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Abstract

We addressed the problem of detecting the change
in behavior of information dfusion from a small
amount of observation data, where the behavior
changes were assumed to keetively reflected in
changes in the éiusion parameter value. The prob-
lem is to detect where in time and how long this
change persisted and how big this change is. We
solved this problem by searching the change pattern
that maximizes the likelihood of generating the ob-
served ditusion sequences. The naive learning al-
gorithm has to iteratively update the patten bound-
aries, each requiring optimization offilision pa-
rameters by the EM algorithm, and is very fiie
cient. We devised a venfiicient search algorithm
using the derivative of likelihood which avoids pa-
rameter value optimization during the search. The
results tested using three real world network struc-
tures confirmed that the algorithm caffigently
identify the correct change pattern. We further
compared our algorithm with the naive method
that finds the best combination of change bound-
aries by an exhaustive search through a set of ran-
domly selected boundary candidates, and showed
that the proposed algorithm far outperforms the na-
tive method both in terms of accuracy and compu-
tation time.

Introduction

nodes in the network. However, recent studies have shown
that it is important to consider theftlision mechanism ex-
plicitly and the measures based on network structure alone
are not enough to identify the important nodikgmuraet al,,
2009; 2010h

Information difusion is modeled typically by a probabilis-
tic model. Most representative and fundamental ones are
independent cascade (IC) mod@&oldenberget al, 2001;
Kempeet al, 2009, linear threshold (LT) modelWatts,
2002; Watts and Dodds, 20p@nd their extensions that in-
clude incorporating asynchronous time del[8aito et al,,
2009. Explicit use of these models to solve such problems
as theinfluence maximization problefikempeet al, 2003;
Kimura et al, 20104 and thecontamination minimization
problem[Kimura et al,, 2009 clearly shows the advantage
of the model. The identified influential nodes and links are
considerably dierent from the ones identified by the central-
ity measures. However, use of these models brings in yet
another dificulty. They have parameters that need be speci-
fied in advance, e.g. filusion probabilities for the IC model,
and weights for the LT model, and their true values are not
known in practice. A series of studies [§aitoet al,, 2009;
2014 have shown one way of solving this problem in which
they used a limited amount of observed informatioffiugion
data and traingtearned the model such that the likelihood of
generating the observed data by the model is maximized.

This paper is in the same line of these studies, but addresses
a different aspect of informationfilusion. Almost all of the
work so far assumed that the model is stationary. We note
that our behavior isféected not only by the behaviour of our

Social networking is now an important part of our daily neighbors but also by other external factors. The model only

lives, and our behavioral patterns are substantidfcéed by

the communication through these netwofkewmanet al.,

accounts for the interaction with neighbors. The problem we
address here is to detect the change of the model from a lim-
ited amount of observed informationfidision data. If this is

2002; Newman, 2003; Grulgt al, 2004; Domingos, 2005;
Leskovecet al, 2006. It has been shown that a social net- possible, we can infer that something unusual happened dur-
work has many interesting properties, e.g. power law foring a particular period of time by simply analyzing the limited
node degree distribution, large clustering ffioéent, posi- amount of data.

tive degree correlation, etfWasserman and Faust, 1994 This is in some sense the same, in the spirit, with the work
which afect how the information actually filuses through by [Kleinberg, 2002 and [Swan and Allan, 2000 They

the network, and researchers have devised several importambted a huge volume of the data stream, tried to organize it
measures to characterize these features based on the topahd extract structures behind it. This is done in a retrospec-
ogy/structure of the networkWasserman and Faust, 1994; tive framework, i.e. assuming that there is a flood of abundant
Bonacichi, 1987; Katz, 1933 These measures, called cen- data already and there is a strong need to understand it. Our
trality measures, are expected to be used to identify importargim is not exactly the same as theirs. We are interested in de-



tecting changes which is hidden in the data. We also followcalledactiveif they have been influenced. It is assumed that
the same retrospective approach, i.e. we are not predictingodes can switch their states only from inactive to active.
the future, but we are trying to understand the phenomena The AsIC model has two types of parametpgs andry,
that happened in the past. There are many factors that bringith 0 < p,, < 1 andr,, > 0, wherep,,, andr,, are referred
in changes and the model cannot accommodate all of thento as the diusion probability through linky, v) and the time-
We formalize this as the unknown changes in th&udion  delay parameter through linki(v), respectively. The infor-
parameter value, and we reduce the problem to that of demation difusion process unfolds in continuous-tiheand
tecting where in time and how long this change persisted angroceeds from a given initial active node in the following way.
how big this change is. To make the analysis simple, we limitwhen a nodes becomes active at timg it is given a single
the difusion model to the asynchronous time delay indepenehance to activate each currently inactive node F(u). A
dent cascade model (AsI€$aitoet al, 2009 and the form  delay-times is chosen from the exponential distribution with
of change to a rect-linear one, that is, thifutiion parameter parameter,,. The nodeu attempts to activate the node
changes to a new large value, persists for a certain period 6f v has not been activated by tinhe- 6, and succeeds with
time and is restored to the original value and stays the samgrobability p,y. If u succeedy will become active at time
thereaftert t+4. The information dfusion process terminates if no more
We call this period where the parameter value is high asctivations are possible.
“hot span” and the rest as “normal sp[)an". We use th(;1 same
parameter optimization algorithm as [iBaitoet al, 2009, ;
i.e. the EM algorithm that iteratively updates the values to3 Problem Setting
maximize the model’s likelihood of generating the observedwe address thhot span detection problentn this problem,
data sequences. The problem here is mofigcdlt because we assume that some change has happened in the way the in-
it has another loop to search for the hot span on top of théormation difuses, and we observe thdfdsion sequences of
above loop. The naive learning algorithm has to iterativelya certain topic in which the change is embedded, and consider
update the patten boundaries requiring the parameter valuietecting where in time and how long this change persisted
optimization for each combination, which is a veryfii@ent  and how big this change is. We place a constraint that
procedure. Our main contribution is that we devised a very efandr,, do not depend on linku(v), i.e. pyy = p, fruy = 1
ficient general search algorithm which avoids the inner loopgvV(u,v) € E), which should be acceptable noting that we
optimization by using the information of the first order deriva- can naturally assume that people behave quite similarly when
tive of the likelihood with respect to the filision parame- talking about the same topic (see Section 6).
ters. We tested its performance using the structures of three et [Ty, T,] denote the hot span of thefflision of a topic,
real world networks (blog, Coauthorship and Wikipedia), andand letp; and p, denote the values of thefflision probabil-
confirmed that the algorithm carffigiently identify the hot ity of the AsIC model for the normal span and the hot span,
span correctly as well as thefllision parameter values. We respectively. Note that, < p,. A diffusion result of the topic
further compared our algorithm with the naive method thatis represented as a set of pairs of active nodes and their acti-
finds the best combination of change boundaries by an exzation times; i.e {(u, t,), (v, t), - - - }. We consider a diusion
haustive search from a set of randomly selected boundanesultD that is generated by the AsIC model wiph for the
candidates, and showed that the proposed algorithm far ouperiod [Q T1), p, for the period T1, T»] and p; for the period
performs the native method both in terms of accuracy angT,, «), where the time-delay parameter does not change and

computation time. takes the same valuefor the entire period [0). We refer
to the setD as adiffusion result with a hot spanThe prob-
2 Information Di ffusion Model lem is reduced to detectind {, T.] and estimatingp; and p,

. . . from the observed diusion results. Extensions of this prob-
The AsIC _model we use in this paper incorporates asynr‘?m setting is discussed later (see Sections).

ck;]r.orrllogs time (t:IeIay mtot tfhe [[nde[_)((janldent cgsc?de ELC)t mode Figure 1 shows examples offflision samples with a hot
which does not account for ime-delay, refiecting tha eac"ﬁpan based on the AsIC model, where the parameters are set
node changes its state asynchronously in reality. We reca

. . . tpp =01, p, =03, r =10,T; = 10 andT2 = 20. The

the deflnlthn of the AsIC mode| below, in Wh.'Ch we con- net?Nork useFo)I is the blog network described later in Subsec-
sider choosing a delay-time from the exponential d'Stf'buF'ontion 5.1. We plotted the ratio of active nodes (the number of
M3ctive nodes at a time steémivided by the number of total
active nodes over the whole time span) for five independent
simulations, each from a randomly chosen initial source node
Yat timet = 0. We can clearly see bursty activities around the
hot span T, = 10, T, = 20]. However, each curve behaves
differently, i.e., some has its bursty activities only in the first
half, some other has them only in the last half, and yet some
Sther has two peaks during the hot span. This means that it

\We discuss that the basic algorithm can be extended to mort quite dificult to accurately detect the true hot span from
general change patterns in Section 6, and shows that it works fo®nly a single difusion sample. Methods that use only the ob-
two distinct rect-linear patterns. served bursty activities, including those proposed $wan

such as power-law and Weibull can be employed.

Let G = (V,E) be a directed graph, whek and E (c
V x V) are the sets of all the nodes and the links. For an
v € V, the set of all the nodes that have links frams denoted
by F(v) = {u eV, (v,u) € E} and the set of all the nodes that
have links tov by B(v) = {u € V; (u,Vv) € E}. Each node has
one of the two states (active and inactive), and the nodes a



0.06 ‘ ‘ ‘ ‘ p— Then, an extended objective functiadf(Dw; p1, 2,1, S)

can be defined by adequately modifying Eq. (1) under this
switching scheme. Clearly;(Dw; p1, p2,t, S) is expected to

be maximized by settin® to the true spars* = [T;,T,]

if a substantial amount of datBy is available. Thus, our
problem is to find the followings.

S = arg rréaXE(DM; P1, P2, F, S), 2
wherep, P, andr denote the maximum likelihood estima-
tors for a giverS.

gl S L. In order to obtainS, we need to prepare a reasonable set
0 5 Weialime® ® % of candidate spans, denoted 8y One way of doing so is
to constructS by considering all pairs of observed activation

Figure 1: Information dfusion in the blog network with a time points:S = {S = [t1,ty] : t1 <tp,t1 € 7,1, € 7}, where
hot span for the AsIC model. T ={t1,--- ,tn} is a set of activation time points Dy,.

4.2 Naive Method

and Allan, 2009 and[Kleinberg, 2002 would not work. We  Now we describe the naive method, which has two iterative
believe that an explicit use of underlyingfidision model is  |oops. In the inner loop we first obtain the maximum likeli-
essential to solve this problem. It is crucially important to hood estimatorsp;’; p,, andr; for each candidaté by max-
detect the hot span precisely in order to identify the externajmizing £(Dw; p1, pa, 1, S) using the EM algorithm. In the
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factors which caused the behavioral changes. outer loop we select the optim&l which gives the largest
_ L(Dw; P1, P2, £, S) value. However, this can be extremely in-
4 Hot Span Detection Methods efficient whenN is large. To make it work with a reasonable

computational cost, we restrict the number of candidate time
pointsN to a smaller valu& by selectingk points from7,

i.e., we construcSx = {S = [tl, t2] Tl <ty € Ty, o €
Tk}, whereTk = {t1,--- ,t«}. Note thatSk| = K(K - 1)/2,
which is large wherK is large.

Let {Dm, m= 1,---, M} be a set ofM independent infor-
mation difusion results, wherBy, = {(U, tmy), (V. tmy), -}
EachD,, is associated with the observed initial timg =
min{tmv; (V,tmy) € Dm}, and the observed final timg,, >
maXtmy; (v, tmy) € Dm}. We express our observation data by
Du = {(Dm, ®m); m=1,---, M}. For anyt € [¢m, Om], W& 4 3 Proposed Method
setCm(t) = {V; (V,tmy) € Dm, tmy < t}. Namely,Cy(t) is the
set of active nodes before timien the mth diffusion result.
For convenience sake, we USg as referring to the set of all
the active nodes in theth diffusion result.

The naive method should be able to detect the hot span with a
reasonable accuracy whenis set large at the expense of the
computational cost, but the accuracy becomes poorer When
is set smaller to reduce the computational load. We propose
4.1 Parameter Learr"ng Framework a novel detection method which alleviates this problem and
can dficiently and stably detect a hot span frddy,.

We first obtainp; andr; based on the original objective
function of Eq. (1), and focus on its first-order derivative with
respect top for each node at each individual activation time.

The following logarithmic likelihood functionf(Dw; p.r)
has been derived to estimate the valuep ahdr from Dy
for the AsIC model in case there is no hot sj&aitoet al.,

2009, Let p,v be the difusion parameter from a nodeto a node
M v. The following formula holds for the maximum likelihood
L(Dw;p,r) = Z L((Dm, @m); p.1) estimators due to the uniform parameter setting of Eq. (1) and
ot the locally optimal condition.
= 3 N |loghmy + > l0ggmuw|. (1) OLOw; p.F)  _ ILOwiRD _ o (3
m=1veCp, weF (V)\Cm ap (e OPuy

whereh, is the probability density that a nodes Dy with — congjder the following partial sum for a givén= [T1, T2].
tmy > O is activated at a timg,y, andgmyw is the probability

that a nodew is not activated by a node within [¢m, @ml,

where there exists a link/(w) € E andv € Cy,. The values of G(S)

p andr can be stably obtained by maximizing Eq. (1) using

the EM algorithm{Saitoet al,, 2009. =1 (WV)EEUHn(S)
The following parameter switching applies for a hot span Clearly, G(S) should be sfliciently large ifS ~» S* due to

S = [T1,T2] where N, and Hy, denote the sets of active our problem setting, which leads f» > p > p;. Thus, the

nodes in thamnth diffusion result during the normal and the hot spanS* can be estimated by searching ®rthat maxi-

hot spans, respectively. mizesG(S).

_ [p1 if ve Nn(S), Nim(S) = Cn(T1) U (Cim \ Cin(T2)), &
p = {p; f Ve HulS). HnlS) = CoTo) \ Gl S = aogge) ©

M

0.L((Dm, Dm); P, T)
=2, X P .

(4)



The nice thing here is that we can incrementally calculates.2 Results

G(S) by Eq. (6), wherd™ = {t;, - .t} andt <t if i < j. We compared the proposed method with the naive method

0L((Dpm, Dm); P, F) in terms of 1) the accuracy of the estimated hot sfar
p -(6)  [T1,T2], 2) the accuracy of the flusion probabilitiegy (for
m=1 (uv)eE o the normal span) ang, (for the hot span), and 3) the com-
HECn{t)\Cnl) putation time. Both the proposed and the naive methods were
The computational cost for examining each candidate spafested to each ffusion sample mentioned above, and the re-

is much smaller than the naive method described abovesults were averaged over the five independent trials for each
Thus, we can use all the pairs to constrSct We summa-  network.

M
Gt ta)) = GILtD + >, >

rize our proposed method below. Figure 2 shows the accuracy f&t in the absolute error
1. Maximize L(Dw; p,r) by using the EM algorithm. Es = |T1 — Ty| + |T2 — T2|. We see that the proposed method
2. Constructy” ands. achieves a good accuracy, much better than the naive method

A A for every network. As expected;s for the naive method
3. DetectS by Eq. (5) and outpub. _ _ decreases aK becomes larger. But, even in the best case
4. Maximize L(Dw; p1. p2, 1, S) by using the EM algorithm, (K = 20), its average error is about 3 to 10 times larger than

and outputpy, Pz, andr’ that of the proposed method. Figure 3 shows the accuracy of
Here note that the proposed method requires maximization bp. andpz in the relative erro€,, = |p1— pal/p1+|P2— P2/ p2.
using the EM algorithm only twice. Here again, the average relative error for the naive method
decreases ak becomes larger. However, even in the best
5 Experiments case K = 20), it is about 2 to 3 times larger than that of

e proposed method. We note that the average errors for
e Coauthorship network are relatively large. This is be-
cause the number of active nodes within the normal span was
relatively small for this network. Figure 4 shows the com-
putation time. It is clear that the proposed method is much
. faster than the naive method. The significarfifedence is at-

10, and 20 for the naive method. Hibuted to the dierence in the number of runs of the EM

The derivation assumed that there are multiple observe . .
data sequences, but in the experiments we chose to learn fro?rlgomhm' The proposed method executes the EM algorithm

; . 2 Lo only twice: steps 1 and 4 in the algorithm (see Section 4.3).
ziti'gg(ljen sequence.e., M = 1, which is the most dicult On the other hand, the naive method has to execute the EM

algorithm once for every single candidate sfgaa Sk which
5.1 Datasets is |Sk| = K(K - 1)/2 times (see Section 4.2). Indeed, the

The three data are all bidirectionally connected networksCOmputation time of the naive method fir = 5 is about
The first one is a trackback network of Japanese blogs us%t'mes larger for every network, which is consistent with
in [Kimuraet al, 2009, which has 12047 nodes and 7920 k| = 10. This relation roughly holds also for the other

directed links (the blog network). The second one is a coaulV© casesK = 10 andK = 20). This means that even if

thorship network used ifPalla et al, 2004, which has the naive method could achie_ve a good accuracy by setting
12,357 nodes and 3896 directed links (the Coauthorship K 0 @ suficiently large value, it would require unacceptable
network). The last one is a network of people that was derive§Omputation time for such a large

from the “list of people” within Japanese Wikipedia, used in In summary, we can say that the proposed method can
[Kimura et al, 2009, and has 9481 nodes and 246844 di- detect and estimate the hot span anffudion probabili-

We experimentally investigated how accurately the propose{ﬂ
method can estimate both the hot span and tfiegion prob-
abilities in the hot and normal spans, as well asfi€iency,

by comparing it with the naive method using three real world
networks. We used threeftrent values fokK, i.e,, K = 5,

rected links (the Wikipedia network). ties much more accurately anffieiently compared with the
For these networks, we generateffuiion samples with a naive method. Here we mention that we could obtain much
hot span using the AsIC model. According[itempeet al,  Petter results by using more than onéfasion sequence, say

2004, we set the dfusion probability for the normal span, M =5, but we have to omit the details due to space limita-
p1, to be a value smaller than'd, whered is the mean out-  tONS.

degree of a network, and set theéfdsion probability for the

hot span,p,, to be three times larger thgn. Thus,pr and g Discussion

p. are 01 and 03 for the blog network, @ and 06 for the

Coauthorship network, and@® and 006 for the Wikipedia We placed a simplifying constraint that the parametgrs
network, respectively. We fixed the time-delay parameter at andr,, are link independent, i.g,y = p, ruv =1 (Y(U,V) €

(r = 1) for all the networks because changimgorks only for  E), by focusing on single topic fiuision sequenced.Saito
scaling the time axis of the flision results. We set the hot et al, 2009; 2019 gave some evidences for this assumption.
span to 1 = 10, T, = 20] based on the observation on the They examined ,356 difusion sequences for a real blogroll
preliminary experiments. In all we generated five informa-network containing 5525 bloggers and 11552 blogroll
tion diffusion samples using these parameter values for eadimks, and experimentally confirmed thptandr that were
network, randomly selecting an initial active node for eachlearned from dierent difusion sequences belonging to the
diffusion sample. same topic were quite similar for most of the topics. This
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Figure 4: Comparison in computation time

observation naturally suggests that people behave quite simby fixing the previously determined change points. When to
larly for the same topic. stop can be determined by a statistical criterion such as AIC
In this paper, we considered AsIC model, but it is straight-or MDL. This algorithm requires parameter optimizatién
forward to apply the same technique to AsLT motighito times. Figure 5 is one of the preliminary results obtained for
et al, 2014 and to their SIS versions in which each node istwo distinct rect-linear patterns using five sequendés=(5)
allowed to be activated multiple times. The same idea caii case of the blog network. MDL is used as the stopping cri-
naturally be applied to opinion formation model, e.g. value-terion. The change pattern gfis almost perfectly detected
weighted voter moddKimuraet al., 20104. with respect to botlp; andt; (J = 5).
The change pattern considered here is the simplest one. We
can assume a more intricate problem setting such thatpoth7  Conclusion
andr change for multiple distinct hot spans and the shape
of change patterip is not necessarily rect-linear. One possi- In this paper, we addressed the problem of detecting the
ble extension is to approximate the pattern of any shape bghange in behavior of information filision from a limited
J pairs of time interval each with its correspondipg i.e., amount of observed fllision sequences in a retrospective set-
Zy = {([tj-1,t1, pj); ] = 1,---J3} (to = O,t; = o) and use ting, assuming that the fiusion follows the asynchronous
a divide-and-conquer type greedy recursive partitioning, stilindependent cascade (AsIC) model. We defined the “hot
employing the derivative of the likelihood functign as the  span” as the period during which thefdision probability is
main measure for search. More specifically, we first initial-changed to a relatively high value compared with the other
ize Z; = {(]0, ), p1)} wherep; is the maximum likelihood periods (called the normal spans). A naive method to detect
estimator, and search for the first change time pirwhich ~ such a hot span would have to iteratively update the candi-
we expect to be the most distinguished one, by maximizinglate hot span boundaries, each requiring parameter optimiza-
IG([t, =), P1)|.2 We recursively perform this operatidrtimes  tion such that the likelihood function is maximized. This is
very indficient and totally unacceptable. We developed a
2Note that the total sum @ = 0. novel and general framework that avoids the inner loop op-
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