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SUMMARY  The volume of mass unsolicited electronic mail,
often known as spam, has recently increased enormously and
has become a serious threat not only to the Internet but also
to society. This paper proposes a new spam detection method
which uses document space density information. Although the
proposed method requires extensive e-mail traffic to acquire the
necessary information, it can achieve perfect detection (i.e., both
recall and precision is 100%) under practical conditions. A direct-
mapped cache method contributes to the handling of over 13,000
e-mail messages per second. Experimental results, which were
conducted using over 50 million actual e-mail messages, are also
reported in this paper.

key words: spam, unsupervised learning, document space den-
sity, direct-mapped cache

1. Introduction

Mass unsolicited electronic mail, often known as
spam/[1] *, has recently increased enormously and has
become a serious threat not only to the Internet but also
to society. This is especially true in Japan, where mo-
bile phones have e-mail capability and e-mail messages
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*Mass electric mail includes both unsolicited mail and
solicited mail. In general, mass solicited mail includes mail
magazines, error mails, etc., and spam mainly refers to un-
solicited mail. In this paper, spam refers to both types of
mass mail. Since a short white list, i.e., a database which
stores the list of proper senders, seems to work well with the
method presented in this paper, we aren’t concerned about
this confusion of solicited and unsolicited mail. See Section
5.2 for details.

through these devices have become indispensable to so-
ciety. Under these circumstances, there exists a strong
requirement for a spam filter which can protect large
mail servers. However, none of the currently known
spam filters can effectively cope with the huge volume
of traffic with sufficient accuracy.

Even though a lot of studies have been undertaken
to create and improve spam filters, most of them are
for e-mail clients which are used on a terminal. Such
spam filters, for e-mail clients, should be accurate, easy
to personalize, and easy to use. However, the required
characteristics of a spam filter for e-mail servers are
slightly different. They are:

e High processing speed:
Large ISP e-mail servers have to handle billions
of e-mail messages per day. This means that the
spam filter has to handle more than 1000 e-mail
messages per second. Since the most well known
spam filter program requires 10 to 100 milliseconds
to deal with each e-mail message, performance im-
provement is necessary.

e Ease of maintenance:
Most of the traditional spam filtering methods re-
quires maintenance of their databases so that they
can handle new types of spam. Unfortunately,
spammers tend to be very productive and are al-
ways producing new types of spam. This makes
maintenance work difficult, especially for e-mail
servers. The learning function of the traditional
method is adequate for individual customers but
not for groups of customers. This also makes main-
tenance difficult. A maintenance free method such
as an unsupervised learning method is desirable.

e High accuracy:
Although accuracy is important for client spam fil-
ters, it is also important for a spam filter to be
accurate for e-mail servers. When considering an
anti-spam arrangement, the requirements for judg-
ment accuracy are different between clients and
servers. A server requires misjudgment probability
of normal e-mail message being marked as spam to
be zero, whereas that strict requirement is not as
necessary for clients. In other words, a method
of anti-spam arrangement that achieves the above
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Fig.1 Vector Representation of E-mail Message

requirement will only be implemented within a net-
work server environment.
e Privacy protection:

In order to be implemented on an e-mail server
within a network, it is desirable that a method and
related operations do not directly look or reveal the
content of e-mail. Some type of abstraction needs
to be done at the first stage of the method.

This paper reports on a new spam detection
method for e-mail servers. Two key ideas of our study
are 1) the use of document space density [2] informa-
tion, and 2) an efficient implementation of the first idea
through the use of a direct-mapped cache [3]. The pro-
posed method requires extensive volumes of e-mail traf-
fic to acquire the necessary density information. Thus
it is not adequate to use this method for client termi-
nals. However, the latter three characteristics, i.e., ease
of maintenance, high accuracy and privacy protection,
are achieved. To realize the first characteristics, i.e.,
high processing speed, an on-line unsupervised learn-
ing engine with a direct-mapped cache method is de-
veloped.

Section 2 of this paper first surveys related work
and determines their limitations in order to clarify the
motivation of this research. Section 3 explains the anal-
ysis of document space density with a direct-mapped
cache engine. It also explain the possible refinements
of basic algorithm. Section 4 reports on the experimen-
tal results that used over 50 million actual e-mail mes-
sages. It also compares our method with other meth-
ods, and compares the basic algorithm with possible
refinements. Section 5 discusses related topics. Finally,
Section 6 concludes our findings.

2. Related work

Since spam has become a serious threat to society, a
lot of study has been undertaken to create spam filters
to protect e-mail users, e.g., [4]-[7], and [8]. Some of
them use a Bayesian-like approach [5],[6], or a rule-
based approach [7], and some use a checksum database
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[4], [8] to detect spam.

Vector representation, e.g., TF IDF[2], combined
with machine learning techniques [9] are commonly
used to detect spam. A fundamental dilemma is the
difficulty of the learning problem. Figure 1 shows a
sample vector representation of a group of e-mail mes-
sages. In Figure 1, X axis is the first hash value of the
e-mail text and Y axis is the second hash value (See Sec-
tion 3 for the details). Spammers today seem to have a
great deal of knowledge about techniques used to detect
spam. They try to make the size of their information
much smaller. For example, they make shorter spam
message with minor alterations. They also add ran-
dom words so that random words disturb the statistical
analysis. Such tricks make the learning task difficult.
In other words, finding a function to discriminate be-
tween spam and non-spam on this representation alone
is not a simple task.

We also use related representation (See next sec-
tion for details). However, to treat Japanese and En-
glish e-mail together in an efficient way requires that
we choose hash-based text representation. Hash-based
text representation is one of the basic text representa-
tion methods [10] and it is used for a variety of pur-
poses, e.g., text retrieval [11], text compression [12],
and spam filtering[4], [8]. Since hash-based text rep-
resentation doesn’t require a morphological analysis of
Japanese text, it therefore improves the performance of
our method.

A high speed text search engine is an important
component of our method. A direct-mapped cache is
the core of our engine. It is a kind of hash table that
simply overwrites duplicate entries, and is originally de-
veloped as a substitute of the LRU cache to implement
cache memory of CPU [3]. LRU performance on heav-
ily maldistributed data is studied in various network
applications. For example, [13] analyzes WWW traf-
fic and reveals LRU’s high performance on gathering
maldistributed WWW data. In our study, the direct-
mapped cache [3] is used to gather maldistributed spam
messages.

3. Density-based spam detector

The analysis of document space density itself and the
unsupervised learning engine with a direct-mapped
cache are the key ideas of our study. This section ex-
plains these two ideas with an implemented system.
Possible refinements of memory management are also

described.
3.1 Document Space Density

Although most of the conventional spam filters use vec-
tor representation for the basic representation of data,
we use document space density [2] as the key piece of
information to distinguish spam messages from other e-
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mail messages. More precisely, we just count the num-
ber of similar e-mail messages. By counting the number
of similar e-mail messages, we can estimate the local
document density around the mail message.

Figure 2 shows the histogram of e-mail messages
shown in Figure 1. The X and Y axis are that of Figure
1. The Z axis is the number of similar e-mail messages.
As clearly shown in the Figure, the use of the histogram
makes distinguishing spam from other e-mail far eas-
ier. Actually, experimental results reported in Section
4 showed that simple threshold is enough to distinguish
spam messages from other e-mail messages.

Spammers conduct marketing, commercial, and
even unethical activities by sending out a huge amount
of spam. This high volume is required as it is the
only way to receive enough economical benefit. There
is therefore a heavy maldistribution on e-mail traffic,
making document space density a good index to iden-
tify spam. Although ordinary users seldom send more
than 1000 similar e-mail messages, spammers have to
send the same spam far more than that. Note that some
of the unethical spam messages are said to be difficult
to judge even for a human. However, the existence of
over thousand identical e-mail messages makes the fact
clear.

3.2 System Configuration

Figure 3 shows the system configuration of MMD
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Fig.4 Hash-based Vector Representation

(Mass-Mail Detector) that we have implemented. By
monitoring network packets at the switching hub, the
SMTP handler analyzes SMTP traffic between mail
servers and reconstructs the text of e-mail messages.
Then, Vectorizer transfers the text into vector repre-
sentation.

There are various vector representations, such as
term frequency and N gram. Although they are can-
didate representation, we use a hash-based vector rep-
resentation (See Figure 4). From each e-mail message,
hash values of each length L substring are calculated,’
and then the first N of them are used as vector repre-
sentation of the e-mail message.

Japanese, English and other languages are used in
mobile phone e-mail in Japan. Bigram is known to
work well for Japanese. Term frequency is commonly
used for English. The hash-based representation can
extract enough information from various languages in
a singular and simplistic way. Its efficiency is also the
reason we choose this as our representation method.

3.3 Caching Architecture

An unsupervised learning engine is used to find spam
from huge volumes of e-mail traffic. Since it has to han-
dle over 1000 e-mail messages per second and it needs
to check a million previous e-mail messages to handle
the current single e-mail message, naive implementa-
tion requires over a billion similarity checks and this
isn’t realistic. To solve this problem, we have devel-
oped a new type of unsupervised learning engine which
uses a direct-mapped cache [3] architecture to speed up
processing.

Figure 5 shows the data structure and Figure 6
shows the algorithm. The hash database in Figure 5
has M entries. It stores the hash values of each e-mail
message and the number of similar e-mail messages.
The direct-mapped cache has m entries, and copies the
n% of the hash values. It also stores the pointer to the

tWe use the standard hash function provided in linux C
library.
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e-mail’s entry in the hash database. To check a single
piece of e-mail message, in order to find similar previous
e-mail message which share S% of the same hash values,
the algorithm shown in Figure 6 first checks the direct-
mapped cache. The direct-mapped cache is a simple
hash table, and the algorithm can find the entries of e-
mail messages which have the same hash value through
this cache.

More precisely, the algorithm checks the entry of
the direct-mapped cache for each hash value of new
e-mail message. If the entry of direct-mapped cache
points an entry in hash database, the algorithm com-
pare the similarity between the new e-mail message and
the stored mail message in the hash database that is
pointed by the direct-mapped cache entry.

The contents in the direct-mapped cache are sim-
ply overwritten if the hash values are overlapped. When
all the hash values in the direct-mapped cache are over-
written by other e-mail messages, the algorithm deletes
the entry in the hash database for the overwritten e-
mail message so that it can reuse the memory space of
the hash database.

3.4 Auxiliary Memory Management for Hash Database

Although the mechanism described so far has a basic
memory management function, there exists a possibility
where the algorithm encounters a lack of free space for
new hash database entry. Table 1 shows the possible
auxiliary memory management methods that are used
in such a case.

RND makes memory space for the new entry by
randomly deleting the present hash database entry
when the basic memory management mentioned above
is not enough. RND2 is a slightly modified version. It
retains the entries that are fetched more than once, and
entries that are fetched only once will be deleted at ran-
dom. LRU allocates memory space for the new entry
by deleting a least recently used entry. LRU2 also uses
a LRU stack. But the entries that are fetched more
than 2 times are retained.
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RND Basically, the memory space for the hash
database entry will be reused by collecting the
spaces that are deleted by the procedure Set-
DMC-Entry. If this default allocation is not
enough, the memory space for the new entry will
be allocated by randomly deleting present hash
database entries.

Modified version of RND. The entries that are
fetched more than 2 times are retained. Entries
that are fetched only once will be deleted at ran-
dom.

RND2

LRU If the default allocation is not enough, memory
space for the new entry will be allocated by delet-
ing a least recently used entry.

LRU2 Modified version of LRU. But the entries that are
fetched more than 2 times are retained.
Table 1  Auxiliary Memory Management Methods

Total Number of e-mail message 53,985,002
Total Number of “spam” 12,324,762
m: DMC entry 2,000,000
M: Hash Database entry 1,000,000
D: “spam” threshold 100
L: length of substring 9
N: Number of hash values for each e-mail 100
n: Percentage of hash values copied in DMC 10 %
S: Similarity threshold 90 %
Memory Size 825 MByte
CPU time 4340 sec
Number of “spam” Type 14,320
Percentage of “spam” Type 22.8 %
Estimated Recall (See Fig 8) 100 %
Precision 100 %
Table 2 Summary of Experimental Results

The next section compares experiments of these
auxiliary memory management methods.

4. Experimental Results

Unfortunately, we are not allowed to disclose all of our
findings in order to protect privacy. This section only
summarizes important statistics.

4.1 Results on “spam” through Mobile Phone

We have analyzed actual SMTP traffic transferred
through the segments of a genuine mail site. Since no
single segment transfers all of the SMTP traffic, we
were only able to analyze a part of the overall traffic.
A Pentium 4, 2.4 GHz, desktop computer with 2Gbytes
of memory was used for the experimentation.

Table 2 summarizes the results. 22.8% of the total
number of e-mail messages are spam, and the distribu-
tion of similar e-mail message is shown in Figure 7. As
seen in various network data, [13] for example, the dis-
tribution of similar e-mail messages follows Zipf’s law
(See Figure 7).
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Main Procedure Check-Mail
Input

T: Text of New Mail
Var

h: Hash value
begin

New-Hash-DB-Candidate

< Make N Hash values from T’

// Compare Hash Values of New Mail T
// and Mails stored in Hash Database.
// Mails in Hash Database
// are Searched through DMC.
for h in New-Hash-DB-Candidate do
// Entry of h in DMC points
// Mail in Hash Database.
if Similar(Mail in Hash Database
pointed by h,
New-Hash-DB-Candidate)
then Update-Similar-Mail (Mail in
Hash Database pointed by h)
exit Check-Mail

// If No Similar Entry exists

// in Hash Database
Store-New-Mail(New-Hash-DB-Candidate)
end

Function Similar
Input
H1: Hash Database entry
H2: New-Hash-DB-Candidate
begin
if H1 and H2 share S same hash value
then return Yes
else return No
end

Fig. 6

Procedure Update-Similar-Mail
Input
H1: Hash Database entry
Var
h: Hash value
begin
Increment “No.of Similar Mail” of H1
// Copy n% of hash values from H1 to DMC
for first n h in H1 do
Set-DMC-Entry(current h, H1)
if No.of Similar Mail > D
then Mark H1 as “spam”
end

Procedure Store-New-Mail
Input
H2: New-Hash-DB-Candidate
Var
h: Hash value
begin
Store H2 as New Hash Database Entry
// Copy n% of hash values from H2 to DMC
for first n h in H2 do
Set-DMC-Entry(current h, H2)
Set “No.of Similar Mails” as 1
Set “No.of DMC Entry” as n
end

Procedure Set-DMC-Entry
Input
h: Hash value
H: Hash Database Entry
begin
// If h overwrites old entry,
// Decrement “No.of DMC' Entry”
if Previous h already point
Hash Database Entry: e
&e#H
then Decrement “No.of DMC Entry” of e

// Delete Hash Database entry
// pointed by no DMC entry.
if “No.of DMC Entry” of e = 0
then Delete e from Hash Database
& Clear DMC entry which point e

Set DMC Entry for & so that it points H
end

Mass Mail Caching Algorithm



The similarity threshold used in the experimenta-
tions is 90%. E-mail messages transferred more than
100 times are marked as spam. 100% of marked e-mail
messages are mass mail messages as is defined. One
million entries for the hash database and two million
entries for the direct-mapped cache consumed 825M
bytes. 100 substrings whose length being 9 are used to
make hash values for each single e-mail message. 10%
of the hash values in the hash database are copied in
the direct-mapped cache.

Note that the results might include both unso-
licited and solicited mass e-mail messages. However re-
moving solicited mass e-mail messages, e.g., mail-based
magazines, by using a short white list is not difficult,
and we aren’t concerned about the confusion between
solicited and unsolicited mail. (See Section 5.2 for de-
tails). A short white list seems to work well with den-
sity based analysis.

Since counting the recall rate directly from actual
e-mail traffic has privacy issues and is difficult, we have
performed preparatory experimentation. From the traf-
fic mentioned above, the first 10 million e-mail messages
are extracted and merged with pseudo spam messages.
The preparatory experimentation measures the recall
rate over this pseudo spam (See Figure 8).

100 seeds of spam are prepared and each seed is
randomly inserted so that the total number of each
pseudo spam message becomes some specific number
(10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 are used
in the experimentation). In Figure 8, hatched squares
show the number of totally missed seed. Of all the seed
inserted ones, inserted more than 40 times, were found.
25% of the seed inserted 10 times were found, and 75%
were missed.

In the experiment, some occurrences of seed were
missed and the recall rate (ratio of found and inserted
spam) shows on a different line (white squares in Figure
8). When each seed is inserted 100 times, 100% of in-
serted spam are found. Since this number means that
when a spammer sends 1000 commercial e-mail mes-
sages per day, all of them are detected. Since this seems
to force a change in the current spammer’s business
model, we tentatively use 100% as the recall rate of our
methods. Although the proposed method misses some
spam when its occurrence is small (See Section4.3),
both the precision and recall rate of our method are
good enough in practical sense.

Figure 9 shows the cache consumption. The con-
tinuous line shows the hash database consumption (per-
centage) and the cross shows the direct-mapped cache
consumption. After the direct-mapped cache is filled,
the consumption of the hash database becomes stable
and is about 90%.

When we designed these experimentations, we
thought the similarity threshold (S in Table 2) as an im-
portant tuning parameter to handle randomized spam
bodies. However, the preliminary experimentations
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show that “90%” works well, and we did not search
the best value for this. Though this value seems to be
good enough to handle today’s spam through the mo-
bile phone, the best value for other spam, such as spam
though the internet, might be different. The parameter
D, L, N, n, and S in Table 2 are the parameters which
have to be tuned to handle different type of spam.

4.2 Comparison with Conventional Methods

In the experiment shown in Table 2, our method could
handle 13,361 mail messages per second (1.25 billion e-
mail messages per day). None of the known spam filter
seems to be able to handle over thousand e-mail mes-
sages per second. Additionally, most of them requires
a supervisor for learning. Thus, as far as we know, our
method is the only solution for our purpose, i.e, filter-
ing out spam e-mail from regular mail traffic passing
through our server without human maintenance.
Table 3 shows some comparisons. It shows the
performance of the known methods on our mail data.
First 10,000 mail messages are used for this experimen-
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tation. To setup learning, spam messages, detected by
our method, are marked as spam and others are marked
as non-spam.

Support Vector Machine (SVM [14]), Naive Bayes
(NB [15]), C4.5 [16], and K-Nearest Neighbor (K-nn [9])
are results of well-known machine learning methods.
Weka [17] implementation are used in the experiments.
Since these are general supervised learning methods,
the contents of our hash database are used as the at-
tributes. The first two thirds of the input are used
for training. The latter one third of them are used for
testing.

bsfilter [18] is an implementation of the method
proposed in [6]. It is a slightly modified version so that
it can handle Japanese. SpamA shows the results of
SpamAssassin [7]. Although it does not require learn-
ing, the lack of Japanese handling results in its low pre-
cision. Since these two are spam filters, original e-mail
messages are directly input into the system.

None of them have enough processing speed and
none of them shows a recall rate of over 90%. Among
them, SVM has the most desirable results (81% recall
& 99% precision within a reasonable amount of CPU
time). However, the difference between SVM’s results
and that of our method is significant. Also, the dif-
ference between supervised learning and unsupervised
learning is significant, from a practical point of view.
The most apparent difference is the CPU time required.
SVM could only handle about 13.2 (= 10,000/756) e-
mail messages per second. In other words, the required
CPU time of SVM is 1009 times more than that of our
method. Therefore SVM is too slow for our purposes.

4.3 Comparison of Memory Management Methods

Our method misses extremely rare spam messages. It
also misses spam when used with a smaller sized hash
database. Figure 10 and 11 show the recall rates of
the proposed method on rare spam messages. They

[ [[ SVM] NB [ C4.5 [ K-nn [[ bsfilter] SpamA].

Total CPU time (sec) 756 79 254 10881 65 225

Learning time (sec) 744 22 244 NA 33 NA

Memory Size (MB) 191 70 58 81 327 192

Recall (%) 81| 47 | 77| s1 73 33

Precision (%) 99 97 95 100 98 22

Speed Ratio 1009 106 379 14528 87 300
Table 3 Comparison with Other Methods
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Fig.10 Effect of Memory Management

also show the improvement by the auxiliary memory
management methods.

When the number of the direct-mapped cache en-
try (i.e., 2,000,000) is twice of the number of the hash
database entry (i.e., 1,000,000), only the basic mem-
ory management controls the hash database entry, and
all RND, RND2, LRU, LRU2 show the same perfor-
mance (See Figure 10, dotted line). When the num-
ber of the direct-mapped cache entry is 2,500,000, the
memory space for the hash database are fully used and
the performance of RND2, LRU and LRU2 are slightly
improved (solid line in Figure 10). However, the per-
formance of RND decreased (dotted plots). The perfor-
mance improvement of RND2, LRU and LRU2 is due to
the fully used hash database. However, extra capacity
of the direct-mapped cache (See Figure 12) disturbs the
function of basic memory management and decreases
the performance of RND.

Figure 11 shows the recall rates of the proposed
method with a smaller size of hash database. Both
LRU2 and RND2 works well with smaller size of hash
database. In this experiment, each seed of pseudo spam
is randomly inserted 40 times. Both LRU2 and RND2
works well with smaller size of hash database. Although
LRU works well with a larger size of hash database,
its recall rate decreases with 300,000 and less hash
database entries. Both LRU2 and RND2 retain the
entries which are observed more than once. This sup-
ports the advantage of the memory management strat-
egy which retains the multiply accessed hash database
entries.
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Figure 13 shows the number of deleted hash
database entries during the experiments (RND2 with
2,500,000 DMC entry). Y-axis is the number and
X-axis is the time spent from the experimentation
start. Since the number of DMC entry was fixed to be
2,500,000, the auxiliary memory management methods
have to delete much entries with fewer hash database
entries.

Note that the performance shown in the previous
subsection is good enough from practical viewpoints.
The experimental results shown in this subsection are
just to clarify the theoretical limitations and the possi-
ble improvements of the proposed method. As clearly
shown, the performance of the proposed method can
be further improved through appropriate memory man-
agement mechanisms.

5. Discussion
5.1 Accuracy & Evaluation Method

The results shown in Table 3 are worse than reported

Deleted Entry

Deleted Entry

Deleted Entry

Deleted Entry
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| [ SVM [ NB [ C45 [ K-nn |

2/3 Train | Recall (%) 81 47 7 81
1/3 Test | Precision (%) 99 97 95 100
10 fold Recall (%) 100 88 100 100
CV | Precision (%) 100 96 100 100

Test = Recall (%) 100 85 99 100
Train | Precision (%) 100 97 99 100

Table 4  Testing methods

elsewhere [5]-[7]. Since most of them do not fully spec-
ify the experimental conditions and the data set used
is different, we can not firmly conclude the reason for
this difference. But experimental results shown in Ta-
ble 4 show the difficulty in evaluating the performance
of spam filters. Table 4 shows the same performance
measures shown in Table 3. But it also shows the accu-
racy measured by 10 fold cross validation and accuracy
on the training test.

Although cross validation is one of the standard
ways to evaluate the accuracy of learning systems, it
is not an appropriate way to evaluate the accuracy
of spam filters. As shown in the Table, the accura-
cies measured by cross validation are similar to that
on training data. Since a spammer sends a lot of the
same spam message, random sampling of cross valida-
tion tends to make an equivalent training set and test
set. Since most of the spam in the test set is contained
in the training set, accuracy measured by the cross val-
idation looks like the accuracy on the training set and
is misleading.

However, in real situations, a spammer tends to
create a new type of spam so that it can avoid spam
filters. To emulate such situations, the first two thirds
of data are used for training and the latter one third
is used for testing. With sufficient amount of data it
becomes a better method for evaluation. Table 3 shows
such results.

To check what happens in a real life situation, we
performed different experimentations. In the experi-
mentations, we used e-mail messages in a public mail-
ing list to emulate spam messages, and we used e-mail
messages in a different mailing list to emulate ordinary
messages. The use of a public mailing list enables us
to undertake careful analysis of e-mail contents, which
we are not able to perform on e-mail traffic discussed
in the previous section.

The first mailing list has 528 messages (group S).
The content of the messages relates to the Unix oper-
ating system. The second mailing list has 1583 mes-
sages (group H). The content of these messages relates
to Chinese language. bsfilter was trained with all the
messages in group H and half of the messages in group
S. Half of the messages in group S was used to check
the change of recall rate. Figure 14 shows the results.

As clearly shown in Figure 14, bsfilter miss-
classified most of the messages after some period, in
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Fig.14 Effect of Topic Change

addition the recall rate decreased. After careful anal-
ysis of the messages in group S, it is revealed that a
new topic starts in that period. In the mailing list, the
participants first discuss the general characteristics of
Unix. Then, from that period onward, they start a new
discussion about how to compile some specific program
on Unix. This change in topic disturbs the analysis of
bsfilter and reduces its recall rate.

Although a new type of spam, which introduces
a new product, seems to make a similar disturbance,
it appears that cross validation cannot evaluate these
phenomenon.

Note that the recall rate of bsfilter can be increased
by on-line learning (See Figure 15). By reconstructing
its database when it encounters new message, we can
increase the recall rate of bsfilter. This emulates a more
realistic situation of using a spam filter for personal use.
However, cross validation cannot handle this situation.

5.2 Maintenance & Privacy

When we use supervised learning methods like [5] and
[6], such methods require maintenance tasks. As shown
in Figure 14, the accuracy of such methods decreases
without maintenance. From the maintenance point of
view, our unsupervised learning method has the follow-
ing two advantages:

e Supervised learning methods require a positive and
negative example of spam. This implies that some-
one has to check the contents of the mail manually
and therefore has the potential to violate privacy.
Since our method does not require any supervisors,
user’s privacy is inherently protected.

e Although our method requires a white list, main-
taining such a white list is relatively easy, espe-
cially when comparing it to maintaining a black
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list. The use of open mail relay servers and fak-
ing of the header information are common tech-
niques of spammers. This makes the compilation
of a black list difficult. None of the solicited mass e-
mail messages are reported to fake its header infor-
mation. The designing of a user interface which en-
ables the user to declare solicited mass mail senders
seems to be straight forward. Thus we choose a
method which works with a white list.

Note that a white list can improve the precision by
marking the mail messages from registered sites as non-
spam messages. But it cannot improve the recall rate.
To improve the recall rate, we need a black list. Since
the recall rate of the conventional methods shown in
Table 3 are relatively low, we need a black list if we
wish to use the conventional methods. However, the
required maintenance work of the black list prevent us
from the use of conventional methods.

6. Conclusion

This paper reports on a new spam detection method
which analyzes document space density to detect spam.
The characteristics of this method are:

e High processing speed:

With a single small desk-top computer, e.g., Pen-
tium 4, 2.4 GHz with 825M bytes of memory, this
method can handle over 13,000 e-mail messages
per second (1.25 billion e-mail messages per day).
Though known methods tend to require extensive
computing resources, the performance of this pro-
posed method is good enough to support a large
mail server cluster of an ISP using a small PC. The
direct-mapped cache method contributes to the ef-
ficient analysis of document space density.
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e Maintenance free:
Most of the traditional spam filtering methods re-
quires maintenance of its database so that it can
handle new types of spam. An unsupervised learn-
ing engine used in the proposed method can au-
tomatically update its database, and does not re-
quire such maintenance. Updating the database
requires ISP operators to do a lot of maintenance
work. Therefore, traditional spam filtering meth-
ods are not adequate enough to be used for e-mail
servers that have a large number of customers.

e 100% recall rate and 100% precision:
The results of our unsupervised learning engine
might include both unsolicited and solicited mass
e-mail messages. Since removing solicited mass e-
mail message, e.g., a mail-based magazine, with a
short white list, is not difficult, ISP operators are
able to use this method as a perfect spam detector
in a practical sense. Experimental results, which
used over 50 million actual pieces of e-mail traffic
prove this accuracy.

e Privacy protection:
Hash based text representation and an unsuper-
vised learning framework inherently protect user’s
privacy.

This paper also compares the basic memory manage-
ment algorithm with possible refinements and shows
the fact that the performance of the proposed method
can be further improved through appropriate memory
management mechanisms.

We believe that the proposed method is good
enough to be used under practical situations. However,
to fully utilize the proposed spam detection method to
protect customers, the enrichment of anti spam and re-
lated law is necessary. The legal issues of mass e-mail
are beyond the scope of our study.
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