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Abstract

We address the problem of efficiently estimat-
ing the influence function of initially activated
nodes in a social network under the suscepti-
ble/infected/susceptible (SIS) model, a diffusion
model where nodes are allowed to be activated mul-
tiple times. The computational complexity drasti-
cally increases because of this multiple activation
property. We solve this problem by constructing a
layered graph from the original social network with
each layer added on top as the time proceeds, and
applying the bond percolation with a pruning strat-
egy. We show that the computational complexity of
the proposed method is much smaller than the con-
ventional naive probabilistic simulation method by
a theoretical analysis and confirm this by applying
the proposed method to two real world networks.

1 Introduction

Social networks mediate the spread of various information
including topics, ideas and even (computer) viruses. The
proliferation of emails, blogs and social networking services
(SNS) in the World Wide Web accelerates the creation of
large social networks. Therefore, substantial attention has
recently been directed to investigating information diffusion
phenomena in social networks [Adar and Adamic, 2005;
Leskovec et al., 2007b; Agarwal and Liu, 2008].

Overall, finding influential nodes is one of the most cen-
tral problems in social network analysis. Thus, develop-
ing methods to do this on the basis of information diffu-
sion is an important research issue. Widely-used funda-
mental probabilistic models of information diffusion are the
independent cascade (IC) model and the linear threshold
(LT) model [Kempe et al., 2003; Gruhl et al., 2004]. Re-
searchers investigated the problem of finding a limited num-
ber of influential nodes that are effective for the spread of
information under the above models [Kempe et al., 2003;
Kimura et al., 2007]. This combinatorial optimization prob-
lem is called the influence maximization problem. Kempe
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et al. [2003] experimentally showed on large collaboration
networks that the greedy algorithm can give a good approx-
imate solution to this problem, and mathematically proved a
performance guarantee of the greedy solution (i.e., the solu-
tion obtained by the greedy algorithm). Recently, methods
based on bond percolation [Kimura et al., 2007] and sub-
modularity [Leskovec et al., 2007a] were proposed for effi-
ciently estimating the greedy solution. The influence max-
imization problem has applications in sociology and “vi-
ral marketing” [Agarwal and Liu, 2008], and was also in-
vestigated in a different setting (a descriptive probabilis-
tic model of interaction) [Domingos and Richardson, 2001;
Richardson and Domingos, 2002]. The problem has recently
been extended to influence control problems such as a con-
tamination minimization problem [Kimura et al., 2009].

The IC model can be identified with the so-called suscep-
tible/infected/recovered (SIR) model for the spread of a dis-
ease [Newman, 2003; Gruhl et al., 2004]. In the SIR model,
only infected individuals can infect susceptible individuals,
while recovered individuals can neither infect nor be infected.
This implies that an individual is never infected with the dis-
ease multiple times. This property holds true for the LT
model as well. However, there exist phenomena for which
the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere:
A blogger who has not yet posted a message about the topic
is interested in the topic by reading the blog of a friend, and
posts a message about it (i.e., becoming infected). Next, the
same blogger reads a new message about the topic posted by
some other friend, and may post a message (i.e., becoming
infected) again. Most simply, this phenomenon can be mod-
eled by an susceptible/infected/susceptible (SIS) model from
the epidemiology. Like this example, there are many exam-
ples of information diffusion phenomena for which the SIS
model is more appropriate, including the growth of hyper-link
posts among bloggers [Leskovec et al., 2007b], the spread
of computer viruses without permanent virus-checking pro-
grams, and epidemic disease such as tuberculosis and gonor-
rhea [Newman, 2003]. In this paper, we focus on an informa-
tion diffusion process in a social network over a given time
span on the basis of an SIS model.

Here, the SIS model is a stochastic process model, and the
influence of a node v at time-step t, σ(v, t), is defined as the
expected number of infected nodes at time-step t when v is



initially infected at time-step t = 0. We refer to σ as the
influence function for the SIS model. Developing an effec-
tive method for estimating σ is vital for various applications.
Clearly, in order to extract influential nodes, we must estimate
the value of σ(v, t) for every node v and time-step t. More-
over, note that the method developed can be easily extended
and applied to approximately solving the influence maximiza-
tion problem for the SIS model by the greedy alogrithm. We
can naively estimate σ by simulating the SIS model. How-
ever, this naive method is overly inefficient and not practical
at all as shown in the experiments. In this paper, we propose
a method for estimating influence function σ efficiently. By
theoretically comparing computational complexity with the
naive method, we show that the proposed method is expected
to achieve a large reduction in computational cost. Further,
using two large real networks, we experimentally demon-
strate that the proposed method is much more efficient than
the naive method with the same accuracy.

2 Information Diffusion Model

Let G = (V,E) be a directed network, where V and E (⊂
V ×V ) stand for the sets of all the nodes and (directed) links,
respectively. For any v ∈ V , let Γ(v;G) denote the set of the
child nodes (directed neighbors) of v, that is,

Γ(v;G) = {w ∈ V ; (v, w) ∈ E}.

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle
of disease in a host. A person is first susceptible to the dis-
ease, and becomes infected with some probability when the
person encounters an infected person. The infected person
becomes susceptible to the disease soon without moving to
the immune state. We consider a discrete-time SIS model for
information diffusion on a network. In this context, infected
nodes mean that they have just adopted the information, and
we call these infected nodes active nodes.

We define the SIS model for information diffusion on G.
In the model, the diffusion process unfolds in discrete time-
steps t ≥ 0, and it is assumed that the state of a node is either
active or inactive. For every link (u, v) ∈ E, we specify a
real value pu,v with 0 < pu,v < 1 in advance. Here, pu,v is
referred to as the propagation probability through link (u, v).
Given an initial set of active nodes X and a time span T ,
the diffusion process proceeds in the following way. Suppose
that node u becomes active at time-step t (< T ). Then, node
u attempts to activate every v ∈ Γ(u;G), and succeeds with
probability pu,v . If node u succeeds, then node v will become
active at time-step t + 1. If multiple active nodes attempt to
activate node v in time-step t, then their activation attempts
are sequenced in an arbitrary order. On the other hand, node
u will become inactive at time-step t+1 unless it is activated
from an active node in time-step t. The process terminates if
the current time-step reaches the time limit T .

2.2 Influence Function

For the SIS model on G, we consider a diffusion sample from
an initial active node v ∈ V over time span T . Let S(v, t)
denote the set of active nodes at time-step t. Note that S(v, t)

is a random subset of V and S(v, 0) = {v}. Let σ(v, t) de-
note the expected number of |S(v, t)|, where |X| stands for
the number of elements in a set X . We call σ(v, t) the influ-
ence of node v at time-step t. Note that σ is a function defined
on V × {0, 1, · · · , T}. We call the function σ the influence
function for the SIS model over time span T on network G.

It is important to estimate the influence function σ effi-
ciently. We can simply estimate σ by the simulations based
on the SIS model in the following way. First, a sufficiently
large positive integer M is specified. For each v ∈ V , the
diffusion process of the SIS model is simulated from the ini-
tial active node v, and the number of active nodes at time-step
t, |S(v, t)|, is calculated for every t ∈ {0, 1, · · · , T}. Then,
σ(v, t) is estimated as the empirical mean of |S(v, t)|’s that
are obtained from M such simulations. We refer to this esti-
mation method as the naive method. As shown in the exper-
iments, the naive method is extremely inefficient, and cannot
be practical.

3 Proposed Method

We propose a method for efficiently estimating the influence
function σ over time span T for the SIS model on network G.

3.1 Layered Graph

We build a layered graph GT = (V T , ET ) from G in the
following way. First, for each node v ∈ V and each time-step
t ∈ {0, 1, · · · , T}, we generate a copy vt of v at time-step t.
Let Vt denote the set of copies of all v ∈ V at time-step t.
We define V T by V T = V0 ∪ V1 ∪ · · · ∪ VT . In particular,
we identify V with V0. Next, for each link (u, v) ∈ E, we
generate T links (ut−1, vt), (t ∈ {1, · · · , T}), in the set of
nodes V T . We set Et = {(ut−1, vt); (u, v) ∈ E}, and define
ET by ET = E1∪· · ·∪ET . Moreover, for any link (ut−1, vt)
of the layered graph GT , we define the occupation probability
qut−1,vt

by qut−1,vt
= pu,v .

Then, we can easily prove that the SIS model with prop-
agation probabilities {pe; e ∈ E} on G over time span T is
equivalent to the bond percolation process (BP) with occu-
pation probabilities {qe; e ∈ ET } on GT .1 Here, the BP
process with occupation probabilities {qe; e ∈ ET } on GT is
the random process in which each link e ∈ ET is indepen-
dently declared “occupied” with probability qe. We perform
the BP process on GT , and generate a graph constructed by

occupied links, G̃T = (V T , ẼT ). Then, in terms of infor-
mation diffusion by the SIS model on G, an occupied link
(ut−1, vt) ∈ Et represents a link (u, v) ∈ E through which
the information propagates at time-step t, and an unoccupied
link (ut−1, vt) ∈ Et represents a link (u, v) ∈ E through
which the information does not propagate at time-step t. For

any v ∈ V , let F (v; G̃T ) be the set of all nodes that can be

reached from v (= v0) through a path on the graph G̃T . When
we consider a diffusion sample from an initial active node

v ∈ V for the SIS model on G, F (v; G̃T ) ∩ Vt represents the
set of active nodes at time-step t, S(v, t).

1The SIS model over time span T on G can be exactly mapped
onto the IC model on G

T [Kempe et al., 2003]. Thus, the result fol-
lows from the equivalence of the BP process and the IC model [New-
man, 2003; Kempe et al., 2003; Kimura et al., 2007].



3.2 Bond Percolation Method

Using the equivalent BP process, we present a method for
efficiently estimating influence function σ. We refer to this
method as the BP method. Unlike the naive method, the BP
method simultaneously estimates σ(v, t) for all v ∈ V . More-
over, the BP method does not fully perform the BP process,
but performs it partially. Note first that all the paths from a

node v ∈ V on the graph G̃T represent a diffusion sample
from the initial active node v for the SIS model on G. Let L′

be the set of the links in GT that is not in the diffusion sam-
ple. For calculating |S(v, t)|, it is unnecessary to determine
whether the links in L′ are occupied or not. Therefore, the BP
method performs the BP process for only an appropriate set
of links in GT . The BP method estimates σ by the following
algorithm:

BP method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times:

2-1. Initialize S(v, 0) = {v} for each v ∈ V , and set
A(0)← V , A(1)← ∅, · · ·, A(T )← ∅.

2-2. For t = 1 to T do the following steps:

2-2a. Compute B(t− 1) =
⋃

v∈A(t−1) S(v, t− 1).

2-2b. Perform the BP process for the links from B(t− 1) in

GT , and generate the graph G̃t constructed by the occu-
pied links.

2-2c. For each v ∈ A(t − 1), compute S(v, t) =⋃
w∈S(v,t−1) Γ(w; G̃t), and set σ(v, t) ← σ(v, t) +

|S(v, t)| and A(t)← A(t) ∪ {v} if S(v, t) 6= ∅.

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Note that A(t) finally becomes the set of information source
nodes that have at least an active node at time-step t, that is,
A(t) = {v ∈ V ; S(v, t) 6= ∅}. Note also that B(t − 1) is
the set of nodes that are activated at time-step t − 1 by some
source nodes, that is, B(t− 1) =

⋃
v∈V S(v, t− 1).

Now we estimate the computational complexity of the BP
method in terms of the number of the nodes, Na, that are
identified in step 2-2a, the number of the coin-flips, Nb, for
the BP process in step 2-2b, and the number of the links, Nc,
that are followed in step 2-2c. Let d(v) be the number of
out-links from node v (i.e., out-degree of v) and d′(v) the
average number of occupied out-links from node v after the
BP process. Here we can estimate d′(v) by

∑
w∈Γ(v;G) pv,w.

Then, for each time-step t ∈ {1, · · · , T}, we have

Na =
∑

v∈A(t−1)

|S(v, t− 1)|, Nb =
∑

w∈B(t−1)

d(w), (1)

and

Nc =
∑

v∈A(t−1)

∑

w∈S(v,t−1)

d′(w) (2)

on average.
In order to compare the computational complexity of the

BP method to that of the naive method, we consider mapping

the naive method onto the BP framework, that is, separating
the coin-flip process and the link-following process. We can
easily verify that the following algorithm in the BP frame-
work is equivalent to the naive method:

A method that is equivalent to the naive method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times:

2-1. Initialize S(v, 0) = {v} for each v ∈ V , and set
A(0)← V , A(1)← ∅, · · ·, A(T )← ∅.

2-2. For t = 1 to T do the following steps:

2-2b’. For each v ∈ A(t − 1), perform the BP process for
the links from S(v, t− 1) in GT , and generate the graph

G̃t(v) constructed by the occupied links.

2-2c’. For each v ∈ A(t − 1), compute S(v; t) =⋃
w∈S(v,t−1) Γ(w; G̃t(v)), and set σ(v, t) ← σ(v, t) +

|S(v, t)| and A(t)← A(t) ∪ {v} if S(v, t) 6= ∅.

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Then, for each t ∈ {1, · · · , T}, the number of coin-flips, Nb′ ,
in step 2-2b’ is

Nb′ =
∑

v∈A(t−1)

∑

w∈S(v,t−1)

d(w), (3)

and the number of the links, Nc′ , followed in step 2-2c’ is
equal toNc in the BP method on average. From equations (2)
and (3), we can see that Nb′ is much larger than Nc′ = Nc,
especially for the case where the diffusion probabilities are
small. By equations (1) and (3), we can also see that Nb′

is generally much larger than each of Na and Nb in the BP
method for a real social network. In fact, since such a net-
work generally includes large clique-like subgraphs, there are
many nodes w ∈ V such that d(w) ≫ 1, and we can expect
that

∑
v∈A(t−1) |S(v, t− 1)| ≫ |

⋃
v∈A(t−1) S(v, t− 1)| (=

|B(t− 1)|). Therefore, the BP method is expected to achieve
a large reduction in computational cost.

3.3 Pruning Method

In order to further improve the computational efficiency of the
BP method, we introduce a pruning technique and propose a
method referred to as the BP with pruning method. The key
idea of the pruning technique is to utilize the following prop-
erty: Once we have S(u, t0) = S(v, t0) at some time-step
t0 on the course of the BP process for a pair of information
source nodes, u and v, then we have S(u, t) = S(v, t) for
all t > t0. The BP with pruning method estimates σ by the
following algorithm:

BP with pruning method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times.

2-1”. Initialize S(v; 0) = {v} for each v ∈ V , and set
A(0) ← V , A(1) ← ∅, · · ·, A(T ) ← ∅, and C(v) ←
{v} for each v ∈ V .

2-2. For t = 1 to T do the following steps:



2-2a. Compute B(t− 1) =
⋃

v∈A(t−1) S(v, t− 1).

2-2b. Perform the BP process for the links from B(t− 1) in

GT , and generate the graph G̃t constructed by the occu-
pied links.

2-2c”. For each v ∈ A(t − 1), compute S(v, t) =⋃
w∈S(v,t−1) Γ(w; G̃t), set A(t) ← A(t) ∪ {v} if

S(v, t) 6= ∅, and set σ(u, t) ← σ(u, t) + |S(v, t)| for
each u ∈ C(v).

2-2d. Check whether S(u, t) = S(v, t) for u, v ∈ A(t), and
set C(v) ← C(v) ∪ C(u) and A(t) ← A(t) \ {u} if
S(u, t) = S(v, t).

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Basically, by introducing step 2-2d and reducing the size of
A(t), the proposed method attempts to improve the computa-
tional efficiency in comparison to the original BP method.

For the proposed method, it is important to implement ef-
ficiently the equivalence check process in step 2-2d. In our
implementation, we first classify each v ∈ A(t) according to
the value of k = |S(v, t)|, and then perform the equivalence
check process only for those nodes with the same k value.
How effectively the proposed method works will depend on
several conditions such as network structure, time span, val-
ues of diffusion probabilities, and so on. We will do a simple
analysis later and experimentally show that it is indeed effec-
tive.

4 Experimental Evaluation

4.1 Network Data and Settings

In our experiments, we employed two datasets of large real
networks used in [Kimura et al., 2009], which exhibit many
of the key features of social networks.

The first one is a trackback network of Japanese blogs. The
network data was collected by tracing the trackbacks from
one blog in the site “goo (http://blog.goo.ne.jp/)” in May,
2005. We refer to the network data as the blog network.
The blog network was a strongly-connected bidirectional net-
work, where a link created by a trackback was regarded as a
bidirectional link since blog authors establish mutual com-
munications by putting trackbacks on each other’s blogs. The
blog network had 12, 047 nodes and 79, 920 directed links.

The second one is a network of people that was derived
from the “list of people” within Japanese Wikipedia. We refer
to the network data as the Wikipedia network. The Wikipedia
network was also a strongly-connected bidirectional network,
and had 9, 481 nodes and 245, 044 directed links.

For the SIS model, we assigned a uniform probability p
to the propagation probability pu,v for any link (u, v) ∈ E,
that is, pu,v = p. According to [Kempe et al., 2003;
Leskovec et al., 2007b], we set the value of p relatively small.
In particular, we set the value of p to a value smaller than 1/d̄,
where d̄ is the mean out-degree of a network. Since the values
of d̄ were about 6.63 and 25.85 for the blog and the Wikipedia
networks, respectively, the corresponding values of 1/d̄ were
about 0.15 and 0.03. We decided to set p = 0.1 for the blog
network and p = 0.01 for the Wikipedia network.

All our experimentation was undertaken on a single PC
with an Intel Core 2 Duo E6850 3GHz processor, with 3GB
of memory, running under Linux.

4.2 Estimation Accuracy Comparison

We first compared the accuracy of the estimated influence
function σ of the proposed method (BP with pruning) with
that of the naive method. Both methods require M to be spec-
ified in advance as a parameter. As shown in section 3.2, the
number of coin flips is different in these two methods and
it is much larger in the naive method. However, this does
not mean that there is more randomness introduced in the
naive method and thus the convergence of the naive method
is faster. In fact for each single initially activated node v from
which to propagate the information, the number of indepen-
dent coin-flips is effectively the same for the both methods.
Thus by using the same value of M , both would estimate
σ(v, t) with the same accuracy in principle.

Table 1: Results for the naive method on the blog network.

Rank Node ID Influence Node ID Influence

1 2210 984.38 2210 985.74

2 2248 979.59 2248 980.72

3 3906 956.82 3906 956.57

4 3907 953.14 3907 953.89

5 146 931.03 146 931.62

6 155 929.68 155 930.21

7 3233 913.50 3233 911.89

8 3228 912.27 3228 910.52

9 140 910.04 140 910.37

10 2247 909.59 2247 910.00

Table 2: Results for the proposed method on the blog net-
work.

Rank Node ID Influence Node ID Influence

1 2210 984.74 2210 984.87

2 2248 980.41 2248 979.46

3 3906 956.97 3906 955.84

4 3907 953.04 3907 952.71

5 146 929.96 146 929.30

6 155 928.77 155 928.49

7 3233 912.61 3233 911.01

8 3228 912.18 3228 910.49

9 140 909.22 140 910.31

10 2247 909.12 2247 909.59

We have experimentally confirmed that use of M =
100, 000 gives in effect the same value of σ(v, t), for t =
1, · · · , 20. The following accuracy comparison is based on
M = 100, 000. Tables 1 and 2 show the ranking of the
influential initially activated nodes v evaluated at time-step
T = 20 for the blog network. The value of influence func-
tion σ(v, 20) is sorted in the decreasing order and the top 10
nodes are listed. We repeated the experiment several times
and listed two of them. Note that the naive method takes an
order of week to return the result and we could not set T a



Table 3: Results for the naive method on the Wikipedia net-
work.

Rank Node ID Influence Node ID Influence

1 4019 134.73 4019 133.83

2 3729 133.24 3729 132.42

3 7919 132.66 7919 131.98

4 4380 132.23 1720 131.68

5 1720 132.20 4380 131.34

6 4465 132.10 4465 131.07

7 1712 131.65 1712 130.69

8 3670 130.32 1073 129.48

9 1073 129.66 3670 129.46

10 1191 128.61 1191 128.38

Table 4: Results for the proposed method on the Wikipedia
network.

Rank Node ID Influence Node ID Influence

1 4019 134.25 4019 133.67

2 3729 132.91 7919 132.17

3 7919 132.50 3729 132.02

4 4380 132.03 4380 131.84

5 4465 131.95 1720 131.63

6 1720 131.59 4465 131.12

7 1712 131.33 1712 130.90

8 3670 130.27 3670 129.78

9 1073 129.22 1073 129.12

10 1191 128.71 1191 128.40

larger value. We note that the ranking is exactly the same
for the both methods. Tables 3 and 4 are the result for the
Wikipedia network. The nodes in the 4th and the 5th ranks
for the naive method, and the 5th and the 6th ranks for the
proposed method are interchanged respectively, but the rests
are the same. From these results we confirm that the proposed
method gives the same results as the naive method with the
same value of M when M is large enough.

4.3 Processing Time Comparison

Next, we compared the processing time of the proposed
method (BP with pruning) with the BP method without prun-
ing and the naive method. Here, we used M = 1, 000 in
order to keep the computational time for the naive method
at a reasonable level so that it runs for a larger T . Fig-
ures 1 and 2 show the total processing time to estimate
{σ(v, t); v ∈ V, t = 0, 1, · · · , T} as a function of time span
T for the blog and the Wikipedia networks, respectively. In
these figures, the circles, squares and triangles indicate the
results for the proposed method (BP with pruning), the BP
method without pruning, and the naive method, respectively.
Note that in case of the blog network, the processing time
for time span T = 100 is about 7 minutues, 2 hours and
37 hours for the proposed method, the BP method without
pruning and the naive method, respectively. Namely, the pro-
posed method is about 20 and 310 times faster than the BP
method without pruning and the naive method, respectively,
for T = 100 in case of the blog network. Note also that in
case of the Wikipedia network, the processing time for time
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Figure 1: Results for the blog network.
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Figure 2: Results for the Wikipedia network.

span T = 100 is about 3 minutes, 6 minutes and 8 hours
for the proposed method, the BP method without pruning and
the naive method, respectively. Namely, the proposed method
is about 2 and 150 times faster than the BP method without
pruning and the naive method, respectively, for T = 100 in
case of the Wikipedia network.

In general, the proposed method performs the best and the
BP method without pruning follows with an exception that
the proposed method can become slightly slower than the
BP method without pruning in cases where T is small be-
cause of the overhead introduced in pruning. The two BP
methods (with and without pruning) are much faster than the
naive method. The performance difference between the pro-
posed method and each of the other two methods increases
as time-step (or time span) increases. Moreover, the same
performance difference becomes larger for the blog network



than the Wikipedia network. The following simple analysis
explains this. Consider the extreme case where S(u, t) =
S(v, t) for ∀u, v ∈ A(t) and d(w) = d for ∀w ∈ S(v, t)
(v ∈ A(t)) at some time-step t. We denote |A(t)| = a and
|S(v, t)| = s. Then, we have Na = as, Nb = sd, Nb′ =
asd and Nc = asd′ on average for time-step t + 1 (see equa-
tions (1), (2) and (3)). Recall that d′ is the expected number
of the occupied links, which is calculated as pd, where p is
the common diffusion probability for all links. Further as-

sume that the pruning was ideal such that Ña = s and Ñc

= sd′, which respectively denote the number of nodes iden-
tified in step 2-2a and the average number of links followed
in step 2-2c” for the BP with pruning method. Then, if ad′

> d, i.e., ad′/d = ap > 1 holds, the improvement ratios of
the BP with pruning method over the naive method and the
original BP method are respectively asd/sd = a and asd′/sd
= ap. From our experimental results, we can estimate a to
be 310 for the blog network and 150 for the Wikipedia net-
work. Then we obtain ap to be 31 and 1.5 respectively, which
approximates the actual ratio each, 20 and 2.

5 Discussion

Here, we compare the method proposed in [Kimura et al.,
2007] that efficiently estimates the influence function also in
the framework of bond percolation for the IC and the LT mod-
els. The same method is not applicable to the SIS model.
The key idea there is to decompose the graph that is gener-
ated by the bond percolation into a set of strongly connected
components (SCC) and efficiently calculate the node reach-
ability. However, the layered graph in the proposed method
is a directed acyclic tree and the SCC decomposition would
not work effectively. The pruning technique in the proposed
method is a new technique to improve the computational effi-
ciency for the SIS model, just like the SCC decomposition is
for the IC and the LT models.

In this paper we did not directly address the influential
maximization problem, but only proposed a new method to
efficiently estimate the influence function. We can think of
two maximization problems, that is to find the initial active
nodes with a specified number that maximize 1) the expected
number of nodes that have been activated till the end of time-
step T and 2) the expected number of active nodes at the end
of time-step T . The proposed method can easily be extended
to efficiently estimate the marginal gain of the objective func-
tion of each of the optimization problems when the problems
are to be solved by greedy algorithms.

6 Conclusion

Finding influential nodes is one of the most central problems
in the field of social network analysis. There are several mod-
els that simulate how various things, e.g., news, rumors, dis-
eases, innovation, ideas, etc. diffuse across the network. One
such realistic model is the susceptible/infected/susceptible
(SIS) model, an information diffusion model where nodes
are allowed to be activated multiple times. The computa-
tional complexity drastically increases because of this mul-
tiple activation property, e.g., compared with the suscep-
tible/infected/recovered (SIR) model where once activated

nodes can never be deactivated/reactivated. We addressed the
problem of efficiently estimating the influence function under
the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-step t for t = 1, · · · , T starting from an
initially activated node v (for all v ∈ V ) at time-step t = 0.
We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of
the existing layers as the time proceeds, and applying the
bond percolation with a pruning strategy. We showed that the
computational complexity of the proposed method is much
smaller than the conventional naive probabilistic simulation
method by a theoretical analysis. We further confirmed this
by applying the proposed method to two real world networks
taken from blog and Wikipedia data. Considerable reduction
of computation time was achieved without degrading the ac-
curacy.
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