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Abstract

SDS is a discovery system from numeric mea-
surement data. It outperforms the existing sys-
tems in every aspect of search efficiency, noise
tolerancy, credibility of the resulting equations
and complexity of the target system that it can
handle. The power of SDS comes from the use
of the scale-types of the measurement data and
mathematical property of identity by which to
constrain the admissible solutions. Its algo-
rithm is described with a complex working ex-
ample and the performance comparison with
other systems are discussed.

1 Introduction
Finding regularities in the data is a basis of knowledge
acquisition by induction. One such typical and challeng-
ing task is inducing quantitative formulae of scientific
laws from measurement data. Langley and others’ BA-
CON systems [Langley et al., 1985] are most well known
as the pioneering work. They founded the succeeding
BACON family. FAHRENHEIT [Koehn and Zytkow,
1986], ABACUS [Falkenhainer and Michalski, 1985], IDS
[Nordhausen and Langlay, 1990] and KEPLER [Wu and
Wang, 1989] are such successors that basically use simi-
lar algorithms to BACON in search for a complete equa-
tion governing the data measured in a continuous pro-
cess. However, recent work reports that there is con-
siderable ambiguity in their results under noisy data
even for the relations among small number of quanti-
ties [Schaffer, 1990; Huang and Zytkow, 1996]. Another
drawback of the BACON family is the complexity of hy-
pothesis generation. This also limits their applicability
to find a complex relation that holds among many quan-
tities.

To alleviate these drawbacks, some members of the
BACON family, e.g. ABACUS, utilizes the informa-
tion of the quantity dimension to prune the meaningless
terms based on the principle of dimensional homogene-
ity. However, this heuristic still leaves many types of
equations in candidates. COPER [Kokar, 1985], another
type of equation finding systems based on a principle of
dimensional analysis called “Buckingham’s Π-theorem”

[Buckingham, 1914], can significantly reduce the candi-
date generation by explicit use of the information about
the quantity dimension. Its another significant advan-
tage is higher credibility of the solution that it is not
merely an experimental equation but is indeed a first
principle equation. However, these approaches are not
applicable when the information of the quantity dimen-
sion is not available. This fact strongly limits their ap-
plicability to non-physics domains.

The primary objective of this study is to establish a
method to discover an admissible complete equation gov-
erning a complex system where its domain is not lim-
ited to physics ensuring as much as possible its prop-
erty being the first principles. Any other technical ar-
eas, including system identification theory [Ljung, 1987],
have not addressed to automatically derive first princi-
ple based models of complex systems from measurement
data. Our goal if attained will provide an advantageous
means not only for the field of scientific discovery but
also for the analysis of complex systems in engineering.
As a step towards this goal, we developed a quantita-
tive model discovery system “Smart Discovery System
(SDS)” implementing our new approach. SDS utilizes
newly introduced constraints of scale-type and identity
both of which highly constrain the generation of candi-
date terms. Because these are not heuristics but mathe-
matical constraints, the generated candidates are highly
credible. SDS also adopts bi-variate equation generation
based on data fitting. But what makes SDS different
from BACON family is that it employs triplet checking of
the validity of those bi-variate equations, a quite strong
mathematical constraint. It should be emphasized that
SDS does not require the information about quantity
dimension. The information required besides the mea-
surements is the knowledge of scale-type of each quan-
tity. This feature expands the scope of its applicability
since the knowledge of scale-types is widely obtained in
various domains including psychophysics, sociology and
etc.

2 Outline of Method

SDS requires two assumptions on the feature of the ob-
jective system to be analyzed. One is that the objective
system can be represented by a single quantitative, con-



tinuous and complete equation for the quantity ranges
of our interest. Another is that all of the quantities in
the equation can be measured, and all of the quantities
except one dependent quantity can be controlled to their
arbitrary values in the range. The latter is a common
assumption in BACON family. The former is the as-
sumption of the original BACON systems, and is also
assumed by other BACON family (i.e., search made for
a complete equation for every continuous region in the
objective system).

The information required from the user besides the
actual measurements is a list of the quantities and their
scale-types. The rigorous definition of scale-type was
given by Stevens[Stevens, 1946]. He defined the mea-
surement process as “the assignment of numerals to ob-
ject or events according to some rules.” He claimed that
different kinds of scales and different kinds of measure-
ment are derived if numerals can be assigned under dif-
ferent rules, and categorized the quantity scales based on
the operation rule of the assignment. The quantitative
scale-types are interval scale, ratio scale and absolute
scale, and these are the majorities of the quantities. Ex-
amples of the interval scale quantities are temperature in
Celsius and sound tone where the origins of their scales
are not absolute, and are changeable by human’s defi-
nitions. Its operation rule is “determination of equality
of intervals or differences”, and its admissible unit con-
version follows “Generic linear group: x′ = kx + c”.
Examples of the ratio scale quantities are physical mass
and absolute temperature where each has an absolute
zero point. Its operation rule is “determination of equal-
ity of ratios”, and its admissible unit conversion follows
“Similarity group: x′ = kx”. Examples of the absolute
scale quantities are dimensionless quantities. It follows
the rule of “determination of equality of absolute value”,
and “Identity group: x′ = x”. Here, we should note that
the scale-type is different from the dimension. For in-
stance, we do not know what the force (ratio) divided
by the acceleration (ratio) means within the knowledge
of scale-types.

In the following sections, the details of the algorithm
of SDS are explained. For clarification purpose, we first
focus on the case where the model involves only ratio
and absolute scales in the next section. The extension
to interval scale is described in the latter section. SDS
can handle all of the three scale-types.

3 Equation Search Based on Ratio
Scale

3.1 Bi-Variate Test
The algorithm of SDS is outlined in Figure 1. Step (1−1)
significantly reduces the search space of bi-variate equa-
tions by using the “scale-type constraint.” Two well-
known theorems in the dimensional analysis provides the
basis of this step [Buckingham, 1914].
Buckingham Π-theorem If φ(x, y, ....) = 0 is a com-
plete equation, and if all of its arguments are either ratio
or absolute scale-types, then the solution can be written

Given a set of ratio scale quantities, RQ, and a
set of absolute scale quantities, AQ,

(1-1) Apply bi-variate test for an admissible equa-
tion of ratio scale to every pair of quantities
in RQ. Store the resultant bi-variate equa-
tions accepted by the tests into an equation
set RE and the others not accepted into an
equation set NRE.

(1-2) Apply triplet test to every triplet of associ-
ated bi-variate equations in RE. Derive all
maximal convex sets for the accepted triplets,
and compose all bi-variate equations into a
multi-variate equation in each maximal con-
vex set. Define each multi-variate equation
as a term. Replace the merged quantities by
the generated terms in RQ.

(2) Let AQ = AQ + RQ. Given candidate for-
mulae set CE, repeat steps (2-1) and (2-2)
until no more new term become generated.

(2-1) Apply bi-variate test of a formula in CE
to every pair of the terms in AQ, and
store them to AE. Merge every group
of terms into a unique term respectively
based on the result of the bi-variate test,
if this is possible. Replace the merged
terms with the generated terms of multi-
variate equations in AQ.

(2-2) Apply identity constraints test to every
bi-variate equation in AE. Merge every
group of terms into a unique term re-
spectively based on the result of the iden-
tity constraints test, if they are possible.
Replace the merged terms with the gen-
erated terms of multi-variate equations
in AQ. Go back to step (2-1).

The candidate models of the objective system are
derived by composing the terms in AQ.

Figure 1: Outline of SDS algorithm

in the form
F (Π1, Π2, ..., Πn−r) = 0,

where n is the number of arguments of φ, and r is the
basic number of bases in x, y, z..... For all i, Πi is an
absolute scale-type quantity.

Bases are such basic scaling quantities independent of
the other bases in the given φ, for instance, as length
[L], mass [M ] and time [T ] of physical dimension. The
relation of each Πi to the arguments of φ is given by the
following theorem [Bridgman, 1922].
Product Theorem Assuming primary quantities,
x, y, z, ... are ratio scale-type, the function ρ relating a
secondary quantity Π to x, y, z, ... has the form:

Π = ρ(x, y, z, ...) = Γxαyβzγ ...,

where Γ, α, β, γ, ... are constants.



These theorems state that any meaningful complete
equation consisting only of the arguments of ratio and
absolute scale-types can be decomposed into an equa-
tion of absolute scale-type quantities having an arbitrary
form and equations of ratio scale-type quantities having
products form. The former F (Π1, Π2, ..., Πn−r) = 0 is
called an “ensemble” and the latter Π = ρ(x, y, z, ...) =
Γxαyβzγ ... “regime”s.

Because we know that any pair of ratio scale quanti-
ties in a given complete equation has a product relation
if both belong to an identical regime, SDS searches bi-
variate relations having the following product form in
RQ, which is the unique admissible equation that hold
in such a regime.

xay = b, where x, y are ratio scale quantities. (1)

The value of the constant a must be independent of any
other quantities according to Product Theorem, while
the constant b is dependent on the other quantities in
the regime. SDS applies the least square fitting of Eq. 1
to the bi-variate experimental data of x and y that are
measured while holding the other quantities constant,
and determines the values of a, its expected standard
error da, and b. For ease of linear fitting, the logarithmic
form of Eq.1, a logx+log y = log b, is used instead of Eq.
1 itself. The judgment is made whether this equation
fits the data well enough by the following two types of
statistical tests.
(1) F-test of the ratio between variances of regressive

component SR = (σxy
2/σyy)2 and residual error

component Se = σee
2,

(2) test if da is larger than the absolute value of a itself.

The test (1) is to check if the equation accurately fits
to the given data in terms of the power (variance) of
residual component. The test (2) is to simply check if
the value of the constant a is meaningful. When any of
the tests fail, x and y are judged not to have the prod-
uct relation. For identical pair of ratio scale quantities,
this procedure is repeated k = 10 times to check the
independence of the constant a while holding the other
quantities at randomly chosen different values. Then the
following test is applied to the set of values of a and da
to check the independence.

(3) χ2-test of the ratio between variance of the values
of a and the average of da over the k data set.

If all these tests are passed, the pair of x and y is
judged to have the admissible product relation. Then
the bi-variate equation together with the average of a
and da,i.e., a and da is stored to RE. If any of the tests
failed, the bi-variate equation, a and da are stored to
NRE.

The procedure in step (1− 1) is now demonstrated by
an example of a complex system depicted in Figure 2.
This is a circuit of photo-meter to measure the rate of
increase of photo intensity within a certain time period.
The resistance and switch parallel to the capacitor and
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Figure 2: A circuit of photo-meter

the current meter are to reset the operation of this cir-
cuit. The actual model of this system is represented by
the following complex equation involving 17 quantities.

(
R3hfe2

R3hfe2
+ hie2

R2hfe1

R2hfe1
+ hie1

rL2

rL2 + R1
)V − Q

C
−

Khie3
X

Bhfe3

= 0. (2)

Here, L and r are photo intensity and sensitivity of the
Csd device. X, K and B are position of indicator, spring
constant and intensity of magnetic field of the current
meter respectively. hiei is input impedance of the base
of the i-th transistor. hfei is gain ratio of the currents
at the base and the collector of the i-th transistor. The
definitions of the other quantities follow the standard
symbolic representations of electric circuit (See Figure
2). Only hfeis are absolute scale, and the rest are ratio
scale. X is the dependent quantity in this circuit, and
the others are independently controllable by the change
of boundary conditions and the replacement of devices.
SDS requests the bi-variate change of quantities to the
experimental environment. When it is told that a quan-
tity is dependent (not controllable) during the search
process, SDS modifies its request to control the other
independent quantity. A simulation based experimental
environment was prepared for the circuit system. ±4%
(std.) of relative Gaussian noise was added to both of
the control quantity (input) and the measured quantity
(output) in every bi-variate test. First, SDS set RQ
as {V, L, r, R1, R2, R3, hie1 , hie2 , hie3 , Q, C, X, K, B} and
AQ as {hfe1 , hfe2 , hfe3} based on the input information
on scale-types. Next, it performed the bi-variate fitting
of a product form among the quantities in RQ, and ap-
plied the statistical tests of (1)-(3). The following shows
the values of F for F-test, the power constant a and its
std. errors da resulted in the bi-variate test for x = Q
and y = X under k = 10 combinations of different values
of the other quantities.
1: F=25.93 a= 0.6682 da=0.0100
2: F=1.986 a= 0.6339 da=0.0346
3: F=0.748 a= 0.4840 da=0.1086
4: F=27.08 a= 0.6789 da=0.0100
5: F=1.421 a= 0.5833 da=0.0640
6: F=0.405 a= 0.3902 da=0.1539
7: F=0.860 a= 0.2351 da=0.6268
8: F=37.09 a= 0.7655 da=0.0100
9: F=1.843 a= 0.6226 da=0.0424
10: F=6.324 a=-0.0494 da=0.0557



If F < 5.317 then the test (1) fails, and if da > |a| then
the test (2) fails. Many iterations failed either one of
the tests (1) and (2). For the test (3), χ2 = 39.54 was
obtained where it was larger than the threshold value
16.92. Thus, this test also failed. The resultant RE of
the bi-variate equations that were passed the tests was
as follows.

RE = {L(1.999±0.010)r = b1, L
(−1.999±0.010)R1 = b2,

r(−1.000±0.010)R1 = b3, R
(−1.000±0.010)
2 hie1 = b4,

R
(−1.000±0.010)
3 hie2 = b5, Q

(−1.000±0.010)C = b6,

h
(1.000±0.010)
ie3

X = b7, h
(1.000±0.010)
ie3

K = b8,

h
(−1.000±0.010)
ie3

B = b9, X
(1.000±0.010)K = b10,

X(−0.999±0.010)B = b11, K
(−1.000±0.010)B = b12}

All pairwise product forms that should hold among the
quantities in RQ have been correctly enumerated.

3.2 Triplet Test
In the next step (1 − 2), triplet consistency tests are
applied to every triplet of equations in RE. Given a
triplet of the power form equations in RE:

xaxyy = bxy, y
ayz z = byz, x

axzz = bxz, (3)

by substituting y in the first to y in the second, we obtain

x−ayzaxyz = bxy
−ayz byz.

Thus, the following condition must be met.

axz = −ayzaxy. (4)

However, if any of the three equations are not correct
due to the noise and error of data fitting, this relation
may not hold. The following test judges if the three of
the equations are mutually consistent in terms of as.

(4) Given Erra = axz + ayzaxy and its expectation
Expda = {da

2

xz + (dayzaxy)2 + (ayzdaxy)2}1/2, per-
form normal distribution-test of Erra based on its
expectation Expda.

SDS applies this test to every triplet of equations in RE,
and search every maximal convex set MCS where each
triplet of equations among the quantities in this set has
passed the test (4). In addition, every pair of quanti-
ties in an equation in RE which does not belong to any
triplet such as Eq.3 is also regarded as a tiny MCS,
because the equation may be a regime. When actual
regimes in the objective system are mutually indepen-
dent, each MCS will correspond to a regime. However,
an MCS may be different from the set of quantities in
a real regime stated in Buckingham Π-theorem in the
following cases.

(A) Product of two regimes in an ensemble
If two real regimes Π1 = x1

ax1y1
ay1 ... and Π2 =

x2
ax2y2

ay2 ... have a relation of product in their en-
semble as F (Π1

aΠ1Π2
aΠ2 , ..., Πn−r) = 0, then MCS

will be a superset of the quantities of the two real
regimes.

(B) Common terms between two regimes
If two real regimes Π1 = x1

ax1y1
ay1 ...Sas1T at1 ... and

Π2 = x2
ax2y2

ay2 ...Sas2T at2 ... share some common
terms S, T, ..., then the partition of the set of quan-
tities in each regime {x1, y1, ...}, {x2, y2, ...}, {p|p ∈
S}, {q|q ∈ T }, ... will become MCSs.

In case of (B), Sas1T at1 and Sas2T at2 can be p2q and
pq2 respectively for instance, where S ≡ p and T ≡ q.
Then {p} and {q} are MCSs. In another case, if S ≡
p1p2p3 and T ≡ q1q2

2, then {p1, p2, p3} and {q1, q2} are
MCSs. These facts also hold for more than two regimes.
These consideration indicates that every MCS does not
have any intersection with others in any case. If any
MCSs mutually sharing some quantities are obtained,
those MCSs may not be valid due to the noise and error
of the data fitting in step (1-1). It means some pairwise
product forms among the elements of those MCSs have
been missed in the tests. Accordingly, the following test
and operation are applied to the resulted MCSs.
(5) Given a set of MCSs S = {M1, M2, ...} where

each Mi shares some quantities with the other el-
ements in S, obtain the merged MCSs,i.e., MS =
∪Mi∈SMi, if p ≤ pth, by assuming that the Mis in
S have been obtained because of missing p pairwise
product forms among the elements in MS . Then
move the p pairwise product forms from NRE to
RE.

The valid number p is always given by the following ex-
pression.

p = f(Ms) + ΣA∈2S (−1)|A|f(∩Mi∈AMi), (5)

where f(M) = |M|(|M|−1)
2 is the number of the pairwise

links in a set M , 2S is the power set of S, and |A| is the
cardinality of A. pth is empirically set to be 3 in SDS.
The calculation of Eq.5 is limited to |S| ≤ 3, because p
always exceeds 3 for |S| > 3. For example, when S =
{{x1, x2, y1}, {x1, x2, y2}, {x1, x2, y3}} has been derived,
we once assume Ms = {x1, x2, y1, y2, y3}. The number
of missing pairwise product forms is calculated as

p = f({x1, x2, y1, y2, y3}) − f({x1, x2, y1})
−f({x1, x2, y2}) − f({x1, x2, y3}) + f({x1, x2})
+f({x1, x2}) + f({x1, x2}) − f({x1, x2}) = 3,

where p is equal to pth. Thus, three pairs of quantities
in Ms, {y1, y2}, {y2, y3} and {y3, y1}, which do not be-
long to any of {x1, x2, y1}, {x1, x2, y2} and {x1, x2, y3},
are moved from NRE to RE. Once all MCSs are found,
the data-driven regimes are given by the following form.

Πi =
∏

xj∈MCSi

xj
aj . (6)

ajs and their std. errors dajs are evaluated by the aver-
age of a and da of the equations in RE. Before the final
value of aj is determined, the following test is applied.
(6) normal distribution-test to check if aj is close to an

integer under the error daj . If aj is judged to be an
integer, it is set to the integer value.



This test is based on the observation that the majority
of the first principle based equations have integer power
coefficients. The product form given by Eq.6 is named
as a pseudo-regime to distinguish it from the real regime.
As we see, the Πs given by pseudo-regimes are not guar-
anteed to be dimensionless (absolute scale), and also the
pseudo-regimes do not share any quantities mutually,
even when the original regimes share some quantities.
Finally, the merged quantities are replaced by the term
of each equation of the derived pseudo-regime in RQ.

In the example in Figure 2, after performing the triplet
test of (4) for the RE, the resultant MCSs did not mu-
tually share any quantities, and thus, they are combined
in the form of Eq.6 skipping the test (5). Subsequently,
their power coefficients were evaluated by the test (6),
and they were known to be integer values. The final
forms of pseudo-regimes replaced the merged terms in
RQ in this step as follows.
RQ = {Π1 = R1r

−1.0L−2.0, Π2 = hie1R
−1.0
2 , Π3 =

hie2R
−1.0
3 , Π4 = hie3XKB−1.0, Π5 = QC−1.0, Π6 = V }

4 Searching Ensemble Equations

4.1 Generation of Terms based on
Bi-Variate Test

Once all pseudo-regimes are identified, new terms are
generated in step (2-1) by merging these pseudo-regimes
in preparation to compose the ensemble equation. First,
RQ is added to AQ. Subsequently, SDS searches bi-
variate relations having one of the formulae specified
in the equation set CE. The repertoire in CE governs
the ability of the equation formulae search in SDS. Cur-
rently, only the following two simple formulae are given
in CE. Nevertheless, SDS performs very well in search
for the ensemble equation.

xay = b, (product form) (7)
ax + y = b, (linear form) (8)

First, SDS adopts the least square fitting of Eq.7 as
in step(1-1). Then, the statistical tests (1) and (2)
mentioned earlier are applied. This process is repeated
k = 10 times for randomly chosen different combinations
of the values for the other quantities in AQ. If all these
tests are passed, the bi-variate equation is stored to AE,
and the test (3) is conducted to check the independence
of a. Note that this test is not used to reject the relation
here because x and y may be absolute scale, and thus a
can depend on the other quantities in AQ. SDS marks
the relation having the independent a in AE. After all
pairwise relations in AQ are examined, SDS searches ev-
ery maximal convex set MCS as in step(1-2) for the
relations marked as the independent a, and the quanti-
ties in an MCS are merged into the following term.

Θi =
∏

xj∈MCSi

xj
aj . (9)

Similar procedure is applied to Eq.8, in which case the
merged term of an MCS is:

Θi =
∑

xj∈MCSi

ajxj . (10)

This procedure is repeated in couple for both Eqs.7 and
8 until no new term becomes possible. If all terms in AQ
is merged into one, the equation of the final term is the
ensemble equation.

In the example of the circuit, Eq.7 was applied first,
and three MCSs were found. They were merged to the
following new terms.

Θ1 = Π1hfe1 = R1r
−1.0L−2.0hfe1 ,

Θ2 = Π2hfe2 = hie1R
−1.0
2 hfe2 ,

Θ3 = Π3hfe3 = hie2R
−1.0
3 hfe3 .

Next, Eq.8 was tested, then one MCS was found.

Θ4 = Π4 + Π5 = hie3XKB−1.0 + QC−1.0

AQ became as {Θ1, Θ2, Θ3, Θ4, Π6, }. Again, by apply-
ing Eq.7, another MSC was newly generated.

Θ5 = Π6Θ−1.0
4 = V (hie3XKB−1.0 + QC−1.0)−1.0

Thus, AQ = {Θ1, Θ2, Θ3, Θ5}. As no new terms became
available, this step was finished.

4.2 Generation of Terms based on Identity
Constraints

In step (2-2), the identity constraints are applied for fur-
ther merging terms. The basic principle of the iden-
tity constraints comes by answering the question that
“what is the relation among Θh, Θi and Θj, if Θi =
fΘj (Θh) and Θj = fΘi(Θh) are known?” For example,
if a(Θj)Θh + Θi = b(Θj) and a(Θi)Θh + Θj = b(Θi)
are given, the following identity equation is obtained by
solving each for Θh.

Θh ≡ − Θi

a(Θj)
+

b(Θj)
a(Θj)

≡ − Θj

a(Θi)
+

b(Θi)
a(Θi)

Because the third expression is linear with Θj for any
Θi, the second must be so. Accordingly, the following
must hold.

1/a(Θj) = α1Θj + β1,

b(Θj)/a(Θj) = −α2Θj − β2.

By substituting these to the second expression,

Θh + α1ΘiΘj + β1Θi + α2Θj + β2 = 0

is obtained. This principle is generalized to various re-
lations among multiple terms. Table 1 shows such rela-
tions for multiple linear relations and multiple product
relations. SDS checks every bi-variate equation in AE
derived in step (2-1). If a bi-variate linear equation has a
that depends on other terms, it is stored in a set L, and
if a bi-variate product relation has such a, it is stored in
P . Then the bi-variate least square fitting of the general
relations indicated in Table 1 is applied to AQ. For ev-
ery bi-variate fitting and their coefficients, the test (1),
(2) and (3) are also conducted. If all the coefficients ex-
cept one are independent in a relation, the relation is



Table 1: Identity constraints

bi-variate
relation

general relation

ax + y = b
∑

(Ai∈2LQ)&(p⊆/Ai∀p∈L)
ai

∏
xj∈Ai

xj = 0

xay = b
∏

(Ai∈2PQ)&(p⊆/Ai∀p∈P )
exp(ai

∏
xj∈Ai

log xj) = 0

L is a set of pairwise terms having a bi-variate linear
relation and LQ = ∪p∈Lp. P is a set of pairwise terms
having a bi-variate product relation and PQ = ∪p∈P p.

solved for the unique dependent coefficient, and the co-
efficient is set to be the merged term of the relation. If
all coefficients are independent in a relation, the relation
is the ensemble equation. If such ensemble equation is
not found, SDS goes back to the step (2-1) for further
search.

In the example of the circuit, SDS found a set of the
bi-variate linear relations in AE. These were on the
combinations of {Θ1, Θ5}, {Θ2, Θ5} and {Θ3, Θ5}. By
applying the bi-variate fitting of the general linear equa-
tion in Table 1, the following multi-linear formula has
been obtained.

Θ1Θ2Θ3+Θ1Θ2+Θ2Θ3+Θ1Θ3+Θ1+Θ2+Θ3+Θ5+1 = 0

Because every coefficient is independent of any terms,
this is considered to be the ensemble equation. The
equivalence of this result to Eq.2 is easily checked by sub-
stituting the intermediate terms to this ensemble equa-
tion.

5 Equation Search Based on Interval
Scale

The conventional Buckingham Π-theorem and Product
Theorem do not consider the equation involving interval
scale quantities. We have extended these theorems to
include interval scales[Washio and Motoda, 1997].
Extended Buckingham Π-theorem If φ(x1, x2, x3

....) = 0 is a complete equation, and if each argument is
one of interval, ratio and absolute scale-types, then the
solution can be written in the form

F (Π1, Π2, ..., Πn−w) = 0,

where n is the number of arguments of φ, w is the basic
number of bases in x1, x2, x3...., respectively. For all i,
Πi is an absolute scale-type quantity.

Extended Product Theorem Assuming primary
quantities in a set R are ratio scale-type, and those in
another set I are interval scale-type, the function ρ relat-
ing a secondary quantity Π to xi ∈ R ∪ I has the forms:

Π = (
∏

xi∈R

|xi|ai)(
∏

Ik⊆I

(
∑

xj∈Ik

bkj |xj | + ck)ak)

Π =
∑

xi∈R

ai log |xi| +
∑

Ik⊆I

ak log(
∑

xj∈Ik

bkj |xj | + ck)

+
∑

x�∈Ig⊆I

bgh|x�| + cg

where all coefficients except Π are constants and Ik∩Ig =
φ.
These theorems state that any meaningful complete
equation consisting of the arguments of interval, ratio
and absolute scale-types can be decomposed into an en-
semble having an arbitrary form and regimes of inter-
val and ratio scale-type quantities in products and log-
arithmic form. In each regime, every interval scale-type
quantities appears in linear relation with some other in-
terval scale-type quantities. Therefore, specific tasks in
the equation search associated with interval scale quan-
tities are to seek linear forms among interval scale-type
quantities and to seek the logarithmic relation between a
linear form and the others. For these tasks, the steps in-
dicated in Figure 3 are inserted in the original algorithm
of SDS.

Additionally given a set of interval scale quanti-
ties, IQ,

(0-1) Apply bi-variate test for an admissible lin-
ear equation of interval scale to every pair
of quantities in IQ. Store the resultant bi-
variate equations accepted by the tests into
an equation set IE and the others not ac-
cepted into an equation set NIE.

(0-2) Apply triplet test to every triplet of associ-
ated bi-variate equations in IE. Derive all
maximal convex sets MCSs for the accepted
triplets, and compose all bi-variate equations
into a multi-variate equation in each MCS.
Define each multi-variate equation as a term.
Replace the merged terms by the generated
terms of the multi-variate equations in IQ.
Let RQ = RQ + IQ.

(1-3) Apply bi-variate test for an admissible loga-
rithmic equation between the linear forms of
interval scale-type quantities and the other
terms in RQ. Replace the terms in the re-
sultant bi-variate equations accepted in the
tests by the generated terms in RQ.

Figure 3: Extended part of algorithm

The step (0-1) and (0-2) are almost identical with the
steps (1-1) and (1-2) except that the following admissible
relation is used at the bi-variate data fitting in IQ.

ax + y = b (11)

Once a multi-variate linear form is obtained after the
triplet test, the form is dealt with a term in the regime
formulae based on the extended Product Theorem, and



the term is stored into RQ by IQ. In step (1-3), the
following bi-variate logarithmic relations are sought be-
tween the linear forms of interval scale-type y and the
other terms x in RQ.

a logx + y = b (12)
The triplet test is not applied at this step because Eq.12
is asymetric and essentially a bi-variate relation.

In case of the aforementioned example, the circuit does
not involve any interval scale-type quantities. However,
if we look the electric voltage not to be a voltage differ-
ence V but two voltage levels V0 and V1, they become
interval scale-type. Hence, the system is represented by
the following 18 quantities.
IQ = {V0, V1},
RQ = {L, r, R1, R2, R3, hie1 , hie2 , hie3 , Q, C, X, K, B},
AQ = {hfe1 , hfe2 , hfe3}.
SDS applied the step(0) to the experimental data, and
figured out a term Θ0 = V1 − V0 quickly. The rest of
the reasoning was identical with the description in the
previous sections.

6 Discussion and Related Work
Main features of the discovery system SDS are its low
complexity, robustness, scalability and wide applicabil-
ity. The basic algorithm of SDS consists of two types
of procedures. One is the bi-variate test for each pair of
quantities and terms in steps (0-1), (1-1), (1-3) and (2-1).
The complexity of this type of procedure is O(n2m2k)
where n, m, k are the number of quantities to represent
the objective system, the number of experimental data
used for a data fitting and the number of iteration of the
data fitting in a bi-variate test, respectively. Another is
the triplet test for each triplet of quantities and terms
in steps (0-2), (1-2) and (2-2), where its complexity is
O(n3). m and k usually do not affect the performance
of SDS as they are almost independent of the complexity
of objective system structure. Moreover, the computa-
tional cost required in the bi-variate test is much larger
than the triplet test because the former involves multi-
ple experiments, data sampling, data fitting and some
statistical tests, whereas the latter involves the triplet
consistency checking among the given coefficients only.
Thus, the practical complexity is almost proportional to
the second order of n. Table 2 shows the performance
of SDS to discover various physical law equations. The
relative CPU time of SDS normalized by the first case
shows that its complexity is nearly proportional to n2.
For reference, the relative CPU time of ABACUS is indi-
cated for the same cases except for the circuit examples
of this paper[Falkenhainer and Michalski, 1985]. Though
ABACUS applies various heuristics including the infor-
mation of dimension, its complexity is still NP-hard. As
this feature is shared by BACON family, they can hardly
derive the model of the electric circuit of this complexity.

The robustness of SDS against the noisy experimental
environment has been also evaluated. The upper limita-
tion of the noise level to obtain the correct result in the

Table 2: Statistics on complexity and robustness

Example n TC(S) TC(A) NL(S)

Ideal Gas 4 1.00 1.00 ±40%
Momentum 8 6.14 22.7 ±35%
Coulomb 5 1.63 24.7 ±35%
Stoke’s 5 1.59 16.3 ±35%
Kinetic
Energy

8 6.19 285. ±30%

Circuit*1 17 21.6 - ±20%
Circuit*2 18 21.9 - ±20%

n: Number of Quantities, TC(S): Total CPU time of
SDS, TC(A): Total CPU Time of ABACUS, NL(S):
Limitation of Noise Level of SDS, *1: Case that elec-
tronic voltage is represented by a ratio scale V , *2:
Case that electronic voltage is represented by two in-
terval scale V0 and V1.

cases of more than 80% of 10 trials was investigated for
each physical law, and they are indicated in the last col-
umn of Table 2. The noise levels shown here are the std.
of Gaussian noise relative to the real values of quantities,
and were added to both controlled (input) quantities and
measured (output) quantities at the same time. Thus ac-
tual noise level is higher than these levels. The results
show the significant robustness of SDS. SDS can provide
appropriate results under any practical noise condition.

The low complexity and the high robustness shown
here ensure the significant scalability of SDS to engineer-
ing problems. Many systems in BACON family adopt
generate and test in the search. In contrast, the low
complexity of SDS comes from its straightforward algo-
rithm to apply only product and linear forms in polyno-
mial time order in concert with the highly restrictive but
domain independent constraints. By adding some more
basic functional equations to CE, the search of SDS will
become more powerful. The robustness of SDS comes
from the bi-variate direct fitting to data and the struc-
ture of the triplet test. The systems in BACON family
repeat formulae fitting to coefficients resulted from the
other fitting if it is necessary. This method accumulates
the error of data fitting, and derives erroneous results.
On the other hand, SDS uses only the bi-variate and di-
rect fitting to the given data, and efficiently composes
the result in statistically accurate manner. The multi-
ple statistical tests provide quite conservative judgment
on the selection of equations, which contributes to re-
ducing the ambiguity of reasoning. But it also requires
following up of missed equations. This is done by re-
constructing MCSs in the triplet test by assuming some
missed equations in the derived MCS.

The wide applicability is another advantage of SDS,
as it does not require any information on dimensions
of quantities. For example, the following equation is
known to be the law of spaciousness of a room in
psychophysics[Kanet al., 1972].



Sp = c

n∑

i=1

RL0.3
i W 0.3

i ,

where Sp, R, Li and Wi are average spaciousness of a
room, room capacity, average light intensity and solid
angle of window at the location i in the room. Though
the dimension of Sp is unclear, its scale-type is known to
be ratio scale based on its definition. L and R are ratio
scale, and W is absolute scale. We applied SDS to this
system for the case of n = 3, and easily obtained the
above expression. The dimension based approach such
as COPER may not be applicable to this case.

The weakness of the approach of SDS is some lim-
its on the class of formulae to be discovered. First,
the regimes and ensemble formulae must be read-once
formulae, where each quantity appears at most once
in it. Second, the relations among quantities must be
arithmetic, where the operators are limited to addition,
subtraction, multiplication, division, exponentiation and
logarithm because of the limited contents of CE. Third,
the formula of every pair of quantities searched in the
bivariate test is limited to the relation of a simple bi-
nary operator. These restrictions should be relaxed,
even though the majorities of the first principle for-
mulae fall into this class. Bshouty et al. proposed
an approach to find three unary arithmetic functions
g(x), h(y) and f(·) related by a binary arithmetic op-
erator, e.g., f(g(x) + h(y)) for a given arithmetic rela-
tion F (x, y). It is based on an invariance principle of
this structure under the linear conversion of g(x) and
h(y)[Bshouty, 1994]. Their approach may not be very
adequate for the data-driven discovery, because it as-
sumes an initially given precise relation of F (x, y) and
its derivatives. However, this invariance principle on the
binary relation has a possibility to provide an efficient
remedy to the third limitation. The second limitation
can be relaxed by increasing the variety of the contents
of CE. The first is also a challenging issue, and some
invariance or identity principle can be used for the re-
laxation. All of these issues are left for the future work.

7 Conclusion

SDS implements newly introduced constraints of scale-
type and identity in the algorithm of bi-variate and
triplet equation test. This architecture has shown to
have low complexity, high robustness, promising scala-
bility and wide applicability. It is true that the most of
the scientific discoveries have been made through a large
number of experiments and observations. However, the
scientists have not solely relied on the data but some
admissible conditions such as invariance of light speed,
symmetry for time inverse and continuity of relations.
The constraints of scale-type and identity are two of such
conditions having wide applicability. Our future plan is
to extend this work to further larger systems and also to
seek new laws in non-physical domains.
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