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Abstract

Most conventional law equation discovery sys-
tems such as BACON require experimental en-
vironments to acquire their necessary data.
The mathematical techniques such as linear
system identification and neural network fitting
presume the classes of equations to model given
observed data sets. The study reported in this
paper proposes a novel method to discover an
admissible model equation from a given set of
observed data, while the equation is ensured to
reflect first principles governing the objective
system. The power of the proposed method
comes from the use of the scale-types of the
observed quantities, a mathematical property
of identity and quasi-bi-variate fitting to the
given data set. Its principles and algorithm are
described with moderately complex examples,
and its practicality is demonstrated through a
real application to psychological and sociologi-
cal law equation discovery.

1 Introduction

The most well known pioneering system to discover sci-
entific law equations from experimental data is BA-
CON [Langley et al., 1985]. It searches for a complete
equation governing the data measured in a continuous
process, where the complete equation is an equation
constraining n quantities with n − 1 degree of freedom
1. FAHRENHEIT [Koehn and Zytkow, 1986], ABA-
CUS [Falkenhainer and Michalski, 1985], etc. are the
successors that basically use similar algorithms to BA-
CON to discover a complete law equations. To re-
duce the high computational cost of their algorithm,
some subsequent discovery systems, e.g., FAHREN-
HEIT, ABACUS and COPER [Kokar, 1985], introduced
the use of the unit dimension of physical quantities to

1The equation x1
2 + x2

2 + ... + xn
2 = 0 is not complete,

since the values of all n quantities is 0, i.e., n quantities are
constrained with no degree of freedom. On the other hand,
x1 + x2 + ... + xn = 0 is complete.

prune the meaningless solutions. A difficulty of this ap-
proach is the narrow applicability only to the quanti-
ties whose units are clearly known. On the other hand,
the most recent scientific law discovery system, SDS, has
overcome the difficulties of the past systems [Washio and
Motoda, 1997] [Washio and Motoda, 1998]. It discov-
ers scientific law equations by limiting its search space
to mathematically admissible equations in terms of the
constraints of scale-type and identity. These constraints
come from the basic characteristics of the quantities’ def-
initions and the relations necessarily standing in the ob-
jective systems. The admissible equations discovered by
SDS are considered to have valid structures reflecting the
relations among quantities in the fundamental mecha-
nisms governing the objective system. The equations
having such valid structures is called first principle equa-
tions in this paper. The detailed characterization of the
first principle equations can be seen elsewhere [Washio
and Motoda, 1998]. Since the knowledge of scale-types
is widely obtained in various domains, SDS is applica-
ble to non-physical domains including biology, sociology,
economics, etc.

A major drawback of these approaches is the limited
applicability to practical situations. They require the
experimental environment and the interaction to control
and measure the system states. The number of control-
lable quantities is quite limited, and even none of them
are controllable due to some practical reasons in many
scientific and engineering domains. For instance, the as-
tronomical experiments to control the parameters of fu-
sion reactions in the distant huge stars are physically
impossible. The economical experiments to cause finan-
cial panics are unacceptable for our society. Under these
situations where only passive observation is possible, the
mathematical techniques, e.g., linear system identifica-
tion [Ljung, 1987] and neural network, have been tradi-
tionally applied to derive quantitative relations among
observed quantities. However, the derived relations are
not ensured to represent the first principle because they
presume some structures of the model equations such as
linear formulae and hierarchical sigmoid formulae. The
discovery of the first principle equations under the pas-
sive observation will play highly important role to under-
stand the fundamental mechanisms underlying the vari-



ety of the objective systems. To achieve this aim by
the technique of the aforementioned scientific discovery,
the current framework must be changed to discover the
first principle equations by using only the data obtained
under the passive observation.

The past scientific discovery is for the class of the
problem to discover the law equations under the exper-
imental environment. Its algorithm basically consists
of two operations. The first is called bi-variate fitting
which identifies the relation within a pair of quantities,
Pij = {xi, xj} ⊆ X , where X = {x1, x2, ..., xm} is the
set of all quantities to represent the objective system. It
derives the pairwise relation within Pij from the exper-
imental data in which the values of all quantities in the
rest X − Pij is fixed by the experimental control. This
pairwise relation is noted as fX−Pij (xi, xj) = 0. The bi-
variate fitting is required to identify the intrinsic struc-
ture of the relation within Pij under the exclusion of the
influence from the other quantities. The second opera-
tion is to merge the multiple pairwise relations into an
equation. Through the iteration of these two operations,
the complete equation φ(x1, x2, ..., xm) = 0 to represent
the entire objective system is derived. In the new class
of the problem to discover the law equations under the
passive observation environment, the experimental con-
trol of the values of X −Pij is not allowed. Accordingly,
the conventional bi-variate fitting is not applicable. In
this paper, “quasi-bi-variate fitting”, an extension of the
bi-variate fitting based on a polynomial approximation,
is proposed to enable the application of the framework
of SDS to this class of the problem.

The proposed quasi-bi-variate fitting requires some as-
sumptions which are feasible in many practical applica-
tions. One is that the scale-types of all observed quanti-
ties are known. This does not limit the applicability of
the proposed method because the scale-types of the mea-
surement quantities are widely known based on the mea-
surement theory as shown later. Another assumption is
that the observed data are uniformly distributed over the
value range that each quantity can take within the pos-
sible states of the objective system. If the observed data
points are concentrated within the vicinity of a value
for some quantity, the data set does not provide any
meaningful information on the relation of the quantity
with the others. Accordingly, the discovery of the first
principle equations becomes difficult if this assumption
is strongly violated. However, this requirements is not
limited to our proposed approach. The lack of the uni-
form distribution of the data over a certain value range
of a quantity implies the low observability of the quan-
tity [Ljung, 1987]. It is well known that the conventional
approaches such as the linear system identification and
the neural network do not derive valid models of the
objective systems under the low observability condition.
This limitation is generic for any data-driven modeling
approaches, and further discussion on this issue is out of
scope of this paper.

The objectives of this paper are (i) to propose the prin-
ciples and an algorithm of the quasi-bi-variate fitting un-

der the framework of SDS, (ii) to evaluate the basic per-
formance of the proposed approach through simulations
and (iii) to demonstrate its high practicality through a
real application.

2 Background Principles

Before proposing quasi-bi-variate fitting, some back-
ground principles are explained to facilitate the compre-
hension. The details of the principles are described in
our papers on SDS [Washio and Motoda, 1997] [Washio
and Motoda, 1998]. Only its outline is explained in this
section.

2.1 Scale-type Constraints
The rigorous definition of scale-type was given by
Stevens [Stevens, 1946]. He defined the measurement
process as “the assignment of numerals to object or
events according to some rules.” He claimed that dif-
ferent kinds of scale-types and different kinds of mea-
surement are derived if numerals can be assigned un-
der different rules, and categorized the scale-types of
quantities based on the operation rule of the assign-
ment. Quantitative measurement quantities are mathe-
matically characterized and categorized into three major
quantitative scale-types of interval scale, ratio scale and
absolute scale. Examples of the interval scale quantities
are temperature in Celsius and sound tone where the ori-
gins of their scales are not absolute, and are changeable
by human’s definitions. Its operation rule is “determina-
tion of equality of intervals or differences”, and its ad-
missible unit conversion follows “Generic linear group:
x′ = kx + c”. Examples of the ratio scale quantities are
physical mass and absolute temperature where each has
an absolute zero point. Its operation rule is “determina-
tion of equality of ratios”, and its admissible unit con-
version follows “Similarity group: x′ = kx”. Examples
of the absolute scale quantities are dimensionless quan-
tities. It follows the rule of “determination of equality of
absolute value”, and “Identity group: x′ = x”.

Luce claimed that the basic formula of the functional
relation among quantities of ratio and interval scales can
be determined by their scale-type features, if the quan-
tities are not coupled through any dimensionless quan-
tities [Luce, 1959]. Under this condition, the quantities
should share some common basic dimensions, and con-
sequently the unit change of a quantity affects the value
of other quantity. Suppose x and y are both ratio scale
quantities, and y is defined by x through a continuous
functional relation y = u(x). Suppose the form of u(x)
is logarithmic, i.e., y = log x. We multiply a positive
constant k to x, i.e., a change of unit, without violating
the group structure of the ratio scale quantity x, then
this leads u(kx) = log k + log x. This fact causes the
shift of the origin of y by log k, and violates the group
structure of y which is the ratio scale quantity. Hence,
the direct functional relation from x to y must not be
logarithmic. Based on the admissibility condition of the
relations among ratio and interval scale quantities, we



mathematically derived the following two theorems to
represent the generic formulae of the relations [Washio
and Motoda, 1997]. 2

Theorem 1 (Extended Buckingham Π-theorem)
If φ(x1, x2, x3, ..., xm) = 0 is a complete equation, and
if each argument is one of interval, ratio and absolute
scale-types, then the solution can be written in the form

F (Π1, Π2, ..., Πm−w) = 0,

where m is the number of arguments of φ, and w is the
basic number of bases in x1, x2, x3, ..., xm, respectively.
Bases are such basic scaling factors and origins indepen-
dent of the other bases in the given φ, for instance, as
length [L], mass [M ] and time [T ] of physical unit and
as temperature origin [t0] of Celsius and elevation origin
[h0] of potential energy for interval scale quantities. The
relation of each Πi with the arguments of φ is given by
the following theorem.
Theorem 2 (Extended Product Theorem)
Assuming primary quantities in a set R are ratio scale-
type, and those in another set I are interval scale-type,
the function ρ relating a secondary quantity Π to xi ∈
R ∪ I has one of the forms

Π = (
∏

xi∈R

|xi|ai)(
∏

Ik∈P

(
∑

xj∈Ik

bkj |xj | + ck)ak)

Π =
∑
xi∈R

ai log |xi| +
∑

Ik∈Pg

ak log(
∑

xj∈Ik

bkj |xj | + ck)

+
∑

x�∈Ig

bg�|x�| + cg

where R and I can be null sets, P is a partition of I, and
Pg is a partition of I − Ig where Ig ⊆ I. All coefficients
except Π are constants.
The formula in Theorem 1 is called an “ensemble equa-
tion” and those in Theorem 2 “regime”s.

Table 1 shows all admissible bi-variate relations de-
duced from the “Extended Product Theorem”. The co-
efficients Gij and Hij can be dependent on the other
quantities except xi and xj . Thus, they are represented
as Gij(X − Pij) and Hij(X − Pij), while aij is indepen-
dent, and remains constant. These consequences play an
important role in the quasi-bi-variate fitting explained
later.

2.2 Identity Constraint
When the scale-types of quantities are absolute and/or
unknown as the case of “ensemble equation”, the scale-
type constraints are not applicable. In such cases, the
identity constraint is used to determine the admissible
equation.

The basic principle of the identity constraints comes
in by answering the question that “what kind of re-
lation holds among θh, θi and θj, if θi = fθj(θh)
and θj = fθi(θh) are known?” For example, if θi =
Ghi(θj)θh + Hhi(θj) and θj = Ghj(θi)θh + Hhj(θi) are

2The original Buckingham Π-theorem [Buckingham, 1914]
and Product Theorem [Bridgman, 1922] represent the generic
relation among only ratio scale quantities.

Table 1: Admissible bi-variate relations within a regime

scale-types

xi xj admissible relations

ratio ratio xj = Gij |xi|aij

ratio interval xj = Gij |xi|aij + Hij

xj = aij log |xi| + Hij

interval ratio xj = Gij |xi + Hij |aij

xj = Gij exp aijxi

interval interval xj = aijxi + Gij

Table 2: Identity constraints

bi-variate
relation

general relation

θj = Gijθi + Hij

∑
(Ai∈2LQ)&(p⊆/Ai∀c∈LR)

ai

∏
θj∈Ai

θj = 0

θj = Hijθ
Gij
i

∏
(Ai∈2PQ)&(p⊆/Ai∀c∈PR)

exp(ai

∏
θj∈Ai

log θj) = 0

LR is a set of pairwise terms having a bi-variate linear
relation and LQ = ∪c∈LRc. PR is a set of pairwise terms
having a bi-variate product relation and PQ = ∪c∈PRc.

given, the following identity equation is obtained by solv-
ing each for θh.

θh ≡ 1
Ghi(θj)

θi − Hhi(θj)
Ghi(θj)

≡ 1
Ghj(θi)

θj − Hhj(θi)
Ghj(θi)

Because the third expression is linear with θj for any θi,
the second must be so. Accordingly, the following must
hold.

1/Ghi(θj) = −α1θj − β1,

Hhi(θj)/Ghi(θj) = α2θj + β2.

By substituting these to the second expression,

θh + α1θiθj + β1θi + α2θj + β2 = 0

is obtained. Thus, by knowing some bi-variate linear
relations among the quantities, the admissible equation
formula for the whole quantities is derived.

This principle is generalized to various bi-variate rela-
tions f among multiple quantities. Table 2 shows such
relations for linear relations and product relations.

3 Quasi-bi-variate Fitting
As noted in the first section, the conventional bi-variate
fitting requires experimental control of some quantities,
and is not applicable to the passive observation envi-
ronments. To overcome this difficulty, we propose the
“quasi-bi-variate fitting” procedure which extracts a bi-
variate relation between two quantities under the ap-
proximated constant values of the other quantities.

3.1 Fitting for Scale-type Constraint
Figure 1 shows the outline of its principle for the ad-
missible bi-variate relations in Table 1. Let OBS =



{X1, X2, ..., Xn} be a set of observations where each
Xh(h = 1, ..., n) is a m-dimesional vector of observed
values of the m quantities in X . The fitting of a can-
didate bi-variate formula for a pair of two quantities
Pij = {xi, xj}(⊆ X) is applied to a subset of OBS.
This subset OBSijg is chosen in such a way that every
quantity xk ∈ (X − Pij) takes a value in the vicinity of
the value of xkg , where Xg = {x1g, x2g, ..., xmg} ∈ OBS
is an arbitrary chosen observation vector. The vicinity
of xkg is defined as

Δxk = |xk − xkg| < εk. (1)

εk determines the size of the vicinity. This vicinity is
indicated by a rectangular cube in the upper figure of
Fig. 1. Every admissible bi-variate formula indicated in
Table 1 is generally represented by the form

Fij(Pij , aij , Gij(X − Pij), Hij(X − Pij)) = 0. (2)

Here, Gij and Hij are dependent on the quantities in
X − Pij , while aij remains constant. Given an OBSijg ,
if each εk is moderately small, the values of Gij and Hij
become slightly dependent on X − Pij , and their poly-
nomial approximation of the order p can be applied.

Fij(Pij , aij , G
0
ijg +

m∑
k=1

p∑
h=1

(Gh
ijkgΔxh

k),

H0
ijg +

m∑
k=1

p∑
h=1

(Hh
ijkgΔxh

k)) = 0, (3)

where Gh
ijkg and Hh

ijkg stand for the coefficients of the
h-th order of Δxk at Xg. The least square fitting of
Eq.(3) approximately provides the functional relation
within Pij and the coefficient aij as depicted in the bot-
tom figure of Fig. 1. while almost excluding the influence
of the other dimensions X − Pij .

After the least square fitting of this formula to
OBSijg , the goodness of the fitting is evaluated by the
following F -test.

If F0 > F (1, nijg − 2, α) (4)

then the fitting is acceptable else unacceptable,

where

VR = (σij
2/σii)

2
, Ve = σee

2/(nijg − 2), F0 = VR/Ve.

Here, σij
2, σii

2 and σee
2 are the correlation of xi and xj ,

the squared summation of xi and the squared summation
of fitting error respectively. nijg is the total number of
data points in OBSijg and F (1, nijg − 2, α) the lower
bound of F value under the degree of freedom (1, nijg−2)
and a risk rate α. The value of nijg is subject to the
size of the vicinity εks. α is set to be 0.05 throughout
this paper. The quasi-bi-variate fitting and the F -test
are repeated for multiple OBSijgs defined by q different
Xgs. This repetition is to confirm the stability of the
F-test consequences. q is set to be 10 which is sufficient
enough to check the stability of the consequences of the
F -test. After these trials, the following χ2-test over the
q trials is conducted to check if aij in Eq.(3) is identified
as constant.

If χ2
0 < χ2(q − 1, α) (5)

then aij is constant else not constant,

�
�
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�
��
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�
�

OBSijg

X-Pij

��
�
�

�

�

��
�
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�

OBSijg

Xj

Xi

0

0

Fij(Pij,aij,Gij(X-Pij),
Hij(X-Pij))=0

Xg
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Figure 1: Outline of quasi-bi-variate fitting

where σ0ij
2 = (

q∑
g=1

δaijg
2),

σij
2 =

q∑
g=1

a2
ijg − (

q∑
g=1

aijg)2/q, χ2
0 = σij

2/σ0ij
2.

Here, δaijg is the standard error of aijg estimated
from the residual error of the quasi-bi-variate fitting.
χ2(q−1, α) stands for the upper bound of χ2 value under
the degree of freedom (q−1) and the risk level α. The ap-
proximated bi-variate formula Eq.(3) that passed these
tests is considered to be a part of the admissible model
equation indicated in Theorem 1 and 2. The expectation
value of aij is estimated as āij = (

∑q
g=1 aijg)/p.

3.2 Fitting for Identity Constraint
For the bi-variate relations of the identity constraints
indicated in the first column of Table 2, the similar
scheme of the quasi-bi-variate fitting is applied. Let
OBS = {Θ1, Θ2, ..., Θn} be a set of observations, where
each Θh(h = 1, ..., n) is a vector of observed values of
the m′ quantities in Θ = {θ1, θ2, ..., θm′}. The fitting of
a candidate bi-variate formula for a pair of two quanti-
ties Pij = {θi, θj}(⊆ Θ) is applied to OBSijg . OBSijg is
a subset of OBS in the vicinity of the value of θkg , where
Θg = {θ1g, θ2g, ..., θm′g} is arbitrary chosen in OBS. Ev-
ery bi-variate formula indicated in Table 2 is generally
represented by the form

Fij(Pij , Gij(Θ − Pij), Hij(Θ − Pij)) = 0. (6)

Again, the terms of Gij(Θ−Pij) and Hij(Θ−Pij) are ap-
proximated by their polynomials. After the least square
fitting of the approximated formula to OBSijg , the good-



ness of the fitting is evaluated by the F -test in the similar
manner.

In the quasi-bi-variate fitting, the number of data in-
cluded in OBSijg increases by relaxing the size of the
vicinity of Xg and Θg. This has an effect of reducing
the statistical error of the quasi-bi-variate fitting. On
the other hand, if the size of the vicinity is too large, the
higher order approximation is required to absorb the in-
fluence of the values of X−Pij and Θ−Pij . However, ex-
cessively high order approximation may introduce some
systematic error due to the over-fitting to the data. Ac-
cordingly, some appropriate values of εks and p must be
used for the given data.

4 Algorithm
As the details of the algorithm to discover a complete
model equation in the frame work of SDS are represented
in our previous paper, only its essential contents related
to the quasi-bi-variate-fitting are explained in this sec-
tion [Washio and Motoda, 1997]. Initially, a set of ratio
scale quantities RQ, a set of interval scale quantities IQ
and a set of absolute scale quantities AQ which are re-
quired to express the objective model equation are given
together with a set of observed data OBS of these quan-
tities.

Step (1-1)
The quasi-bi-variate fitting for scale-type constraints is
applied to the bottom formula in Table 1 for pairwise
interval scale quantities. The least-square fitting of the
formula using the approximation of Eq.(3), F -test to
check the goodness of fitting to the data of each subset
OBSijg and χ2-test to check the constant value of aij

are conducted. Subsequently, the expectation value āij

is estimated, and the formulae together with the values
of āij are stored into an equation set IE.

This step is now demonstrated by an example of a
moderately complex system depicted in Figure 2. This
is an electric circuit where the model of this system based
on the first principle is represented by the following equa-
tion involving eight quantities.

RBE

hF E
=

1

R1/R2 + 1
(V1 − V2)I

−1 − R3, (7)

where RBE is the resistance between the base and the
emitter and hFE the ratio between the base current and
the collector current, respectively. V1 and V2 are in-
terval scale, and hFE is absolute scale. The rests are
ratio scale. The observed data set is obtained by a
numerical simulator. The values of parameter quan-
tities are set to be R2 = 1000Ω, RBE = 106Ω and
hFE = 100. The value ranges of the variable quantities
are taken to be 0Ω < R1 < 1000Ω, 0Ω < R3 < 1000Ω
and 0V < V2 < V1 < 30V . The values of these vari-
ables are generated by using uniform random numbers
over their value ranges in the simulation. Only the five
variable quantities R1, R3, V1, V2 and I are assumed ob-
servable in this demonstration. Thus, IQ = {V1, V2},
RQ = {R1, R3, I} and AQ = φ. The values of the pa-
rameter quantities are implicitly assumed to be constant.

V1

V2

R1

R2 R3

RBE

I

hFE

Tr

Figure 2: An electric circuit

The total number of data points provided in OBS is 500,
and no observation noise is added here. Our proposed
method has been implemented in a prototype program.
The size of each vicinity εk, has been set at 15% of the
difference between the maximum and the minimum val-
ues of xk. The 0th order approximation is used because
the observation is not distorted by any noise in this case.
As the interval scale quantities are limited to V1 and V2,
the bottom linear equation in Table 1 is immediately ap-
plied to this pair, and the relation 0.98V1 − V2 = GV1V2

is identified. Thus IE = {0.98V1 − V2 = GV1V2}.
Step (1-2)
This step first applies the following triplet-tests. For a
triplet of the linear formulae among {xi, xj , xh} in IE,

xi = āhixh + Ghi, xj = āijxi + Gij , xh = ājhxj + Gjh,

if they are mutually consistent in terms of ās, the fol-
lowing condition should be met.

āij ājhāhj = 1.

Because of the existence of the noise and the fitting
error, this condition does not hold in exact manner, even
if the three formulae are consistent. Thus, the following
normal distribution test judges if the l.h.s. and the r.h.s.
of the above expression are equal.

If N0 < N(0, σ2, α/2)then āij , ājh, and , āhj (8)

are mutually consistent else inconsistent,
where

N0 = |1 − āij ājhāhj |,
σ2 = (ājhāhjδāij)

2 + (āij āhjδājh)2 + (āij ājhδāhj)
2.

Here, δāij =
√

(
∑p

g=1
δa2

ijg)/p, and δājh and δāhj are

similarly defined. N(0, σ2, α/2) stands for the upper
bound of the error under the normal distribution and
the risk level α. This test is applied to every triplet of
equations in IE, and every maximal convex set MCS
is searched. A convex set is a set where each triplet of
equations among the quantities in this set has passed the
test Eq.(8). And, the maximal convex set MCS is a con-
vex set where any superset of the set is not a convex set.
In addition, every formula in IE which does not belong
to any consistent triplet is also regarded as a tiny MCS.
Once all MCSs are found, the formulae are merged into
the following form in every MCS.



Γ =
∑

xs∈MCS

asxs,

where Γ is an intermediate quantity which appears in
the reasoning process. Before the final value of as is de-
termined, the following integer-test is applied.

If |as − [as]| < 2δasthen as = [as], (9)

where [as] is the nearest integer of as

and δas std. error of as.

This is based on the observation that the majority of
the first principle based equations have integer power co-
efficients and integer linear coefficients for interval scale
quantities.

In the current circuit example, an MCS is uniquely
determined because IE = {0.98V1 − V2 = GV1V2} con-
tains only one formula, and thus the triplet test is not
required. The example of the triplet test is shown in
section 6. The above integer-test set aV1 , the coefficient
of V1, to be 1 because 2δaV1 = 0.092. Thus, we obtain
IE = {V1 −V2 = GV1V2}. Furthermore, V1 and V2 in IQ
is merged into GV1V2 , and GV1V2 is stored into a quan-
tity set TQ as TQ = {GV1V2}. GV1V2 is a new ratio
scale quantity by the mutual cancellation of the basic
origins of V1 and V2. Finally, TQ = TQ + RQ becomes
{R1, R3, I, GV1V2}.
Step (2-1)
Similarly to step (1 − 1), the quasi-bi-variate fitting, F -
test and χ2-test are performed on the quantities included
in TQ. Then, the discovered equations are stored in
an equation set RE. The unique difference from step
(1 − 1) is to apply the formulae except the bottom one
in Table 1 in the quasi-bi-variate fitting. In the circuit
example, only the pair of I and GV1V2 is found to satisfy
the first formula in Table 1 as I = GIGV1V2

G1.003
V1V2

. Thus,
RE = {I = GIGV1V2

G1.003
V1V2

}.
Step (2-2)
The triplet-test among the formulae in RE is con-
ducted. The basic procedure is identical with the step
(1-2). In the example, as RE contains only one for-
mula again, a unique MCS becomes {I, GV1V2}, and
they are merged into a term GIGV1V2

= I/G1.003
V1V2

. The
value aGV1V2

= 1.003 is modified to 1 in the integer
test since 2δaGV1V2

= 0.014. Thus, GIGV1V2
= I/GV1V2 .

Then, TQ becomes {R1, R3, GIGV1V2
}, and finally TQ =

TQ + AQ = {R1, R3, GIGV1V2
}.

Step (3)
This is the step to apply the quasi-bi-variate fitting for
identity constraints. A formula is arbitrary selected from
the first column of Table 2. In our current program,
a linear formula θj = Gijθi + Hij has the first prior-
ity in the selection and a power formula θj = Hijθ

Gij

i
the next priority. The quasi-bi-variate fitting of the for-
mula and F -test are applied to each pair of quantities in
TQ. If some pairs of the quantities are judged to well
fit to the bi-variate formula, the identity constraints is
applied. In the example of TQ = {R1, R3, GIGV1V2

}, the

bi-variate linear relations in the pairs of {R1, GIGV1V2
}

and {R3, GIGV1V2
} are accepted through the F -test, and

thus the following multi-linear formula obtained from the
principle of the identity constraints is applied to the en-
tire data set.

0 = a0 + a1GIGV1V2
+ a2R1 + a3R3 + R1R3

Its least square fitting is accepted by F -test, and thus
AE = {0 = a0 + a1GIGV1V2

+ a2R1 + a3R3 + R1R3}.
The values a0 = 107, a1 = −103, a2 = 104 and a3 = 103

are obtained by the integer-test. By substituting the
formulae in IE and RE to GIGV1V2

, the final solution of
the admissible model equation of

0 = a0 + a1(V1 − V2)/I + a2R1 + a3R3 + R1R3 (10)

is resulted. As th values of a0 − a3 correspond to the
relations a0 = RBER2/hFE, a1 = −R2, a2 = RBE/hFE

and a3 = R2, this equation is known to be equivalent to
Eq.(7).

Step (4)
Finally, when multiple candidate model equations re-
main, a parsimony criterion is applied to prioritize the
candidates. Though MDL principle is a representative
criterion, AIC, which is widely used in statistics to de-
termine an appropriate numerical model equation, is ap-
plied in our program [Akaike, 1978]. The index of AIC
is calculated through the expression

AIC = n ln Ve + 2M, (11)

where n = |OBS|, Ve the residual error variance of the
model equation and M the number of the coefficients
included in the model. The model equation having less
value of AIC is preferred in the sense of the parsimony
criterion. This is not used in the example of the cir-
cuit, since the unique solution Eq.(10) is obtained. Its
example is given in latter section 6.

5 Evaluation through Simulation

Table 3 indicates the required computation time for var-
ious examples. “Ideal Gas” is the simulation of the state
equation of the ideal gas. “Coulomb”, “Stoke’s” and
“Momentum” are the simulations of Coulomb force law,
Stoke’s equation and the momentum balance equation.
“Circuit*1” is the case of the aforementioned electric cir-
cuit where R2, RBE and hFE are hidden parameters, and
“Circuit*2” is the case of the identical circuit where all
quantities are observable. They are represented by vari-
ous number of quantities. The computation time of the
proposed algorithm has been evaluated for various num-
bers of the data points for each example. The computa-
tion time does not change significantly with the increase
of the data size. This is because the 10 vicinities selected
in the quasi-bi-variate fitting cover only a limited por-
tion of the given data when the data size is large. Thus
the required computation time increases very slowly. In
contrast, the computation time is sensitive to the size
of the objective system. The increase is almost order
of O(m2) where m is the number of the quantities in



Table 3: Required computation time

Number of CPU time (sec)

Example quantities 50 500 5000

data data data

Ideal Gas 4 25.9 46.1 67.9
Coulomb 5 40.5 77.6 112.9
Stoke’s 5 46.3 82.6 119.8
Circuit*1 5 43.8 81.6 115.8
Momentum 8 151.4 271.0 385.3
Circuit*2 8 135.2 255.7 371.7

Table 4: Relative Error of Coefficients
Num. of Relative

data noise Order=0 Order=1 Order=2

0% 62% 46% 77%
50 0.5% 66% 45% 47%

5% 133% 65% 77%

0% 0% 0% 0%
500 0.5% 2.8% 0.9% 0.70%

5% 3.2% 2.8% 5.7%

0% 0% 0% 0%
5000 0.5% 0.8% 0.4% 0.5%

5% 1.3% 1.6% 1.5%

the data. This is due to the quasi-bi-variate fitting hav-
ing the complexity O(m2). Though the most complex
process is the triplet-test which is O(m3), this test is
very simple compared with the data fitting to many data
points.

Table 4 shows the average of the relative error of the
coefficients under several conditions of the data size, the
relative noise level and the order of the approximation
of the quasi-bi-variate fitting in case of the aforemen-
tioned electric circuit. The size of the vicinity εk is kept
at 15%. When the amount of the data is very limited,
the error rate increases significantly. This is because the
data points covered by a vicinity is so small that the suffi-
cient statistic accuracy is not maintained. The accuracy
of the coefficients is also influenced by the approximation
order. In general, the 1st order approximation shows the
good performance. This tendency becomes significant,
when the number of the data is very limited, and/or the
noise level is high. The 0th order approximation does
not effectively reduce the influence of (X − Pij), when
the data points are sparse in the state space. Besides,
the 2nd order approximation also becomes erroneous due
to the over fitting effect, when the data is sparse and/or
the noise level is high.

6 Application to Practical Problem

The proposed method has been applied to a real world
problem. The objective of the application is to discover
a generic law formula governing the mental preference
of people on their houses subject to the cost to buy the

house and the social risk at the place of the house. We
designed a questionnaire sheet to ask the preference of
the house in the trade off between the frequency of huge
earthquakes, x1 (earthquake/year), and the cost to buy,
x2 ($). In the questionnaire, 9 combinations of the cost
and the earthquake frequency are presented, and each
person chooses its preference from the 7 levels for each
combination. We distributed this questionnaire sheet
to the people owning their houses in the suburb area
of Tokyo, and totally 400 answer sheets are collected
back. The answer data has been processed by following
the method of successive categories which is widely used
in the experimental psychology to compose an interval
scale preference index y [Torgerson, 1958], and OBS =
{X1, X2, ..., X400} where Xi = [x1i, x2i, yi] is obtained.

The proposed method has been applied to figure out
a law equation y = f(x1, x2), where x1 and x2 are ra-
tio scale quantities. Here, RQ = {x1, x2}, IQ = {y}
and AQ = φ. Because IQ contains only one quantity,
steps (1 − 1) and (1 − 2) are skipped, and the quasi-bi-
variate fitting of 1st order approximation is applied to
RQ = RQ + IQ = {x1, x2, y} in step (2 − 1). First, the
top formula in Table 1 is tested for the relation between
x1 and x2, and x1 = a(y)x−0.25

2 is obtained. Next, the
second and third formulae are tested for x1 and y. Then,
y = a(x2)x−0.23

1 + b(x2) and y = 0.62 logx1 + b(x2) have
been identified. Similar search has been made for x2 and
y, and y = a(x1)x0.026

2 +b(x1) and y = 0.34 logx2+b(x1)
are derived. In step (2 − 2), the triplet-test among
{x1, x2, y} is conducted. As Theorem 2 limits the ad-
missible formulae for these quantities to y = bxa1

1 xa2
2 + c

and y = a1 log x1 + a2 log x2 + c, the consistency among
the coefficients obtained in step (2 − 1) are checked for
these formulae. As the result, the consistency has been
confirmed for both. Consequently, we obtained the fol-
lowing two candidates.

y = 0.63 log x1 + 0.34 log x2 − 2.9(AIC = −1326)(12)

y = −0.61x−0.23
1 x0.026

2 + 3.2(AIC = −599) (13)

Steps (3 − 1) and (3 − 2) are skipped, since the other
quantities to be merged do not exist. In step (4), the
values of AIC are evaluated for each candidate, where
the former Eq.(12) is preferred. Eq.(12) can evaluate
the subjective preference in the accuracy of almost ±1
preference levels of the questionnaire from the values of
x1 and x2.

7 Discussion and Related Work

A scientific discovery system called LAGRANGE [Dze-
roski and Todorovski, 1994] is also applicable to the con-
dition of the passive observation. It uses the principles
of ILP and generate/test. Though no equation classes
are presumed in this approach, many spurious solutions
can be derived due to the weakness of the search heuris-
tics. Also, it indicates high computational complexity.
TETRAD [Glymour, 1995] is another system to iden-
tify the models of the objective system from the passive
observation. Its basic framework takes the bottom up
modeling approach. However, the class of the model



formulae is presumed such as linear expressions. In con-
trast, the method proposed in this paper has a strong
mathematical background to characterize first principle
equations. Moreover, it has a high applicability to the
passive observation data, while maintaining the flexibil-
ity of the bottom up modeling approach taken by the
conventional scientific discovery systems.

The source of the advantage of our proposed method
is the systematic use of the constraints of scale-types
and identity with the approximation in quasi-bi-variate
fitting. This is considered to be a typical example
that Ginsberg claimed [Ginsberg and Geddis, 1991]. He
claimed that any domain-dependent control rules can be
replaced with a domain-independent control rules and
modal sentences describing the structure of the search
space. The knowledge of the scale-types and the quasi-
bi-variate approximation have been implicitly used by
scientists as domain-dependent control rules of their rea-
soning. In our work, these rules have been replaced as
Ginsberg claimed. The constraints and the approxima-
tion are formalized as generic domain-independent con-
trol rules applicable to any objective system represented
by numerical quantities. The modal knowledge required
to control the reasoning by these generic rules is con-
centrated on the scale-type information of each quan-
tity and the empirical quasi-bi-variate relation. On the
other hand, Minton argued that in many cases, domain-
dependent control rules cannot, in a practical sense, be
derived due to the complexity of the reasoning that
would be required [Minton, 1996]. Since the concepts
such as the scale-types and the quasi-bi-variate approx-
imation have been established based on massive experi-
ence of the scientists for hundreds of years, his argument
also holds.

8 Conclusion
In this paper, quasi-bi-variate fitting, an extension of the
bi-variate fitting based on an polynomial approximation,
has been proposed. This extension enables to handle the
new class of the problem to discover the law equations
under the passive observation environment. Its basic
performances in terms of computation time and noise ro-
bustness have been evaluated through simulations. The
evaluation indicates the satisfactory performance to dis-
cover the model equation based on the first principle of
objective system of moderately large size under practical
noise levels. Finally, a real application to discover a law
equation in socio-psychology was demonstrated, and its
practicality has been readily confirmed.
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