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Abstract

An Auto-Regressive eXogenous input (ARX) model has
been widely used in engineering fields to model dynamic re-
sponse of a system to exogenous factors. A difficulty in this
modeling is the determination of an appropriate model com-
plexity, i.e., orders, for given data. In this paper, we develop
a new and practical approach to determine the appropriate
orders. Moreover, we apply the developed technique to a
real marketing data, and analyze dynamic response char-
acter of sales amount to advertisement and sales promo-
tion. In marketing study, static response of sales to some
exogenous factors such as advertisement and sales promo-
tion have been analyzed. However, if we can model dynamic
response of sales to exogenous factors, more precise strate-
gies of the sales to reduce the risk of the item stock manage-
ment and increase the associated profit can be designed.

1 Introduction

In this paper, an approach is proposed to model the dy-
namics of an objective system based on the temporal be-
haviors observed from the system under some exogenous
influences. One of the representative and quantitative dy-
namics modeling approaches which have been often used
in the time series analysis is Auto-Regressive eXogenous
input (ARX) modeling [1]. Similarly to the many other
empirical modeling approaches based on given time series
data, a main issue in the modeling is to determine an appro-
priate model complexity well capturing the dynamic struc-
ture of the objective system. In terms of the ARX mod-
eling, its complexity is defined by the model orders which
are the finite numbers of the past consecutive quantitative
states to take into account under a constant time interval
sampling. This issue has been explored in many aspects in-
cluding the indices of AIC[2], BIC[3] and MDL[4]. How-

ever, these works assume that the time series data is ob-
served from the system without any uncertainty and distor-
tions such as sensing accuracy limit, discretization errors
from analog to digital information and unexpected biases
not following any statistical expectations and distributions.
This assumption strongly limits the applicability of these
criteria to determine the model complexity in many prac-
tical modeling problems. This issue on the use of the in-
formation criteria in practical situations have been partially
discussed, and some ideas to use the difference of the in-
dices between two candidate models such as ∆AIC[5] has
been proposed. However, the selection of the appropriate
model order based on the indices still remains within some
artistry.

Another important issue which has not been explored in
the selection of the appropriate ARX model orders is the
efficient and complete search algorithm of the orders hav-
ing the optimal index value. In conventional approaches, a
simple line search is used in which the index of each model
order is exhaustively computed up to a limit order. How-
ever, in case that an ARX model has multiple exogenous
inputs, the number of the parameters to define the model
orders is also more than one. Because the number of the
parameter combinations of the ARX model to be explored
within some order limit is exponential to the number of the
parameters, the search of the optimal model orders becomes
easily intractable under the increase of the exogenous in-
puts. In this paper, we propose a novel information crite-
rion named ∆AIC* which is an extension of the ∆AIC, and
further propose an efficient and complete search algorithm
of the parameter combination of the optimal model orders
under the criterion.

Another objective of this paper is to apply the proposed
novel approach of the ARX modeling to the real world in-
vestigation in the marketing area and to demonstrate its fea-
sibility in the investigation. The example investigation we
demonstrate in this paper is the analysis on the dynamic re-



sponse of the sales amount of an item to its TV advertise-
ment and instore sales promotion. The proposed approach
has been applied to a time series data consisting of an objec-
tive item sales amount, two exogenous variables of the TV
advertisement amount and the instore promotion strength.
If we can appropriately grasp the dynamic contributions of
each exogenous factor to the objective item sales amount
through the analysis, the efficiencies of the advertisement
and the promotion can be easily evaluated, and their suit-
able strategies can be precisely designed.

2 State of the Art

2.1 Auto-Regressive eXogenous input
model

An Auto-Regressive eXogenous input (ARX) model is a
linear recurrence equation to relate the current value of an
objective variable x(s) with its past finite time series and the
past finite time series of the other exogenous input variables
yg (g = 1, ..., h) as follows.

x(s) =
p∑

i=1

aix(s − i) +
q1∑

j1=1

bj1y1(s − j1 − k1)+

... +
qh∑

jh=1

bjh
yh(s − jh − kh) + e(s),

(1)

where s is a current time step, ai the contribution coeffi-
cient of an i-step past value of the objective variable to
its current value, bjg

the contribution coefficient of the j-
step past value of an exogenous input variable yg , kg the
time lag of the propagation delay of the exogenous input
variable, and p, qg (g = 1, ..., h) the model order parame-
ters which define the finite and maximum time steps of the
contributions from the objective and the exogenous vari-
ables. In addition, let x̂(s) be a prediction of x(s) and
e(s) = x(s) − x̂(s) their prediction error. The model co-
efficients ai(i=1,...,p) and bjg

(jg =1,...,qg , g =1,...,h) are
determined by the least square principle on the variance of
the prediction error e(s) over a given time series data. The
combination of the time lags kg (g = 1, ..., h) which are in-
tegers is determined by a greedy method to search the com-
bination which provides less least square prediction error
on the combination lattice. The model orders, i.e., the pa-
rameter values of p, qg (g = 1, ..., h), are conventionally
determined by the AIC index as explained in the next sub-
section.

2.2 Conventional order determination

The selection of the appropriate orders of the ARX
model is crucial, and it has been performed by using AIC
(Akaike information criterion) in the conventional and stan-
dard approach. AIC is an information measure to evaluate

the difference between the actual probability distribution of
the value x(s) and that of the predicted value x̂(s). AIC
can be defined by the following Eq.(2) as the measure of
the difference between these two probability distributions
based on Kullback-Leibler quantity of information.

AIC = N log(σ̂2
M ) + 2|M |, (2)

where N stands for the total number of data and σ̂2
M the

variance of the model prediction error e(s). Moreover, |M |
stands for the total number of coefficients in the ARX model
where M = [p, qg (g = 1, ..., h)]. The smaller value indi-
cates that the estimated distribution function is closer to the
true distribution function.

An important issue on this AIC is the limitation in its
practical use due to its strong assumption on the linearity
of the objective system and the absence of observation er-
ror. If the objective time series data is observed from a lin-
ear system without any observation error, AIC should have
a clear bottom on a model complexity. Thus the optimal
model complexity is uniquely determined by the bottom of
AIC. However, the AIC curve does not follow the ideal case
when some nonlinearity of the system and some observation
error exist, and does not show any clear bottom in many
cases. This happens since the errors induced by the nonlin-
earity and the observation are incorporated in the evaluation
of AIC as if they are some meaningful errors. Accordingly,
more practical measure to determine an appropriate model
order must be established.

3 Proposal of ∆AIC*

∆AIC[5] which takes the difference of the AIC between
consecutive model orders provides a criteria to determine
some appropriate order of the Auto-Regressive (AR) model
which has only a unique order parameter. In the principle
of ∆AIC, a model order which shows a significant decrease
of the AIC value is selected as an appropriate order instead
of the minimum value of the AIC. This is because the sig-
nificant decrease of the AIC value may not occur when the
model incorporates the errors, but may occur when it incor-
porates major characteristics of the objective system. This
principle can be similarly applied to the models having mul-
tiple model order parameters such as the ARX model. How-
ever, to our best knowledge, no approach had addressed
the application of this principle to the case of the multiple
model order parameters.

In this paper, we extend the ∆AIC to ∆AIC* to address
the above issue. Given a model order parameter vector
M = [p, q1, q2, ..., qh] and the AIC under M as AICM ,
∆AIC* is defined as the minimum difference of AICM

from AICMp
and AICMqg

(g = 1, ..., h) where Mp =
[p−1, q1, q2, ..., qh] and Mqg

= [p−1, q1, ..., qg−1, ..., qh].



More formally, ∆AIC* is described as follows.

∆AIC∗ = max(∆AICp, max
g=1,...,h

(∆AICqg
)), (3)

where
∆AICp = AICM − AICMp

,
∆AICqg

= AICM − AICMqg
.

(4)

Note that the minimum difference between two AICs corre-
sponds to the maximum value of the difference since their
values are always negative. By definition, ∆AIC* stands
for the least improvement of the AIC under a unit extension
of the model complexity. On the other hand, the best model
order is considered to be the order which provide the max-
imum improvement of the AIC similarly to the principle
of the ∆AIC. Accordingly, the order providing the max-
imum improvement of the AIC should be selected as the
appropriate model order by using the ∆AIC*. This is done
by seeking the model order parameter vector M providing
the minimum value of the ∆AIC* due to its negativeness.
This approach enables to select the model order to achieve
the maximum value of the least improvement of the AIC
among the order parameter changes. The purpose of this
strategy is to discover the model where its any simplifica-
tion certainly and significantly reduces the accuracy of the
model beyond the errors. When an order parameter is zero,
∆AIC* including the parameter can not be computed since
the further simple model for the parameter does not exist.
In this case, ∆AIC* is evaluated by Eq.(3) while excluding
the zero order parameters since the variables corresponding
to the zero order parameters are not included in the model.

From Eq.(4), the AIC for the model simpler by one order
parameter is as follows.

AICM ′ = N log(σ̂2
M ′) + 2(|M | − 1), (5)

where σ̂2
M ′ is the variance of the prediction error e(s) by

the simpler model. Accordingly, the concrete formula of
∆AIC* in Eq.(3) which is the difference between Eq.(4)
and (5) is represented as

∆AIC∗ = N log
σ̂2

M

ming=1,...,h(σ̂2
Mp

, σ̂2
Mqg

)
+ 2. (6)

Instead of the original definition of ∆AIC* in Eq.(3), this
formula is used for the computation of ∆AIC* and the
search for the optimal ARX model.

4 Search for Optimal Model Order

The simplest and complete way to search the optimal
model order vector M by ∆AIC* under a given time series
data is the thorough search by using loops for all order pa-
rameters. However, the computational complexity of this al-
gorithm is O(Lh+1) where L is the upper limit of the order

to search, and hence the computation becomes intractable
when the number of the exogenous variables and/or the up-
per limit of the order are large.

For practically efficient search of the optimal M based
on ∆AIC*, we introduce A* search[6],[7]. A* search uses
a lower bound f of an objective function f to minimize
instead of the objective function itself. This f is ∆AIC*
in our context. Starting from an initial model order vector
Mmin = [1, ..., 1] where all parameters are one, the algo-
rithm evaluates f1 = ∆AIC*(Mmin) for the vector, further
increment one of the element of Mmin as M+

min, and eval-
uate the lower bound f2 = ∆AIC*(M+

min). If f2 > f1,
this fact implies that no M deduced by the further incre-
ments of M+

min does not have the smaller value than f1, and
hence the depth first search beyond the M+

min is pruned.
This pruning principle is recursively applied at every step
to evaluate the model order vector and its corresponding
model. As easily understood by this explanation, A* search
is complete, i.e., not to miss the optimal solution. The main
issue of the A* search is to design an efficient lower bound f
which is close to the actual value of f . From Eq.(6), ∆AIC*
is the minimum when the ratio of the variances of the model
prediction error is the minimum. As the variance monoton-
ically decreases when any element in M increases, the ratio
of the variance under Mmax = [L, ..., L] over the variance
under the current M is the lower bound of the ratio, where
L is the upper limit of the order to search. This derives the
following lower bound of the ∆AIC*(M ).

∆AIC∗ = N log
σ̂2

Mmax

σ̂2
M

+ 2. (7)

Figure 1 shows the algorithm of this A* search where Mopt

is the optimal model order vector and ∆AIC*(Mopt) the
∆AIC* under Mopt. The final output of this algorithm are
these Mopt and ∆AIC*(Mopt).

The lower boundary of ∆AIC* given by Eq.(7) some-
times too small to efficiently prune the search space, since
it is based on the error variance σ̂2

Mmax
which is minimum

within the search space. To obtain more efficient search per-
formance which is not complete but sufficiently practical,
we introduce a heuristic measure for the pruning as follows.

∆AIC∗1/n = N log
(

σ̂2
Mmax

σ̂2
M

)1/n

+ 2. (8)

Because the ratio of the variances always lies in [0, 1], its
n-root is closer to 1, and hence Eq.(8) gives a larger value
than Eq.(7). Though this change does not ensure the lower
boundary property of the measure, the larger value of the
measure enables tighter pruning which increase the search
efficiency.



Main

(1) Given M = Mmin and Mmax.

(2) Compute ∆AIC*(M ) and ∆AIC*(M ).

(3) Let Mopt = M and ∆AIC*(Mopt)=∆AIC*(M ).

(4) If ∆AIC*(M ) ≥ ∆AIC*(M ) then
[Mopt,∆AIC*(Mopt)]=
A*(M ,Mmax,Mopt,∆AIC*(Mopt),1)

(5) end

Function [Mopt,∆AIC*(Mopt)]=
A*(M ,Mmax,Mopt,∆AIC*(Mopt),gs)

(1) for g = gs to h

(2) Let qg = qg + 1.

(3) Compute ∆AIC*(M ) and ∆AIC*(M ).

(4) If ∆AIC*(M ) ≤ ∆AIC*(Mopt)
then Mopt = M and ∆AIC*(Mopt)=∆AIC*(M ).

(5) If (rg < L) and (∆AIC*(M ) ≥ ∆AIC*(M ))
then [Mopt,∆AIC*(Mopt)]=
A*(M ,Mmax,Mopt,∆AIC*(Mopt),g)

(6) end

Figure 1. A* search for optimal model order

5 Performance Evaluation

The performance of the proposed approach to determine
the ARX model order is evaluated by using some artificial
data sets. The data sets are generated by the following semi-
ARX system containing quadratic nonlinear terms.

x(s) =
p∑

i=1

aix(s − i) +
p∑

i2=1

ai2x
2(s − i)

+
q1∑

j1=1

bj1y1(s − j1) +
q2∑

j2=1

bj2y2(s − j2) + e(s)
(9)

Two order vectors M = [p = 3, q1 = 3, q2 = 4] and
M = [p = 6, q1 = 7, q2 = 6] are used. The coefficients
of ai, bj1 , bj2 has been determined by a design method of
Infinite-duration Impulse Response (IIR) filter while en-
suring the stability of the system[8][9]. The coefficients
of the nonlinear terms ai2 are set to be very small values
comparing with ai for the stability, and they are ai2=ai/20
for M = [p = 3, q1 = 3, q2 = 4] and ai2=ai/500 for
M = [p = 6, q1 = 7, q2 = 6]. When the data sets contain-
ing only linear dynamics are generated, all coefficients ai2

are set to be 0. The total time steps for the data generation is
N = 10000, and the time series of the input variables y1(s)
and y2(s) are chosen to be a unit stepwise form or Gaussian
noise having unit variance depending on the required condi-
tions of the evaluation. Furthermore, the objective variable

x(s) generated by this system is distorted by adding Gaus-
sian noises having various relative amplitudes in terms of
the standard deviation of x(s).

The performance to identify ARX model orders under
various conditions of the data is compared between the stan-
dard AIC and our ∆AIC*. The upper limit of each order
parameter for the search is set to be L = 9. The iden-
tified orders for the system having the order parameters
M = [p = 3, q1 = 3, q2 = 4] under step/Gaussian inputs
of both y1(s) and y2(s), linear/nonlinear dynamics and var-
ious noise distortion levels are shown in Table 1 and 2 for
the AIC and the ∆AIC* respectively. The results for the
case of M = [p = 6, q1 = 7, q2 = 6] are shown in Table 3
and 4. Table 1 and 3 indicate that the orders determined by
the AIC tends to be significantly larger than the true order
parameters when the noise and/or the nonlinearity are large.
In contrast, Table 2 and 4 indicate that our approach using
∆AIC* provides almost same or slightly lower orders com-
paring with the true order parameters in case of Gaussian
inputs. The reason of the lower order estimations in case
of the step inputs is that the step inputs contain mainly low
frequency signal components which tend not to affect the
higher order terms of the system. In short summary, ∆AIC*
derives better results than AIC for the data containing much
errors.

Table 1. Orders by AIC for M = [3, 3, 4]

Inputs ai2 Noise Noise Noise Noise
0% 5% 20% 50%

Step 0 [3,3,4] [9,3,4] [9,3,3] [9,3,2]
Gaussian 0 [3,4,5] [9,8,9] [9,9,9] [9,9,9]
Gaussian ai/20 [6,8,8] [3,5,1] [9,9,9] [9,9,9]

Table 2. Orders by ∆AIC* for M = [3, 3, 4]

Inputs ai2 Noise Noise Noise Noise
0% 5% 20% 50%

Step 0 [1,1,1] [1,1,1] [1,1,1] [1,1,1]
Gaussian 0 [1,2,3] [1,2,3] [1,2,3] [2,2,3]
Gaussian ai/20 [1,2,3] [1,2,3] [1,2,3] [3,2,3]

Table 3. Orders by AIC for M = [6, 7, 6]

Inputs ai2 Noise Noise Noise Noise
0% 5% 20% 50%

Step 0 [6,5,7] [9,2,4] [9,2,2] [9,1,0]
Gaussian 0 [7,8,8] [9,9,9] [9,8,9] [9,9,9]
Gaussian ai/500 [8,9,9] [9,9,9] [8,8,9] [9,9,9]



Table 4. Orders by ∆AIC* for M = [6, 7, 6]

Inputs ai2 Noise Noise Noise Noise
0% 5% 20% 50%

Step 0 [4,1,1] [3,1,1] [2,1,1] [2,1,1]
Gaussian 0 [5,7,7] [5,3,8] [3,4,4] [5,5,5]
Gaussian ai/500 [6,3,8] [2,3,9] [3,4,4] [5,5,5]

6 Analysis on Real Marketing Data

6.1 Objective data

The data was acquired through a marketing investiga-
tion. From March, 1st to June, 30th in a year, the daily
sales amount of a confectionery item in a store belonging
to a supermarket chain have been recorded. During the pe-
riod, TV advertisements of the item were broadcasted from
April, 13th to May, 3rd. In additions, the store actively pro-
moted the item sales by placing the items on a main rack
significantly exposed to the customers in some weeks in-
cluding the TV advertisement period. Let the objective vari-
able x(s) be the daily sales amount of the item, the exoge-
nous input variables y1(s) and y2(s) the daily amount of the
TV advertisement and the instore sales promotion respec-
tively. y1(s) is measured by an index named Gross Rating
Point (GRP) representing the amount of the TV advertise-
ment exposed to audiences[10]. This is evaluated by the
sum of the audience rating at the times when the TV adver-
tisements are broadcasted. GRP was constantly around 100
from April, 15th to 26th when the TV advertisements were
the most actively broadcasted. y2(s) is 1 during the instore
sales promotion in the store and 0 otherwise.

6.2 Performance on efficiency and accu-
racy

Because the ∆AIC* value changes in complex manners
for practical data, and the search process heavily depends
on the value, the computation time for the search has been
evaluated by using this real data. Table 5 shows the number
of search steps and the search time of the thorough searches,
the A* search using Eq.(7) and the heuristic searches us-
ing Eq.(8) with n = 2, ..., 5 under the upper order limit
L = 9. Because the loop based thorough search uses a sim-
ple pointer management, it is faster than the A* search un-
der this upper order limit. However, they becomes almost
identical 630sec under L = 15 since the loop based thor-
ough search has high computational complexity O(Lh+1)
as mentioned earlier. Accordingly, the A* search is advan-
tageous for the large scale problems in terms of the number
of input variables and the upper order limits. The heuris-
tic searches based on Eq.(8) search the solution far faster
than the A* search. Even we apply the 4th-rooted ratio, the

optimal solution can be found. Though the 5th-rooted ratio
can not derive the optimum, the resulted solution is not very
far from the optimum. In this regard, the A* search and its
associated heuristic searches are very advantageous for the
practical use.

Table 5. Search steps and times for sales
data.

Algorithm Steps Time p, q1, q2,
(sec) k1 and k2

Thorough by loops 1000 20 1,4,1,7,0
Thorough by recursions 729 99 1,4,1,7,0

A* search 458 61 1,4,1,7,0
Search by 2nd-root 231 39 1,4,1,7,0
Search by 3rd-root 107 19 1,4,1,7,0
Search by 4th-root 54 10 1,4,1,7,0
Search by 5th-root 42 8 2,6,1,9,0

6.3 Discussion on analysis result

The impulse responses of the optimal ARX model ob-
tained in the former subsection have been investigated to
understand the dynamic relation of the sales amount of the
item with the TV advertisement and the instore sales pro-
motion. The impulse responses are a response of the sales
amount under the virtual TV advertisement of a unit GRP
for a day and a response of the sales amount under virtual
instore sales promotion for a day. They can be estimated
by introducing an impulse time series to each input vari-
able into the ARX model. For example, the impulse re-
sponse of the sales amount to the TV advertisement is de-
rived by adding the time series of y1(1) = 0,...,y1(s− 1) =
0,y1(s) = 1,y1(s + 1) = 0,...,y1(n) = 0 to the input of the
ARX model.

Figure 2 represents the impulse responses for both the
instore sales promotion and the TV advertisement. In both
cases in the figure, the unit impulse is introduced on the
60th day from the beginning. Based on the upper response,
the effect of one day instore promotion on the sales amount
is about +1000yen. The lower response indicates that the
effect of a unit GRP advertisement on the sales amount is
±10 ∼ 15yen, and its delay is almost 9days. This time de-
lay indicates the time interval required to impress the item
among the customers by the TV advertisement. Because
the standard input amplitude of the GRP is 100, the actual
response of the sales amount is around ±1000 ∼ 1500yen
which is comparable with the effect of the instore sales pro-
motion while the response to the instore sales promotion
does not include any time delay. This is because the instore
sales promotion promptly impress the item onsite. The neg-
ative response of the sales to the GRP is not consistent with
our background knowledge. This occurred by the charac-
teristics of the ARX modeling where the effects of the input



variables can not be decomposed perfectly within the finite
number of the data samples. This effect is called as cross
talk among inputs. Even under this cross talk problem, how-
ever, the quantitative amplitudes and time delays of the re-
sponses to the input variables can be approximately known
through the analysis, and the information can be used for
the detailed marketing analysis and its associated market-
ing strategy planning. Figure 3 shows the impulse response
to the TV advertisement of the ARX model derived by using
the standard AIC. Though the true consumer behaviors are
hardly known, it is reasonable under background knowledge
in marketing field to consider that the TV advertisement af-
fects sales amount after a certain period as mentioned ear-
lier. Due to the selection of an excessively high model order
by the AIC, the response in Figure 3 des not match with this
behavior of the item sales amount, and is not interpreted by
the marketing domain knowledge. Based on these observa-
tions, the performance of our AIC* approach to the ARX
modeling is superior to the standard AIC under practically
noisy and erroneous modeling situations.
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Figure 2. By ∆AIC* based ARX model.
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7 Conclusion

In this paper, we proposed a novel measure named
∆AIC* to overcome the current limitations to determine the

model complexity of the ARX model. In addition, we pro-
posed some efficient complete/heuristic search algorithms
to determine the optimal combinations of the model order
parameters. Through the empirical evaluations, ∆AIC* is
confirmed to suggest appropriate model complexity under
practical conditions, and the algorithms are confirmed to
derive the optimal or the semi-optimal model complexity
in high efficiency. The proposed approaches are expected
to provide a novel measure for the analysis of the dynamic
behaviors of the customer sales in marketing.
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