occupation probability distribution q(r) of the corresponding bond
percolation model is given by

q(r) =
∏

(u,v)∈E

{
(pu,v)

ru,v (1− pu,v)
1−ru,v

}
, (r ∈ RG),

that is, each link (u, v) of G is independently declared to be “occupied”
with probability pu,v, where pu,v is the propagation probability through link
(u, v) in the IC model.

On the other hand, Kempe et al. (2003) proved that the LT model on G
can also be equivalent to a bond percolation model on G to derive the result
that the influence degree function σ(A) is submodular in the LT model.
Here, for the LT model on G, the corresponding occupation probability
distribution q(r) is generated by declaring “occupied” and “unoccupied”
links in the following way: For any v ∈ V , we pick at most one of the
incoming links to v by selecting link (u, v) with probability wu,v and selecting
no link with probability 1 − ∑

u∈Γ(v) wu,v. After this process, the picked
links are declared to be “occupied” and the other links are declared to be
“unoccupied”. Here, wu,v is the weight of link (u, v) in the LT model.
Specifically, q(r) is described as follows:

q(r) =
∏
v∈V

∏
u∈Γ(v)

⎧⎪⎪⎨
⎪⎪⎩(wu,v)

ru,v

⎛
⎝1−

∑
u∈Γ(v)

wu,v

⎞
⎠

(
1−

∑
u∈Γ(v)

ru,v

)⎫⎪⎪⎬
⎪⎪⎭ ,

where if
∑

u∈Γ(v) wu,v < 1,
∑

u∈Γ(v) ru,v ≤ 1 and if
∑

u∈Γ(v) wu,v = 1,
∑

u∈Γ(v) ru,v

= 1.
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4.2 Proposed Method for Estimating Marginal Influence De-
grees

We present a method of estimating all the marginal influence degrees {σ(A∪
{v}); v ∈ V \ A} of A in Step (G3) of the greedy algorithm. As shown in
the preceding section, the IC and LT models on G can be identified with
the bond percolation models on G. Therefore, we have

σ(A ∪ {v}) =
∑

r∈RG

q(r) |F (A ∪ {v};Gr)|

for any v ∈ V \ A, where q(r) is the corresponding occupation probability
distribution, and F (A ∪ {v};Gr) stands for the set of all the nodes that are
reachable from A ∪ {v} on graph Gr (see, Section 2.1).

We estimate {σ(A ∪ {v}); v ∈ V \ A} in the following way: First, we
specify a sufficiently large positive integer M . Next, we independently gen-
erate a set {r1, · · · , rM} of M sample vectors on RG from the probability
distribution q(r); that is, independently generate a set {Grm ;m = 1, · · · ,M}
of M graphs. For any v ∈ V \A, we approximate σ(A ∪ {v}) by

σ(A ∪ {v}) � 1
M

M∑
m=1

|F (A ∪ {v};Grm)|. (3)

Thus, we estimate {σ(A ∪ {v}); v ∈ V \ A} on the basis of Equation (3) as
follows:

1. for m = 1 to M do

2. Generate graph Grm .

3. Compute {|F (A ∪ {v};Grm)|; v ∈ V \ A}.
4. Set xv,m ← |F (A ∪ {v};Grm)| for all v ∈ V \ A.

5. end for

6. Set σ(A ∪ {v}) ← (1/M)
∑M

m=1 xv,m for all v ∈ V \ A.

In particular, we evaluate {|F (A ∪ {v};Gr)|; v ∈ V \ A} for an arbitrary r
∈ RG by the following algorithm:

(E1) Find the subset F (A;Gr) of V .

(E2) Set |F (A ∪ {v};Gr)| ← |F (A;Gr)| for all v ∈ F (A;Gr) \ A.

(E3) Find the subset V A
r = V \ F (A;Gr) of V , and the induced graph GA

r

of Gr to V A
r .

(E4) Set U ← ∅.
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(E5) while V A
r \ U 
= ∅ do

(E6) Pick a node u ∈ V A
r \ U .

(E7) Find the subset F (u;GA
r ) of V A

r .

(E8) Find the subset C(u;GA
r ) = B(u;GA

r ) ∩ F (u;GA
r ) of F (u;GA

r ).

(E9) Set |F (A∪{v};Gr)| ← |F (u;GA
r )| + |F (A;Gr)| for all v ∈ C(u;GA

r ).

(E10) Set U ← U ∪ C(u;GA
r ).

(E11) end while

Now, we explain this algorithm. In Step (E1), we find the subset F (A;Gr)
that is reachable from A on graph Gr. In Step (E2), we use the fact that if
v ∈ F (A;Gr), the set F (A∪{v};Gr) that is reachable from A∪{v} on Gr is
equal to the set F (A;Gr), and we simultaneously compute |F (A∪ {v};Gr)|
for all v ∈ F (A;Gr). In Step (E3), we find the subset V A

r = V \ F (A;Gr),
and also find the induced graph GA

r of graph Gr to V A
r . In Steps (E4) to

(E11), we use the fact that if v /∈ F (A;Gr), |F (A ∪ {v};Gr)| is obtained
by the sum of |F (A;Gr)| and |F (v;GA

r )|. This fact enables us to reduce
the graph in question from Gr to GA

r . We attempt to decompose graph GA
r

into its SCCs. In Step (E6), on graph GA
r , we pick a node u that does not

belong to the SCCs that we have already found. In Step (E7), we find the
set F (u;GA

r ) that is reachable from u on graph GA
r . In Step (E8), we find

the subset C(u;GA
r ) = B(u;GA

r ) ∩ F (u;GA
r ) of F (u;GA

r ) by tracing back-
ward all the links from u on the induced graph of GA

r to F (u;GA
r ). Note

that the set C(u;GA
r ) is equal to the SCC SCC(u;GA

r ) that contains u. In
Step (E9), we use the fact that |F (v;GA

r )| = |F (u;GA
r )| if v ∈ C(u;GA

r ), and
simultaneously compute |F (A∪{v};Gr)| for all v ∈ C(u;GA

r ). We illustrate
the flow of the algorithm in the following example:

Example: We consider the graph Gr shown in Figure 1a, where V = {v1,
v2, v3, v4, v5, v6, v7}. We set A = {v1}. In this case, the process of the
algorithm proceeds as follows.

In Step (E1), we find F (A;Gr) = {v1, v2, v3}. In Step (E2), we find
|F (A ∪ {v2};Gr)| = |F (A ∪ {v3};Gr)| = 3. In Step (E3), we find V A

r =
{v4, v5, v6, v7} and GA

r as shown in Figure 1b. In Step (E4), we set U =
∅. In Step (E5), we check V A

r \ U = {v4, v5, v6, v7} 
= ∅. In Step (E6),
we pick v4 ∈ V A

r \ U . In Step (E7), we find F (v4;GA
r ) = {v4, v5, v6, v7}.

In Step (E8), we find C(v4;GA
r ) = B(v4;GA

r ) ∩ F (v4;GA
r ) = {v4, v5, v6} in

F (v4;GA
r ). In Step (E9), we find |F (A ∪ {v4};Gr)| = |F (A ∪ {v5};Gr)| =

|F (A∪{v6};Gr)| = 7. In Step (E10), we set U = {v4, v5, v6}. In Step (E11),
we return to Step (E5). In Step (E5), we check V A

r \ U = {v7} 
= ∅. In
Step (E6), we pick v7 ∈ V A

r \ U . In Step (E7), we find F (v7;GA
r ) = {v7}. In

Step (E8), we find C(v7;GA
r ) = {v7}. In Step (E9), we find |F (A∪{v7};Gr)|
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(a) An example of
graph Gr.

5v
6v

4v
7v

(b) Graph GA
r .

Figure 1: An illustration of the flow of the proposed algorithm for evaluating
{|F (A ∪ {v};Gr)|; v ∈ V \ A}, where r ∈ RG and A = {v1}.

= 4. In Step (E10), we set U = {v4, v5, v6, v7}. In Step (E11), we return to
Step (E5). In Step (E5), we check V A

r \ U = ∅. Then, the process of the
algorithm ends.

4.3 Computational Complexity of Proposed Method

In the same way as in Section 3.3, we evaluate the computational complexity
of the proposed method as the expected number of examined nodes for
estimating all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \ A} of A
in Step (G3) of the greedy algorithm.

Let Gr be a graph generated from the occupation probability distribution
q(r) of the corresponding bond percolation model. We consider evaluating
the expected number Z(A,Gr) of examined nodes for computing {|F (A ∪
{v};Gr)|; v ∈ V \ A} by the proposed method (see, Section 4.2). First, the
number of examined nodes for finding F (A;Gr) is given by |F (A;Gr)|. Let

V A
r =

⋃
u∈UA

r

SCC(u;GA
r )

be the SCC decomposition of the induced graph GA
r of Gr to V A

r = V \
F (A;Gr), where UA

r stands for the set of all the representative nodes for
SCCs. For any u ∈ UA

r , the number of examined nodes for finding F (u;GA
r )

is |F (u;GA
r )|. Suppose now that F (u;GA

r ) is found. Then, the number
of examined nodes for finding C(u;GA

r ) (= SCC(u;GA
r )) is |SCC(u;GA

r )|,
since C(u;GA

r ) = B(u;GA
r ) ∩ F (u;GA

r ) is calculated on the induced graph of
graph GA

r to F (u;GA
r ). Therefore, the number Z(A,Gr) of examined nodes

for computing {|F (A ∪ {v};Gr)|; v ∈ V \ A} by the proposed method is as
follows:

Z(A,Gr) = |F (A;Gr)|+
∑

u∈UA
r

(
|F (u;GA

r )|+ |SCC(u;GA
r )|

)
.
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By the definition of graph GA
r , we have∑

u∈UA
r

|SCC(u;GA
r )| = N − |F (A;Gr)|,

where N = |V |. Thus, we have

Z(A,Gr) = N +
∑

u∈UA
r

|F (u;GA
r )|. (4)

Since |F (u;GA
r )| = |F (A ∪ {u};Gr)| − |F (A;Gr)|, we can estimate the ex-

pected value of |F (u;GA
r )| as σ(A ∪ {u}) − σ(A). Hence, by Equation (4),

we can estimate the expected number Z(A,Gr) of examined nodes for com-
puting {|F (A ∪ {v};Gr)|; v ∈ V \ A} as

Z(A,Gr) = N +

〈 ∑
u∈UA

r

(σ(A ∪ {u})− σ(A))

〉
r

,

where 〈f(r)〉r stands for the operation that averages f(r) with respect to r
under q(r), that is,

〈f(r)〉r =
∑

r∈R(G)

f(r) q(r).

From the above results, we can estimate that the expected number C1 of
examined nodes for the proposed method is

C1 = M

⎧⎨
⎩N +

〈 ∑
u∈UA

r

(σ(A ∪ {u})− σ(A))

〉
r

⎫⎬
⎭ . (5)

4.4 Computational Complexity Comparison

We compare the proposed method with the conventional method in terms
of computational complexity. Both methods need M to be specified as a
parameter, and we use the same value for both. We note that more coin-
flips are used in the conventional method. In fact, if we think of a single
run, i.e., any one of the M runs, the expected number of coin-flips for the
conventional method is O(|V |σ(v)) for both the IC and LT models, whereas
that for the proposed method is O(|E|) for the IC model and O(|V |) for the
LT model. Note that in case of LT model for the proposed method, the coin-
flip is realized by roulette for each node, i.e., picking at most one incoming
link. However, if we focus on a single node v for initial activation from
which to propagate the information, the number of coin-flips are O(σ(v))
for both the conventional and the proposed methods and for both the IC
and the LT models because only the activated nodes (the expected number
is σ(v)) are on the paths that lead to reachable nodes from v in the proposed
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method. Thus by using the same value of M , both would estimate σ(v) with
the same accuracy in principle (see Appendix A). The biggest difference
is that in the conventional method, when A is not empty, many of the
coin-flips are redundant; that is, the diffusion process from A is repeatedly
performed, whereas in the proposed method, no such repetition is made.
This contributes to the stability of the proposed method. Below we begin
by explaining the reason why we investigate the examined nodes to compare
the proposed and the conventional methods.

First, we consider the case of IC model. Both the proposed and the
conventional methods flip a coin with a bias pu,v on a link (u, v) to decide
whether to propagate the information through the link (u, v) or not. Here,
if we assume that all the coins are flipped in advance for the conventional
method and ignore the computational complexity for flipping a coin and
deciding whether or not to propagate the information, then for both the
proposed and the conventional methods, the major computation is to trace
forward or backward the links the information propagates and identify the
nodes to visit. Therefore, we evaluate the computational complexities of the
both methods for the IC model in terms of the expected number of examined
nodes.

Next, we consider the case of LT model. For the proposed method, we
ignore the computational complexity for the process of choosing at most
one incoming link of each node in the original graph. For the conventional
method, we ignore the computational complexity for the process of choosing
the threshold θv of each node v in the original graph. Note that the proposed
method performs the process M times, whereas the conventional method
performs the process MN times. Moreover, for the conventional method, we
further ignore the computational complexity for adding the weights from the
neighboring active nodes to a node and deciding whether the node becomes
active or not. Then, the major computation for the conventional method
is to trace forward the links the information propagates and identify the
nodes to visit. Therefore, we also evaluate the computational complexities
of the both methods for the LT model in terms of the expected number of
examined nodes.

Now, we compare the proposed and the conventional methods in terms of
the expected number of examined nodes. We use the results in Sections 3.3
and 4.3. By Equation (2), the expected number C0 of examined nodes for
the conventional method can be estimated as

C0 = M

⎧⎨
⎩N − |A|+

∑
u∈V \A

(σ(A ∪ {u})− 1)

⎫⎬
⎭ , (6)

since
∑

V \A 1 = N − |A|. In Equation (6), we can expect that |A| � N
(= |V |), and σ(A∪{u}) − 1 is summed up for almost all u ∈ V , since k � N .
On the other hand, we can generally expect |UA

r | � N in Equation (5).
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Also, we have σ(A) > 1 in the greedy algorithm if A 
= ∅. Moreover, for
any u ∈ V \ A, σ(A ∪ {u}) − σ(A) decreases as |A| increases, since σ(A) is
a submodular function. Hence, we can generally expect that in Step (G3)
of the greedy algorithm, the proposed method has much smaller expected
number of examined nodes than the conventional method.

From the above results, we can expect that compared with the con-
ventional method, the proposed method will achieve a large reduction in
computational cost.

5 Experimental Evaluation

Using large-scale real networks, we experimentally evaluated the perfor-
mance of the proposed method.

5.1 Network Datasets

In the evaluation experiments, we should desirably use large-scale networks
that exhibit many of the key features of real social networks. Here, we show
the experimental results for two different datasets of such real networks.
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Figure 2: The out-degree distribution for the blog dataset.

First, we employed a trackback network of blogs, since a piece of infor-
mation can propagate from one blog author to another blog author through
a trackback, where a trackback is a kind of hyperlink with a linkback (i.e.,
link notification) function. We exploited the blog “Theme salon of blogs”
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Figure 3: The in-degree distribution for the blog dataset.

in the site “goo” (http://blog.goo.ne.jp/usertheme/), where blog au-
thors could recruit trackbacks of other blog authors by registering interest-
ing themes. We collected a large-scale connected trackback network in May,
2005 by the following breadth first search process:

1. We started the process from the blog of the theme “JR Fukuchiyama
Line Derailment Collision” in the site “goo”, analyzed its HTML file,
and extracted the list of the URLs of the source blogs of the trackbacks
to this blog.

2. For each list obtained, we collected the blogs of the URLs in the list.

3. For each blog collected, we analyzed its HTML file, and constructed
the list of the URLs of the source blogs of the trackbacks to the blog.

4. We repeated from Step 2 until depth ten from the original blog.

We call this network data the blog dataset. This network was a directed
graph of 12, 047 nodes and 53, 315 links, and is expected to have a feature
of real world social network in light of the way it is generated. To confirm
this, the out-degree and in-degree distributions are plotted in Figures 2 and
3, from which it is understood that these are “heavy-tailed” distributions
that most large real networks exhibit. Here, the out-degree and in-degree
distributions are the distributions of the number of outgoing and incoming
links for every node, respectively. Thus, we believe that the blog dataset is
a typical example of a large real social network represented by a directed
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graph, and can be used as the network data to evaluate the performance of
the proposed method.
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Figure 4: The degree distribution for the Wikipedia dataset.

Next, we employed a network of people that was derived from the “list of
people” within Japanese Wikipedia. Specifically, we extracted the maximal
connected component of the undirected graph obtained by linking two peo-
ple in the “list of people” if they co-occur in six or more Wikipedia pages,
and constructed a directed graph by regarding those undirected links as bidi-
rectional ones. We call this network data the Wikipedia dataset. The total
numbers of nodes and directed links were 9, 481 and 245, 044, respectively.
Compared with the blog network, the way this network is generated is rather
synthetically. Figure 4 shows the degree distribution of the undirected graph.
We also observe that the degree distribution is a “heavy-tailed” distribution.

For social networks represented as undirected graphs, Newman and Park
(2003) observed that they generally have the following two statistical prop-
erties that non-social networks do not have. First, they show positive cor-
relations between the degrees of adjacent nodes. Second, they have much
higher values of the clustering coefficient than the corresponding configura-
tion models (i.e., random network models). Here, the clustering coefficient
C for an undirected graph is defined by

C =
3× number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which is connected
to each other, and a “connected triple” means a node connected directly to
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Figure 5: The degree correlation for the Wikipedia dataset.

unordered other pair nodes. Note that in terms of sociology, C measures the
probability that two of your friends will also be friends each other. Given a
degree distribution {λd}, the corresponding configuration model of a random
network of N nodes is defined as the ensemble of all possible undirected
graphs of N nodes that possess the degree distribution {λd}, where λd is
the fraction of nodes in the network having degree d. It is known [18] that
the value of C for the configuration model is exactly calculated by

C =
1

Nz1

(
z2

z1

)2

,

where
z1 =

∑
d

dλd

is the average number of neighbors of a node and

z2 =
∑
d

d2λd −
∑
d

dλd

is the average number of second neighbors. For the undirected graph of the
Wikipedia dataset, the value of C of the corresponding configuration model
was 0.046, while the actual measured value of C was 0.39. Namely, the
undirected graph of the Wikipedia dataset had a much higher value of the
clustering coefficient than the corresponding configuration model. Moreover,
we can see from Figure 5 that the Wikipedia dataset had weakly positive
degree correlation. Therefore, we believe that the Wikipedia dataset is also
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a typical example of a large real social network represented by an undirected
graph, and can be used as the network data to evaluate the performance of
the proposed method.

5.2 Experimental Settings

The proposed and the conventional methods are equipped with parameter
M . We refer to the conventional method with M = 1, 000 for the IC model
as the IC1000. In the same way, we define the LT1000 and LT10000 for
the conventional method with the LT model. We also refer to the proposed
method using M = 1, 000 and M = 10, 000 for the IC model as the ICBP1000
and ICBP10000, respectively. In the same way, we define the LTBP1000 and
LTBP10000 for the proposed method with the LT model. As described in
Section 4.4, we compare these methods for the same value of M .

The IC and LT models have parameters to be specified in advance. In the
IC model, we assigned a uniform probability p to the propagation probability
pu,v for any directed link (u, v) of the network, that is, pu,v = p. In the LT
model, we uniformly set weights as follows: For any node v of the network,
the weight wu,v from a parent node u ∈ Γ(v) is given by wu,v = 1/|Γ(v)|.

We implemented all our programs of both the conventional and proposed
methods for the IC and LT models in C language. Of course, the basic
structure of these programs is the same, except that the routines of active
node calculation used in the conventional method are replaced with those
of bond percolation and SCC decomposition used in the proposed method.

5.3 Experimental Results

We compared the proposed method with the conventional method in terms
of both the performance of the approximate solution Ak and the processing
time for solving the influence maximization problem of size k. The per-
formance of Ak is measured by the influence degree σ(Ak). We estimated
σ(Ak) by using 300, 000 simulations according to the work of Kempe et al.
(2003). All our experimentation was undertaken on a single Dell PC with an
Intel 3.4GHz Xeon processor, with 2GB of memory, running under Linux.

In order to keep computational time at a reasonable level for the conven-
tional method, we mainly compared these two methods using M = 1, 000.
Note that if a large enough M is taken, these two methods should produce
the same solution. We conjecture that M = 1, 000 is not large enough, that
is, these two methods with M = 1, 000 cannot necessarily obtain good ap-
proximate values for the marginal influence degrees {σ(A∪{v}); v ∈ V \A}
of A, (see Appendices A and B). Thus, we iterated the same experiment
five times independently. Tables 1 and 2 show the experimental results for
the IC model with p = 10% and the LT model for the blog dataset, respec-
tively, where the values are rounded to three significant figures. Note that
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Table 1: Performance of approximate solutions for the influence maximiza-
tion problem under the IC model with p = 10% for the blog dataset. Up-
per: IC1000 (the conventional method). Lower: ICBP1000 (the proposed
method).

k σ(Ak) (IC1000)
1 1.74× 102 1.74 × 102 1.74 × 102 1.74 × 102 1.74 × 102

10 6.93× 102 6.98 × 102 6.93 × 102 6.91 × 102 6.95 × 102

20 8.58× 102 8.61 × 102 8.57 × 102 8.58 × 102 8.60 × 102

30 9.59× 102 9.69 × 102 9.68 × 102 9.66 × 102 9.78 × 102

k σ(Ak) (ICBP1000)
1 1.74× 102 1.74 × 102 1.74 × 102 1.74 × 102 1.74 × 102

10 7.02× 102 7.01 × 102 7.00 × 102 7.01 × 102 7.02 × 102

20 8.74× 102 8.75 × 102 8.73 × 102 8.74 × 102 8.73 × 102

30 9.91× 102 9.92 × 102 9.90 × 102 9.92 × 102 9.92 × 102

in these tables and later ones, too, the values are reestimated with 300, 000
simulations once Ak has been obtained by each method with a specified
M . Since the true solution σ(A∗

k) is by definition the maximum among all
σ(Ak), if σ(Ak) is estimated accurately, it makes sense to argue that the
larger the value is, the closer it is to the true solution and thus it is of bet-
ter quality. We first observe that the results for the proposed method were
relatively stable over the iterations, while the results for the conventional
method somewhat fluctuated for large k in particular. Here, we note that
the proposed method using M = 10, 000 was stable and always produced the
same solution for k = 30 over the iterations (not shown in the tables). We
also observe that for k = 30, the solutions by the ICBP1000 and LTBP1000
outperforms those by the IC1000 and LT1000, respectively.

Table 3 shows the processing time to obtain Ak by the IC1000, ICBP1000,
LT1000 and LTBP1000 for the blog dataset, where the values are rounded
to three significant figures. We observe from Table 3 that the ICBP1000
and LTBP1000 are much more efficient than the IC1000 and LT1000, re-
spectively. For example, to obtain the approximate solution A30 for k = 30,
both the IC1000 and LT1000 needed about 2.5 days, while the ICBP1000
and LTBP1000 needed about 2.5 and 1.5 minutes, respectively. Namely,
for k = 30, the ICBP1000 was 1.8 × 103 times faster than the IC1000, and
the LTBP1000 was 4.6 × 103 times faster than the LT1000. We also exam-
ined the LT10000 and LTBP10000 on the blog dataset. In order to obtain
approximate solution A30, the LT10000 needed about 27 days, while the
LTBP10000 needed only about 14 minutes.
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Table 2: Performance of approximate solutions for the influence maximiza-
tion problem under the LT model for the blog dataset. Upper: LT1000 (the
conventional method). Lower: LTBP1000 (the proposed method).

k σ(Ak) (LT1000)
1 2.86× 102 2.86 × 102 2.86 × 102 2.86 × 102 2.86 × 102

10 1.59× 103 1.61 × 103 1.61 × 103 1.59 × 103 1.58 × 103

20 2.41× 103 2.40 × 103 2.42 × 103 2.42 × 103 2.38 × 103

30 3.02× 103 3.05 × 103 3.01 × 103 3.01 × 103 3.00 × 103

k σ(Ak) (LTBP1000)
1 2.86× 102 2.86 × 102 2.86 × 102 2.86 × 102 2.86 × 102

10 1.60× 103 1.61 × 103 1.61 × 103 1.59 × 103 1.60 × 103

20 2.44× 103 2.44 × 103 2.44 × 103 2.44 × 103 2.44 × 103

30 3.07× 103 3.07 × 103 3.06 × 103 3.06 × 103 3.06 × 103

Table 3: Processing time (sec.) for the blog dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 3.70× 102 7.07 6.57 × 102 3.19
10 4.69× 104 5.68 × 101 4.24 × 104 2.96 × 101

20 1.24× 105 1.09 × 102 1.25 × 105 5.64 × 101

30 2.13× 105 1.60 × 102 2.32 × 105 8.20 × 101

Tables 4, 5 and 6 show the experimental results for the Wikipedia dataset.
We see that the results were qualitatively very similar to the ones for the
blog dataset. First, the solutions by the ICBP1000 and LTBP1000 outper-
formed those by the IC1000 and LT1000, respectively. We also note that the
proposed method using M = 10, 000 was stable and always produced the
same solution for k = 30 over the iterations (not shown in the tables). Next,
the ICBP1000 and LTBP1000 were much more efficient than the IC1000 and
LT1000, respectively. For example, for obtaining the approximate solution
A30 for k = 30, the ICBP1000 was 1.9 × 103 times faster than the IC1000,
and the LTBP1000 was 8.3 × 103 times faster than the LT1000. We also
conducted experiments on some other large-scale real networks including a
blogroll network of blogs, and confirmed the effectiveness of the proposed
method.
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Table 4: Performance of approximate solutions for the influence maximiza-
tion problem under the IC model with p = 1% for the Wikipedia dataset.
Upper: IC1000 (the conventional method). Lower: ICBP1000 (the proposed
method).

k σ(Ak) (IC1000)
1 1.39× 102 1.39 × 102 1.36 × 102 1.36 × 102 1.36 × 102

10 3.91× 102 3.97 × 102 3.98 × 102 4.02 × 102 4.01 × 102

20 4.56× 102 4.64 × 102 4.62 × 102 4.64 × 102 4.66 × 102

30 4.97× 102 5.02 × 102 4.95 × 102 5.00 × 102 4.98 × 102

k σ(Ak) (ICBP1000)
1 1.39× 102 1.39 × 102 1.39 × 102 1.36 × 102 1.36 × 102

10 4.05× 102 4.06 × 102 4.07 × 102 4.06 × 102 4.07 × 102

20 4.75× 102 4.76 × 102 4.76 × 102 4.75 × 102 4.77 × 102

30 5.16× 102 5.17 × 102 5.17 × 102 5.16 × 102 5.17 × 102

5.4 Discussion

These experimental results show that the proposed method is much more
efficient than the conventional method.

First, we investigate the reason why the proposed method outperforms
the conventional method in the case of M = 1, 000 for our network datasets.
If we take a sufficiently large M (e.g., M = 100, 000), the proposed and the
conventional methods should produce the same solution. As shown in the
experiments, the estimation accuracy of influence degree function σ with
M = 1, 000 is not so high for the both methods. Now, consider estimating
all the marginal influence degrees {σ(Ak ∪ {v}); v ∈ V \ Ak} of solution
Ak, and choosing the node vk+1 that maximizes σ(Ak ∪ {v}), (v ∈ V \Ak).
It should be reemphasized that the influence set of Ak is equally evaluated
for all v ∈ V \ Ak for the proposed method. In fact, when σ(Ak ∪ {v}) is
estimated using Equation (3), each |F (Ak∪{v};Grm)| is basically computed
by

|F (Ak ∪ {v};Grm)| =
∣∣∣F (v;GAk

rm
)
∣∣∣ + |F (Ak;Grm)| .

Thus, for the proposed method, a node that is relatively optimal for Ak can
be selected as vk+1. On the other hand, for the conventional method, the
influence set of Ak is not equally evaluated for all v ∈ V \Ak since σ(Ak∪{v})
is independently estimated for every v each by a distinct simulation. We
also note that the number of final active nodes for a given target set greatly
varied for every simulation in the IC and LT models (see, Appendix B). Thus,
unlike the proposed method, the selection of vk+1 in the conventional method
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Table 5: Performance of approximate solutions for the influence maximiza-
tion problem under the LT model for the Wikipedia dataset. Upper: LT1000
(the conventional method). Lower: LTBP1000 (the proposed method).

k σ(Ak) (LT1000)
1 3.41× 102 3.41 × 102 3.41 × 102 3.41 × 102 3.41 × 102

10 1.72× 103 1.72 × 103 1.67 × 103 1.66 × 103 1.72 × 103

20 2.55× 103 2.55 × 103 2.45 × 103 2.53 × 103 2.55 × 103

30 3.12× 103 3.03 × 103 2.99 × 103 3.01 × 103 3.11 × 103

k σ(Ak) (LTBP1000)
1 3.41× 102 3.41 × 102 3.41 × 102 3.41 × 102 3.41 × 102

10 1.72× 103 1.72 × 103 1.72 × 103 1.72 × 103 1.71 × 103

20 2.58× 103 2.58 × 103 2.59 × 103 2.59 × 103 2.59 × 103

30 3.18× 103 3.18 × 103 3.18 × 103 3.18 × 103 3.18 × 103

Table 6: Processing time (sec.) for the Wikipedia dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 6.63× 102 1.91 × 101 5.41 × 102 5.17
10 1.94× 105 1.74 × 102 9.60 × 104 4.64 × 101

20 4.82× 105 3.42 × 102 3.03 × 105 8.57 × 101

30 8.03× 105 5.10 × 102 5.69 × 105 1.21 × 102

using M = 1, 000 by necessity completely depends on how the influence set
of Ak is evaluated by chance for each v ∈ V \ Ak. Therefore, we believe
that the proposed method outperforms the conventional method in the case
of M = 1, 000 for our network datasets.

Here, to explain the point of the reason described above more clearly, we
consider the following method as an extended version of the conventional
method:

1. for m = 1 to M do

2. Find the set D(Ak) of active nodes at the end of the random process
of the IC or the LT models for initial active set Ak by simulation.

3. for each v ∈ V \ Ak do

4. Find the set D(v) of active nodes at the end of the random process
of the IC or the LT models for initial active set {v} by simulation.
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5. Set xv,m ← |D(Ak) ∪D(v)|.
6. end for

7. end for

8. for each v ∈ V \ Ak do

9. Set σ(Ak ∪ {v})← (1/M)
∑M

m=1 xv,m

10. end for

The extended method should improve the conventional method because the
influence set of Ak is now equally evaluated for all v ∈ V \ Ak, and should
be comparable to the proposed method in quality of solution. However, it
cannot be as efficient as the proposed method since it does not incorporate
the SCC-finding technique.
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Figure 6: Processing time difference τ(k) between the proposed and conven-
tional methods for the blog dataset in the case of the IC model.

Next, we discuss the sources of the difference between the proposed and
conventional methods in processing time. Note that we use the same value of
parameter M for both methods. Let τ1(k) and τ0(k) respectively denote the
processing times of the proposed and the conventional methods for obtaining
solution Ak+1 when solution Ak is given. We define the processing time
difference τ(k) by τ0(k) − τ1(k) for k, the number of nodes selected. We
believe the essential sources of speed-up in the proposed method is that we
compute {|F (Ak ∪ {v};Gr)|; v ∈ V \Ak} on graph Gr as follows:
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• By first identifying F (Ak;Gr), we reduce the graph in question from
Gr to the induced graph GAk

r of Gr to V \ F (Ak;Gr)

• By decomposing GAk
r into the SCCs, we compute |F (Ak∪{v};Gr)| for

many nodes v at once.

Namely, we believe that the larger the size of F (Ak;Gr) is, the larger the
value of τ(k) is. Moreover, we believe that the larger the sizes of the SCCs
of graph GAk

r are, the larger the value of τ(k) is. Here, we demonstrate
these characteristics for the IC model. Note that the size of F (Ak;Gr)
monotonically increases with the value of k. Thus, we can expect that the
value of τ(k) also monotonically increases with the value of k. Note also that
graph Gr becomes denser when the value of the propagation probability p is
larger, and the sizes of the SCCs of Gr also become larger. Thus, we can also
expect that the value of τ(k) monotonically increases with the value of p.
Figure 6 shows τ(k) for p = 0.1%, 1% and 10% as a function of k for the blog
dataset, where circles, squares and diamonds indicate τ(k) for p = 0.1%, 1%
and 10%, respectively. Here, we used M = 1, 000 for both the proposed and
the conventional methods. The results support our conjectures.

6 Related Work

6.1 Calculation of Influence Degrees

First, we describe work related to the calculation of influence degrees in the
IC model. Let us recall that the SIR model for the spread of a disease on
a network is equivalent to a bond percolation model on the same network,
and the size of a disease outbreak from a node corresponds to the size of the
cluster that can be reached from the node by traversing only the “occupied”
links. There are a series of work that uses this correspondence to develop
a method for theoretically calculating the probability distribution of the
size of a disease outbreak that starts with a randomly chosen node in the
configuration model (i.e., a random network model) with a given degree
distribution (Callaway et al., 2000; Newman, 2002; Newman, 2003), and to
derive a condition for the disease outbreak from a randomly chosen node to
give an epidemic outbreak that affects a non-zero fraction on the network in
the limit of very large network. Mathematically more rigorous treatments
of similar results can be found in the work of Molloy and Reed (1998) and
Chung and Lu (2002).

Next, we describe work related to the calculation of influence degrees
in the LT model. Watts (2002) investigated the LT model on a network to
explain large but rare cascade phenomena triggered by small initial shocks.
Using the concept of site percolation, he theoretically derived a condition
for the cascade from a randomly chosen seed node to give a global cascade
that affects a non-zero fraction on the network in the limit of infinitely large
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network for the configuration model (i.e., a random network model) with a
given degree distribution.

The above mentioned studies focused on global properties averaged over
a random network in the limit of very large size, while our primary inter-
est is to practically answer which nodes are most influential for information
diffusion on a given real-world network of a finite size. We also note that
those studies dealt with undirected graphs, while our work investigates in-
formation diffusion on networks represented by directed graphs. Moreover,
the theories developed in those studies assumed that the loop structure on
a network of interest can be essentially ignored in the limit of large network
size. However, this property is not true of many large-scale social networks,
and it is an open question whether or not those theories are effective for such
networks (Newman, 2003). In fact, the clustering coefficient C quantifies the
loop structure in a network, and it was indeed observed that many social
networks have much higher values of C than the corresponding configuration
models (i.e., random network models) (Newman and Park, 2003).

6.2 Solving the Influence Maximization Problem

The influence degree function σ is submodular (see, Kempe et al., 2003). For
solving a combinatorial optimization problem of a submodular function f on
V by the greedy algorithm, Leskovec et al. (2007) have recently presented
a lazy evaluation method that leads to far fewer (expensive) evaluations
of the marginal increments f(A ∪ {v}) − f(A) (v ∈ V \ A) in the greedy
algorithm for A 
= ∅, and achieved an improvement in speed. Note here
that their method requires evaluating f(v) for all v ∈ V at least. Thus, we
can apply their method to the influence maximization problem for the IC or
LT models, where the influence degree function σ is evaluated through the
simulations of the corresponding random process. It is clear that this method
is more efficient than the conventional method. However, the proposed
method for k = 30 was faster than the conventional method for k = 1
as shown in Tables 3 and 6. Therefore, it is evident that the proposed
method can be faster than the method by Leskovec et al. (2007) for the
influence maximization problem for the IC or LT models. To quantify the
difference we implemented the Lazy evaluation method. The processing time
for k = 30 in case of the blog dataset was 2.12× 103 and 8.28× 102 seconds
for the IC and the LT models, respectively, and the corresponding processing
time in case of Wikipedia dataset was 1.46× 104 and 2.65× 103 seconds for
the IC and the LT models, respectively. Here, M = 1, 000 are used as the
number of simulations (see, Section 3.2), and the values are rounded to three
significant figures. From these results, we can see that the proposed method
was more than ten times faster than the method by Leskovec et al. (2007)
for k = 30 in the blog and Wikipedia datasets (see, Tables 3 and 6).

Beyond the IC and LT models, Kempe et al. (2003) proposed the trig-
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gering model as an yet another diffusion model on a network. It is proved
that the triggering model can be identified with a bond percolation model
(see, Kempe et al., 2003). The proposed method can be applied to this
model because it can be applied to any diffusion model that can be identi-
fied with a bond percolation model. The future work includes presenting a
large number of realistic examples of such diffusion models.

In this paper, we have considered the progressive case in which nodes
cannot switch from being active to being inactive. However, there are many
information diffusion phenomena that non-progressive diffusion models are
required. Examples include the spread of posts for a topic in blogspace
(Gruhl et al, 2004). Kempe et al. (2003) proved that non-progressive case
can be reduced to the progressive case. More specifically, it is proved that
the influence maximization problem for a non-progressive diffusion model on
graph G in time-limit T is equivalent to the ordinary influence maximization
problem on the layered graph GT for the progressive diffusion model, where
GT is the directed acyclic graph (DAG) constructed by time-forwardly con-
necting (T + 1) copies of G (see, Kempe et al. 2003). Therefore, building
effective methods for fundamental progressive models such as the IC and LT
models is indeed important and crucial for the non-progressive case.

From a realistic point of view, the IC and LT models are by no means a
complete model, but are at best a simplified and partial representation of a
complex reality (see, Kempe et al, 2003; Gruhl et al., 2004; Leskovec et al.,
2006). However, in the field of sociology, Watts and Dodds (2007) recently
examined the “influentials hypothesis” in the contexts of the LT model and
the SIR model (i.e., an extended model of the IC model), that is, they
investigated by computer simulations whether large cascades of influence
are actually driven by influentials or not. On the other hand, Even-Dar and
Shapira (2007) mathematically studied the influence maximization problem
in the context of another fundamental model called the voter model. We also
believe that it is important to investigate information diffusion phenomena
for the IC and LT models (i.e., fundamental diffusion models) to deepen our
understanding of these models. The future work includes proposing effective
methods for solving the influence maximization problem in the contexts of
various realistic diffusion models.

6.3 Applications

As is easily understood, the conventional method is not practical unless we
rely on high-performance computers and sophisticated techniques such as
parallel computing (see, Tables 3 and 6) to solve the kind of problems such
as influence maximization problem as addressed in this paper. In contrast,
the proposed method enables us to obtain a practical solution to this kind
of problems on a single standard PC in a reasonable processing time. Thus,
we can apply the proposed method to a variety of real problems.
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The work of Watts and Dodds (2007) briefly described above needs a
method to efficiently estimate σ(A) and the proposed method can readily
be applicable.

As mentioned in the introduction, the influence maximization problem
finds many realistic applications. The most straightforward application
would be viral marketing. When we wish to promote a new product (e.g.,
an email service or a search engine), and are given a relevant social network,
we can easily find a limited number of key (influential) persons first to adopt
the new product by the proposed method, and enjoy the diffusion effect for
the IC or LT models (i.e., fundamental diffusion models) through the social
network. We admit that the diffusion models we discussed are oversimplified
but still it is useful to obtain approximate solutions as a first step toward
an effective marketing without using classical advertising channels.

The proposed method has an application of different flavor which is the
visualization of information flow. Understanding the flow of information
through a complex network is important in terms of sociology and market-
ing. We devised a new node embedding method for visualizing the infor-
mation diffusion process from the target nodes selected to be a solution of
the influence maximization problem (Saito et al., 2008). This visualization
method is characterized by 1) utilization of the target nodes as a set of pivot
objects for visualization, 2) application of a probabilistic algorithm for em-
bedding all the nodes in the network into an Euclidean space to conserve
the posterior information diffusion probability, and 3) varying appearance
of the embedded nodes on the basis of two label assignment strategies, one
with emphasis on influence of initially activated nodes, and the other on
degree of information reachability.

7 Conclusion

We have considered the influence maximization problem for the IC and LT
models on a large-scale social network represented as a directed graph G =
(V,E). Due to the computational complexity, the greedy search algorithm is
the only practical approach, but still the conventional method needed a high
amount of computation. We have proposed a method of efficiently finding
a good approximate solution to the problem under the greedy algorithm.
In particular, in order to improve the computational efficiency, we have
estimated all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \ A} of a
given target set A in the following way:

• We identify the IC and LT models with the corresponding bond per-
colation models.

• For any v ∈ V \ A, we estimate the influence degree σ(A ∪ {v}) of A
∪ {v} as the empirical mean of the number |F (A ∪ {v};Gr)| of the
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nodes that are reachable from A ∪ {v} on a graph Gr generated from
the corresponding occupation probability distribution q(r) of the bond
percolation.

In particular, we estimate {|F (A ∪ {v};Gr)|; v ∈ V \ A} as follows:

• We find the set F (A;Gr) that is reachable from A on graph Gr, and
simultaneously compute {|F (A ∪ {v};Gr)|; v ∈ F (A;Gr)}.

• We find the induced graph GA
r of Gr to V \ F (A;Gr), and decompose

GA
r into its SCCs (Strongly Connected Components).

• For each SCC SCC(u;GA
r ) of GA

r , (u ∈ V \ F (A;Gr)), we simultane-
ously compute {|F (A ∪ {v};Gr)|; v ∈ SCC(u;GA

r )}.
We have compared the proposed method with the conventional method

in terms of computational complexity and quality of the solution, and have
shown that the proposed method is expected to achieve a large amount
of reduction in computational cost. Moreover, using large-scale networks
including a real blog network, we have experimentally demonstrated the ef-
fectiveness of the proposed method. For example, we obtained the following
results for the influence maximization problem of size k = 30 on the blog
and Wikipedia datasets that are real networks with about 10, 000 nodes: In
the case of the IC model, the proposed method was 1800 times faster than
the conventional method, and in the case of the LT model, the proposed
method was 4600 times faster than the conventional method.

Acknowledgement

This work was partly supported by JSPS Grant-in-Aid for Scientific Re-
search (C) (No. 20500147), and Asian Office of Aerospace Research and
Development, Air Force Office of Scientific Research, U.S. Air Force Re-
search Laboratory under Grant No. AOARD-08-4027.

Appendix

A Convergence Speed

As described in Section 4.4, by using the same value of M , both the proposed
and the conventional methods would estimate σ(v) with the same accuracy
in principle. Here, we experimentally demonstrate this conjecture.
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According to the work of Kempe et al. (2003), we set M = 300, 000 as
a sufficiently large value of M , that is, we assume that σ(v) for any v ∈ V
is well approximated by 300, 000 simulations of the information diffusion
model (i.e., the conventional method using M = 300, 000). For any v ∈ V ,
let σ0(v;M) and σ1(v;M) denote the estimates of σ(v) by the conventional
and the proposed methods using parameter value M , respectively. For the
blog and Wikipedia datasets, we investigated

E =
1
N

∑
v∈V

|σ0(v; 300, 0000) − σ1(v; 300, 000)|,

E0(M) =
1
N

∑
v∈V

|σ0(v;M)− σ0(v; 300, 000)|,

E1(M) =
1
N

∑
v∈V

|σ1(v;M)− σ1(v; 300, 000)|.

We first consider the case of the IC model. Then, the value of E was
0.03 and 0.04 for the blog and Wikipedia datasets, respectively. Thus, we
can assume that the values of σ0(v; 300, 000) and σ1(v; 300, 000) are almost
the same for any v ∈ V .

Table 7: Convergence speed for the blog dataset.

M E0(M) E1(M)
100 1.16 1.12

1,000 0.36 0.36
10,000 0.11 0.12

100,000 0.03 0.03

Table 8: Convergence speed for the Wikipedia dataset.

M E0(M) E1(M)
100 1.28 1.23

1,000 0.42 0.42
10,000 0.13 0.14

100,000 0.03 0.03

Tables 7 and 8 show the values of E0(M) and E1(M) for the blog and
Wikipedia datasets, respectively. These results imply that the proposed
and the conventional methods estimate {σ(v); v ∈ V } with almost the same
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accuracy for the IC model. We also obtained similar results for the case of
the LT model. For example, the value of E was 0.03 and 0.09 for the blog
and Wikipedia datasets, respectively. For the blog dataset, the values of
E0(10, 000) and E1(10, 000) were 0.13 and 0.12, respectively. Also, for the
Wikipedia datasets, the values of E0(10, 000) and E1(10, 000) were 0.36 and
0.37, respectively. These results support our conjecture.

B Fluctuation in Simulations of Information Dif-
fusion Models

For each v ∈ V , we examine fluctuation in the number ϕ(v) of the final active
nodes for a target initially activated node v through 1, 000 simulations in the
IC and LT models. Let μ(v) and s(v) denote the empirical mean and the
standard deviation of ϕ(v) for 1, 000 simulations, respectively. We define
μ and s by the empirical means of {μ(v); v ∈ V } and {s(v); v ∈ V },
respectively. For the blog dataset, μ and s were as follows:

IC model (p = 10%): μ = 8.6, s = 14.3.

LT model: μ = 6.8, s = 14.9.

For the Wikipedia dataset, μ and s were as follows:

IC model (p = 1%): μ = 8.1, s = 16.1,

LT model: μ = 12.6, s = 42.4,

Here, the values are rounded to the first decimal place. We can observe that
compared with μ, s is very large. Therefore, we see that the number of final
active nodes for a given target set can greatly vary for every simulation in
the IC and LT models.
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