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Abstract. We address the proeblem of estimating the parameters, from observed data in a complex social network, for an
information diffusion model that takes time-delay into account, based on the popular independent cascade (IC) model. For this
purpose we formulate the likelihood to obtain the observed data which is a set of time-sequence data of infected (active) nodes,
and propose an iterative method to search for the parameters (time-delay and diffusion) that maximize this likelihood. We first
show by using a synthetic network that the proposed method outperforms the similar existing method. Next, we apply this
method to problems of both 1) predicting the influence of nodes for the considered information diffusion model and 2) ranking
the influential nodes. Using three large social networks, we demonstrate the effectiveness of the proposed method.
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1. Introduction

Investigating the structure and function of complex networks such as biochemical and social networks
is a hot research subject [2,5,15]. From a functional view, innovation, topics and even malicious
rumors can propagate through social networks among people in the form of so-called “word-of-mouth”
communications. Therefore, considerable attention has recently been devoted to social networks as an
important medium for the spread of information [4,7,13,14,21].

There are several models that simulate information diffusion through a network. A widely-used
fundamental probabilistic model is the independent cascade (IC) model [6,8], which can be regarded as
the so-called susceptible/infected/recovered (SIR) model for the spread of a disease [15]. This model has
been used to solve the problem of finding a limited number of nodes that are influential for the spread
of information [8,9]. This combinatorial optimization problem is called the influence maximization
problem, and is one of the important application problems in sociology and “viral marketing” [1].
Further, this model has been used to solve yet another problem of minimizing the spread of undesirable
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information by blocking a limited number of links in a social network [10], and to visualize a complex
network in terms of information flow [19]. The IC model requires the parameters that represent diffusion
probabilities through links to be specified in advance. However, the true values of the parameters are
not available in practice. Thus, it is an important research issue to develop a method that can efficiently
estimate them.

One of the drawbacks of the IC model is that it cannot represent time-delay for information propagation.
Consider, as an example, modeling the day-by-day spread of a topic in a blog network in which blog
authors are connected to each other as is done in [7]. Here, a topic is a URL or phrase that can be
tracked down from blog to blog. Suppose that there are blogroll links from two blog authors v and w to
another blog author u. This means that v and w are readers of the blog of u. Suppose that both v and
w publish posts on the topic that was addressed in u’s post (meaning that v and w are both infected by
u). There can be a difference between the dates that v and w publish their posts about the topic. Thus,
Gruhl et al. [7] incorporated time-delay into the IC model. We refer to their model as the ICTD model.
Note that the ICTD model includes the IC model as a special case. The ICTD model is equipped with
the parameters that represent time-delay through links as well as the parameters that represent diffusion
probabilities through links.

They presented a method for estimating the values of these parameters from observed information
diffusion results using an EM-like algorithm, and experimentally showed its effectiveness using sparse
Erdos-Renyi networks. Here we note that large real social networks generally include dense subgraphs.
For example, Newman and Park [16] observed that social networks represented as undirected graphs
have high clustering coefficients, and positive correlations between the degrees of adjacent nodes. In
these realistic networks it is important that the diffusion model explicitly addresses the possibility that a
node is activated simultaneously by its multiple parent nodes each of which may have become activated
at different time in the past. Their methed [7], however, ignores this phenomenon and we speculate
that their method does not perform well for dense networks, which is experimentally demonstrated in
Section 6.2. In addition, it is not clear what they are optimizing in deriving the update formulas of
the parameter values. We have already developed a method in [11] for estimating the values of the
parameters in case of the IC model. The problem was much simpler because of no time-delay.

In this paper, we extend it to the ICTD model and propose a novel method for estimating the values of
the parameters from a set of information diffusion results that are observed as time-sequences of infected
(active) nodes. What makes this problem difficult is that incorporating time-delay makes the time-
sequence observation data structural. There is no way of knowing from the data which node activated
which other node that comes later in the sequence. Further, as the time progresses, the possible activation
states increases exponentially, which also makes computation intractable. We introduce an objective
function that represents the likelihood of obtaining the observed data sequences under the ICTD model
on a given network, and derive an iterative algorithm by which the objective function is maximized. We
experimentally show using both one synthetic and three real world networks that the proposed method
outperforms the method by Gruhl et al. [7] for finding the correct parameters. We further show that it
is crucially important that the parameters are estimated as accurately as possible in order to correctly
predict the influence of nodes by which to rank and extract influential nodes.

Our contribution is that 1) we derived an algorithm in a principled way that guarantees convergence,
avoids combinatorial explosion and can learn efficiently, from observed data, the parameters for the ICTD
model, an information diffusion model that allows asynchronous time-delay and accounts for multiple

It means the “IC with time-delay” model.
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activation of a node, and 2) we showed that the algorithm performs satisfactorily for both synthetic and
real social networks and outperforms the eGGLT method, a slightly modified version of [7], and a poor
performance of the eGGLT method for a dense network is attributed to the ignorance of the multiple
activation. We further point out that 3) the ranking method based on the proposed algorithm can be
interpreted as a new concept of centrality based on information diffusion.

2. Information diffusion model and learning problem

We first recall the definition of the IC model according to [8], and then define the ICTD model by
Gruhl] et al. [7]. After that, we formulate our learning problem.

In this paper, we consider mathematical models for the spread of information through a directed
network G = (V, E) without self-links, where V and E (C V x V) stands for the sets of all the nodes
and links, respectively.

If there is a link (u,v) from node u to node v, node v is called a child node of node u and node u is
called a parent node of node v. For each node v € V, let F(v) and B(v) denote the set of child nodes
of v and the set of parent nodes of v, respectively, i.e.,

F(v)={weV; (v,w) € E},
B(v) ={u € V; (u,v) € E}.

We call nodes active if they have been influenced with the information. In the information diffusion
model, the diffusion process unfolds in a discrete time-step ¢ > 0, and it is assumed that nodes can switch
their states only from inactive to active, but not from active to inactive. Given an initial active node
vp, we assume that the node vy has become active at time-step 0, and all the other nodes are inactive at
time-step 0.

2.1. IC model

Here we define the IC model. In this model, for each link (u,v), we specify a real value s, , with
0 < Ky < 1in advance, where &, , is referred to as the diffusion probability through link (u, v). The
diffusion process proceeds from a given initial active node vy in the following way. When a node u
becomes active at time-step £, it is given a single chance to activate each currently inactive child node
v, and succeeds with probability x, ,. If u succeeds, then » will become active at time-step ¢ + 1. If
multiple parent nodes of v become active at time-step ¢, then their activation attempts are sequenced in an
arbitrary order, but all performed at time-step {. Whether or not u succeeds, it cannot make any further
attempts to activate v in subsequent rounds. The process terminates if no more activations are possible.

2.2. ICTD model

Gruhl et al. [7] extended the IC model so as to allow time-delay, and presented an information diffusion
model with time-delay on network G. Now we call their model, the ICTD model.
In the ICTD model, for each link (u, v) € E, we specify real values 7y, , and &, , with

0 < ryp, Kup < 1

in advance. Gruhl et al. [7] considered modeling the spread of a topic in a blog network, where blog
authors are connected by a directed network. The parameter 7 ,, models how early author v reads the
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blog posts of author u, and the parameter «,, , models the probability that author v, after reading the blog
post of author u, publishes a blog post about the topic that author u addressed. Thus, 7, , and &, , were
called the reading and the copy probabilities through link (u, v), respectively. In this paper, we refer to
Tu,p a0d Ky, as the fime-delay parameter and the diffusion parameter through link (u, v), respectively.

The diffusion process of the model proceeds from a given initial active node vy in the following way.
Suppose that a node u becomes active at time-step ¢. Then, node u is given a single chance to activate
each currently inactive child node v. We choose a delay-time & from the geometric distribution with
parameter 7, ,. If node v is not active at time-step ¢ + 4, then node u attempts to activate node v at
time-step ¢ + 6, and succeeds with probability x,, . If u succeeds, then v will become active at time-step
t + 6 + 1. If multiple parent nodes of v attempt to activate v at time-step ¢ + 4, then their activation
attempts are sequenced in an arbitrary order. Whether or not u succeeds at time-step ¢ + 9, it cannot make
any further attempts to activate v in subsequent rounds. The process terminates if no more activations
are possible.

2.3. Learning problem

For the ICTD model on network G, we define the time-delay parameter vector r and the diffusion
parameter vector k£ by

r= ("'u,v)(u,v)eE’ k= (K'"'”)(u,v)éE'

In practice, the true values of 7 and « are not available. Thus, we must estimate them from past
information diffusion histories observed as sets of active nodes.
We suppose that

Dyt = {Dpmym=1,---, M}

is an observed data set of M independent information diffusion results. Here, each Dy, is a time-sequence
of active nodes for the mth information diffusion result,

Dm = (Dm(o): Dm(l)i M} Dm(Tm))’

where D, (t) is the set of all the nodes that have first become active at time-step ¢, and Tp,(> 1) is the
observed final time-step. We set

Cm(t) = Dp(0)U---U Dm(t)-

Note that Cy,(t) is the set of active nodes at time-step ¢ for the mth information diffusion result. Note
also that C,,,(T5,,) is the set of all the active nodes for the mth information diffusion result. For any
v € Cn(Tm), let tm,v denote the time-step at which node v becomes active for the mth information
diffusion result, that is,

v € Dp(tmp)-

In this paper, we consider the problem of estimating the values of 7 and « from D).

3. Proposed methoed

Here, we explain how we estimate the values of 7 and «x from Djys.
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3.1. Likelihood function

For the learning problem described above, we derive the likelihood function £(r, k; Ds) with respect
to 7 and x for use as our objective function in a rigorous manner.

First, we consider any node v € Cp,(Ty,) With £y, , > 0 for the mth information diffusion result. Let
hm,» denote the probability that the node v is activated at time ¢,,, ,. We need to calculate Ay, ,, in order
to derive L(r, k; Das). Here, to calculate h,, ,,, we introduce an indicator vector

A = (@m,uv)ye B@)NCom (tmo—1)°

where am, u» = 1 if node u actually succeeded in activating v at time t,, o5 Gm 0 = 0 otherwise. Note
that if there exist multiple active parents for the node v, i.e.,

it is not possible to know the exact values of a,, ., from the observed data. For example, in case of
B(v) N Cp(tmy — 1) = {u,u'}, i.e.,, n = 2, we need to consider the following three possibilities;

1) Gmup = 1, Amu'v = 0,
2) Amauy = 0, Amu' v = 1,
3) Amuy = 1, Amu' v = 1.

Thus we can regard the indicator vector a,, ., as a latent vector, the number of hidden states of
which amounts to as large as 27 — 1. This means that a naive calculation algorithm is likely to suffer
from computational loads when 7 becomes larger. To cope with this difficulty, we develop efficient
computation formulas (see Eqs (5) and (16) below).

Let A, 4 denote the probability that a node u € B(v) N Cp(tm,» — 1) activates the node v at time
tm,v, that is,

tmv—tmu—1
Amup = RupTup(l = rap) ™m0 a1

Let B, 4, denote the probability that the node v is not activated from anode u € B(v) N Cr(tmp — 1)
within the time-period [tm v + 1, tm o), that is,

tm,v
Bmup=1=Kuy Z Tup(l = Ty )7 tme !
l"=tm,u.‘|-1 .
= (L = P ) (1= k). @

By using the indicator vector a., 4 5, the probability A, , can naturally be expressed as
hm,u = Z fm,v (a'm,*,v), 3)
Qm s w70

where the summation is taken over all non-zero indicator (binary) vectors, and

fm,v(am’*,v) = H (Am,u’v)am,u.u (Bm,u‘v)l—am,u,u. (4)

veB(W)NCm (tm,v—1)
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Note that fp, ,(@m «v) is the probability that node v is activated at time ¢,, ,, according to the indicator
vector @, « ». In order to efficiently calculate hy, ,,, we consider the following transformation:

hm,v = Z fm,v(am,*,v) - 1__[ Bm,u,va

Qe v u€B(W)NCr(tm,v—1)

where the summation is taken over all indicator (binary) vectors. Thus, by Equation (4), we have

hm,v = H (-Am,u,v + Bm,u,v) - H Bm,u,v~ 5)

uE€B(U)NCrn (tm,v—1) u€B(v)NCrm (tm,v—1)

Therefore, by using Eq. (5), we can calculate hy,,, efficiently without considering all the possible
occurrences of non-zero indicator vectors.

Next, for the mth information diffusion result, we consider any link (v, w) € E suchthatv € Cp,,(T7)
and w ¢ Cr(Trn)- Let gm v, denote the probability that the node w is not activated by the node v within
the observed time-period [0, 7;,]. We can easily derive the following equation:

Impw = ’iv,w(l - Tv,w)Tm—tm'" + (1 - Kv,w)- (6)

Here we can naturally assume that each information diffusion process finished sufficiently earlier than
the observed final time, i.e.,

T > max{t; D (t) # 0}.
Thus, as T;,, — oo in Eq. (6), we assume
Impw = 1- Ryw- )

Therefore, by using Eqs (5) and (7), and the independence properties, we can define the likelihood
function £(7, k; Djs) with respect to 7 and & by

M Tm
[:(1', K; DM) = H H H hm,v ]___[ ]__[ Imuw | 3

m=1 \i=1veDmn(t) VECH (Tm) wEF(W)\Cm(Tm)

where F(v) \ Crn(Ti) denotes the set difference of F(v) and Cp, (T, ), that is, F(v) \ Cn(Th) =
{w € F(v); w ¢ Cr(Tin)}- In this paper, we focus on the above situation (i.e., Eq. (7)) for simplicity,
but we can easily modify our method to cope with the general one (i.e., Eq. (6)). Thus, our problem is to
obtain the values of = and &, which maximize Eq. (8). For this estimation problem, we derive a method
based on an iterative algorithm in order to stably obtain its solution.

3.2. Estimation method
We describe our method for estimating the optimal values of  and «. We suppose that

T= (T“’”)(u,v)eE” K= (T{”"’)(U,v)EE
are the current estimates of 7 and k, respectively. We derive update formulas of = and « such that

L(r,x; D) > L(T.K; Dpr).
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For each v € Cp(T;n) and indicator vector @y,  ,, we define Gmo(@m «v) bY

,v) — fm,v (am,*,v) )

I )

Note that g, ,(@m 4 v) is the posterior probability that the indicator vector is @y, x,» When v is activated
at time ¢,y (see Eqs (3), (4)). Let Am,u0, B u,r Frm,, a0d G, (@ v ) denote the values of Y
Brn,u,vs b, and gy (@mm « ) calculated by using 7 and K, respectively.

From Eqgs (3), (7), and (8), we can transform our objective function £(r, k; D)) as follows:

Gm,v (am,*

log L(r, k;DuM) = Q(7, k; 7, K) — H(r, k; 7, R). (10)
Here, Q(r, k; 7, K) is defined by

M Tm
Q(r,k;7,R) = Z Z Z Qmuw + E z log(1 — kyw) | , (1n
m=1 \ t=1 v€ D (t) VEC (Tin) WEF(W)\C (Tom)
where
Qm,v = Z am,v(am,-:,u) log fm,v(am,*,u)- (12)
Q. 070

Also, H(r, k; T, K) is defined by

M T,

HrsTR) =3 Y > S Jno(@maw), (13)

m=1 t=1 v€Dp, (t) Q0720

where

Jmlv (am,*’v) = am,'u (am,*|v) log qm)v (am3*>v)' (14)

Since the function H(r, x;7,K) of r and & is maximized at = 7 and x = & from Equations (13) and
(14), we can increase the value of £(r, k; Dps) by maximizing the function Q(r, x;7,K) of r and &
(see Eq. (10)).

In order to efficiently calculate Qm,», we derive the following formula from Egs (4), (9) and (12):

Qm,v = Z (am,u.v log -Am,u,v +(1- am.uﬂ’) log Bm»“'”) ’ as
2EB(®)NCrm (tm,v—1)

where

Cmuy = E Am,uv 6m,v (am,*,v)'
Qm .70

Note that 0 < @, » < 1. Then, we can easily show that

am,u,v = {m,u,v H am,w,v +Bm,:c,u) . (16)

™Y 2 B(v)NCrm (Em,o—1)\{u}
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Therefore, by using Eq. (16), we can also calculate G u,v without computation of exponential order.

Note here that although log A, u» is a linear combination of log 7y, log(1l — 7y ), and log Ky v,
log By u,» cannot be written by such a linear combination (see Eqs (1) and (2)). In order to cope with
this problem of log By, v, We transform log B 4,0 in the same way as Eq. (10):

108 Bmuw = Qo — Hp oo (17
where

Qi%u=3me¥0wwﬂ-4@w““““ﬂ4%1—3mm0bﬂ1—nm0, (18)
and

HE = Brnuy108 Bmun + (1= Br) 108(L = Brmu)- (19)

Here, Bm u,v is defined by

K-u,v(l —_ Tu,v)tm.u—tm.u
Ku,v(]. - ru7u)tm’u_tm'u + (1 - Ku’v) ’

(20)

ﬂm,u,v =

and B—m,u,v is the value of B4, calculated by using 7 and ¥. Note that 0< Bm,u',, < 1. We define
Q'(r.K;T,K) by

M Tm
QTR =3 |3 Y Quut D S lgl—kew) |, @D

m=1 \t=1 veDm(t) YECm (Tm) WEF(V)\Crn (Tm)

where

Qmp = > (@m0 108 Amup + (1 = T o) Qo) - (22)
ueB(WNCm (tm,v—1)

Note that by Egs (19) and (20), the function Hg‘u,v of  and & is maximized at 7 = ¥ and & = K. Thus,
we can maximize Q(r, k; 7, %) by maximizing Q'(r, k; 7, K) as functions of r and «, (see Eqgs (11),
(15), (17), (21) and (22)). Note here that the function Q'(r,k;7,K) of r and & is a linear combination
of {10g 7y v, 10g(1 — Tuv), 108 kuw, log(1 — Kup); (u,v) € E} with positive coefficients.

From Egs (1), (18), (21) and (22), we can easily obtain the solution which maximizes Q' (r, x; 7, K).
Hence, we have the following theorem.

Theorem 1. Let T = (T, ,) and & = (Ru,) be the current estimates of r and k, respectively. For each
(u,v) € Eandm € {1,---, M}, we define M, My, and @y, o o, by

ME,={me{l,---,M}; u,v € Cn(Tn), v € F(u), tmu < tmu}: 23)
My, ={me{l,--- ,M}; u € C(Tin), v ¢ Cn(Tim), v € F(u)}, 24)
and

‘:_Dm,u,v =Omup + (1 - am,u.v) :Bm,u,v)




M. Kimura et al. / Learning information diffusion model in a social network 641
respectively. Then, if we update the values of v and k by

ZméMtu Omup

Tuw = —
we Eme M, (tm,v - tm.u) Pmuw

) (25)

_ EmeMiv Em,u,v
| Mol + [Mao|

Ku,v (26)

for all (u,v) € E, we have
‘C(T’ K; DM) 2 C(F: K; DM)

Theorem 1 provides the update formulas (25) and (26) of the parameters 7 and «. Since the likelihood
function £(r, &; Das) is ensured not to decrease by this updating, this updating mechanism asymptotically
converges to at least locally optimal solutions, and we can propose a method similar to EM algorithm
in a natural way. Note that each A, , » and G, o, are efficiently calculated by Equations (5) and (16),
respectively.

4. Evaluation methods

We first evaluate the estimation accuracy of 7 and « for the proposed learning method. Next, we exploit
the estimated model to predict the influence of nodes and extract the influential nodes, and evaluate their
performance.

For an initial active node v, let ¥(v;r, ) denote the number of active nodes at the end of the
information diffusion process for the ICTD mode] with parameter values r and «. Note that (v; r, k)
is a random variable since the information diffusion process is a random process. Let o(v; r, k) denote
the expected value of ¥(v; 7, k). We call o(v; 7, &) the influence degree of node v for the ICTD model
with parameter values 7 and k.

When we are given the set of information diffusion results D), we measure the influence of node v by
the influence degree o (v; 7*, k*) for the ICTD model which generated D»s, where »* and k* are the true
values of = and «, respectively. Thus, a node v with high influence degree o(v; 7*, k*) is an influential
node. We first estimate the values of = and x from D). Suppose that 7 and & are the estimated values
of r and &, respectively. Then, we predict o(v; 7, K) and use it as the estimated value of the influence
degree o(v; T*, k*) of node v. Moreover, we extract the influential nodes by ranking nodes v based on
o(v;T,K).

We evaluate the proposed method in terms of the capability of both predicting the influence degrees
of nodes and ranking the influential nodes. We focus on the performance for high-rank nodes since we
are interested in influential nodes. Let L*(k) denote the set of top k influential nodes for the true ICTD
model. Let Z(k) be the set of top k influential nodes estimated by a given ranking method. We evaluate
the performance of the ranking method by the ranking similarity (k) within the rank k, where F(k) is
defined by

2 () N Z(k)].

Flk) = 2L

27)
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5. Comparison methods
5.1. eGGLT method

Grubhl et al. [7] presented a method for estimating the values of 7 and & from D) for the ICTD model,
from which the underlying link structure £ was induced. Thus, their method did not explicitly use the
link structure E, and 7 = (ry ) and & = (ky ) Were first regarded as full |V|(|V| — 1) dimensional
vectors. In practice, by exploiting some heuristics based on the observed data D;y, they restricted the
non-zero entries of » and x in order to achieve a reduction in computational cost, and inferred the
underlying link structure from the estimated values of 7 and « under these constraints. However, their
method can be straightforwardly extended to the case where the underlying network structure is known.
We refer to the extended method as the eGGLT method,? and compare the proposed method with the
eGGLT method.

‘We begin with describing the original method by Gruhl et al. [7]. Basically, they presented an EM-like
algorithm. Let 7 = (7, ) and & = (Ry ) be the current estimates of + and «, respectively. The update
formulas for r and « are as follows:

Zme.s;t v Pmup
Tuw = L (28)
zmes,’{',, (tmo — tm,u) Prup
Z est ﬁm,u,v
K = T (29)

kY -_— ’
Emes;ﬁ"v Am»u!v + Zmes;",, p’m,u,u

for all u,v € V with u # v, where

- — t -t -1—

Tu,v(l — Tu,u) bt u,v (30)
tm,v—tmw—1— *

) Ky,w

ﬁm,‘u,v = — —
Zwecm(t,.,,,,—l) Twp(l —Tww

and

Xm,u,v =1-(1- Tum)tm-"—tm,u’

Tm“tm,u

Bnup=1—(1—Tup)
Here, S;f,, and S, are defined by

Sto={me{l,---,M}; u,v € Cn(Tm), tmu < tmu}, (31)

Syn= {me{l,.--- ,M}; u€ Cn(Tn), v ¢ Cn(Tw)}- (32)

We note that they did not derive the EM-like algorithm in a principled way. No objective function is
defined to obtain the updating formulas. Here we should also mention that this method might have an
intrinsic limitation because simultaneous activations from multiple parent nodes are not considered in
Egq. (30).

Now, we define the eGGLT method. The eGGLT method straightforwardly incorporates the link
structure E into the original method by Gruhl et al. [7]. Namely, the eGGLT method only changes the

21t means the extended “Gruhl, Guha, Liben-Nowell, and Tomkins [7]” method.
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update formulas (28) and (29) of 7, and &, , for any link (u,v) € E as follows: Sit, and Sy are
replaced with Mﬁ; » and M; »» Tespectively (see Equations (31), (32), (23) and (24)). Note here that if
the underlying network G = (V, E) is a complete graph, we have S}, = M}, and S;, = M, for all
(u,v) € E. The eGGLT method can be applied to the problem of estimating the values of 7 and & from
Dy when the underlying network structure is known. Therefore, the eGGLT method can be also applied
to the problems of predicting the influence degrees of nodes for the true ICTD model and ranking the
influential nodes.

5.2. Conventional methods in social network analysis

As for the problem of extracting the high ranked influential nodes for the true ICTD model, we also
compare the proposed method with four heuristics from social network analysis, which are the degree,
the betweenness, the closeness, and the PageRank methods.

First, “degree centrality”, “betweenness centrality”, and “closeness centrality” are commonly used as
influence measure for a bidirectional network in sociology [20], where the degree of node v is defined
as the number of links attached to v, the betweenness of node v is defined as the total number of shortest
paths between pairs of nodes that pass through v, and the closeness of node v is defined as the reciprocal
of the average distance between v and other nodes in the network.

We also consider measuring the influence of each node by its “authoritativeness” obtained by the
“PageRank” method [3], since this is a well known method for identifying authoritative or influential
pages in a hyperlink network of web pages. This method has a parameter ¢; when we view it as a model
of a random web surfer, e corresponds to the probability with which a surfer jumps to a page picked
uniformly at random [17]. In our experiments, we used a typical setting of ¢ = 0.15.

6. Experimental evaluation

We first compared the proposed method with the eGGLT method for the capability of estimating the
values of r and & in the case of a complete graph. Next, using three large real social networks, we
evaluated the effectiveness of the proposed method for 1) estimating the values of  and &, 2) predicting
the influence degrees of the high-ranked nodes under the true ICTD model, and 3) ranking the influential
nodes.

6.1. Experimental settings

According to [7], we generated the training data Dys by simulating the true ICTD model M, times
from every single node as being an initial active node, where A = Mp|V|. When we estimate the
values of 7 and k from Dy, we always used the same initial guess and the same iteration number for
the proposed and the eGGLT methods. Strictly speaking, we always set the initial values of r and &
as ryp = 1/2 and Ky, = 1/2 for any (u,v) € E, and performed 100 iterations. We confirmed that the
relative difference of the parameter values in the successive iteration is in the order of 1075, and thus,
the solutions are judged to be converged.

We note that the influence degree o'(v; T, k) of a node v is invariant with respect to the values of the
delay-parameters 7. Thus, we can calculate the o(v; 7, k) of the ICTD model by the influence degree
of v for the corresponding IC model. Hence, we evaluated the influence degrees {o(v;r, k); v € V} by
applying the method of [9] with the parameter value 10,000 to the corresponding IC model, where the
parameter represents the number of bond percolation processes (see [9] for more details).
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Table 1
Learning results for the complete graph dataset.
Correct values: 1y, = 0.667, Ku,v = 0.1, for
V(u,v) € E
Proposed method
My mean(r) std(r) mean(x) std(x)
20 0.641 0254  0.103 0.058
40 0688  0.180 0.101 0.041
60 0.677 0.166  0.101 0.037
eGGLT method
My mean(r) std(r) mean(x) std(x)
20 0994  0.028 0.054 0.026
40 0.993 0.027 0.054 0.018
60 0.993 0.025 0.054 0.016

6.2. Synthetic network

We recall that the proposed method considers the possibility that a node v can be activated simulta-
neously by multiple parent nodes {u} that has become activated at different times, whereas the eGGLT
method does not assume this possibility. Thus, we first consider a network with the highest clustering
coefficients (see [15]), where there is a large possibility that the above situations happen. Here, we
exploited the complete directed graph of 50 nodes as the network G = (V, E). Note that the eGGLT
method coincides with the original method by Gruhl et al. [7] for a complete graph. According to [7],
we used 7 » = 2/3 and #y,, = 1/10 for any (u,v) € E as the true values of 7 and k. We refer to this
dataset as the complete graph dataset.

We compared the capability of estimating the values of  and & for the proposed and the eGGLT
methods. Table 1 shows the results for different number of simulations M, for all nodes. Here, mean(r)
and mean(k) denote the means of the estimated values of 7 = (ry,») and & = (Ku,p), respectively, and
std(r) and std(x) denote their standard deviations, respectively. The results demonstrate that the proposed
method outperforms the eGGLT method. Our algorithm can converge to the true values efficiently when
there is a reasonable amount of training data. The results demonstrate the effectiveness of the proposed
method.

6.3. Real networks

6.3.1. Network dataset

As a large real social network G = (V, E), we first employed the blog network used in [10]. This
was a bidirectional network with 12,047 nodes and 79,920 directed links. Again, we used 7y, = 2/3
and k, , = 1/10 for any (u,v) € E as the true values of 7 and k. We refer to this dataset as the blog
network dataset.

Second, we employed a network derived from the Enron Email Dataset [12]. We first extracted
the email addresses that appeared in the Enron Email Dataset as senders and recipients. We regarded
each email address as a node, and constructed an undirected network obtained by linking two email
addresses u and v if u sent an email to v and received an email from v. Next, we extracted its maximal
strongly connected component, and constructed a directed network by regarding those undirected links
as bidirectional ones. We refer to this strongly connected bidirectional network as the Enron network.
This network had 4,254 nodes and 44,314 directed links. Again, we used ry, = 2/3 and Ky, = 1/10 for
any (u, v) € E as the true values of r and k. We refer to this dataset as the Enron network dataset.
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Table 2
Learning results for the blog network dataset.
Correct values: 7y, = 0.667, Ku,» = 0.1, for
V(u,v) € E
Proposed method
Mp mean(r) std(r) mean(x) std(x)
20 0.686  0.120 0.100 0.027
40 0.679 0.092 0.100 0.019
60 0.674  0.075 0.100 0.016
eGGLT method
Mo mean(r) std(r) mean(x) std(x)
20 0.756 0.135 0.096 0.029

40 0750 0.119 0.096 0.022
60 0.746  0.112 0.096 0.019

Table 3
Learning results for the Enron network dataset.
Correct values: 7y,v = 0.667, £4,» = 0.1, for
Y(u,v) € E
Proposed method
Moy mean(r) std(r) mean(x) std(x)
20 0.657 0.101 0.102 0.020
40 0.657 0.083 0.102 0.016
60 0.657 0.073 0.102 0.013
eGGLT method
My  mean(r) std(r) mean(k) std(x)
20 0.856  0.137 0.082 0.030
40 0.855 0.134 0.082 0.028
60 0.854  0.133 0.082 0.028

Third, we employed the co-authorship network used in [18]. This was a bidirectional network with
12,357 nodes and 38,896 directed links. For the co-authorship network, we used r,, = 2/3 and
Kup = 1/5 for any (u,v) € E as the true values of 7 and k, since the mean out-degree of the co-
authorship network is much smaller than the blog and the Enron networks. In fact, when we used
Kup = 1/10 for any link (u,v) € E, the influence degrees of nodes became very low (they were less
than 15). We refer to this dataset as the co-authorship network dataset.

6.3.2. Experimental results

First, we evaluated the performance for estimating the values of 7 and . Tables 2, 3 and 4 show the
results for different number of simulations M for all nodes in the blog, the Enron and the co-authorship
network datasets, respectively. Here, the meanings of mean(r), std(r), mean(x), and std(«) are the same
as in Table 1. We observe that the proposed method outperforms the eGGLT method for all of these
three datasets in estimating the values of 7 and «, and can converge to the true values efficiently when
there is a reasonable amount of training data.

Next, we investigated the performance for predicting the influence degrees of the top 200 influential
nodes for the true ICTD model. As described in Section 4, we predicted o(v}; 7, k) and used it as the
influence degree o(vy; r*, k*) of node vj (k = 1, - - -, 200), where v} denotes the node of rank  for the
true ICTD model. Figures 1, 2 and 3 show the results in the case of M = 60 for the blog, the Enron
and the co-authorship network datasets, respectively. In each figure, the thick dashed line displays the
true influence degrees, and circles and squares indicate the influence degrees predicted by the proposed
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Table 4
Learning results for the co-authorship network
dataset. Correct values: Ty, = 0.667, Ky,» =
0.2, forV(u,v) € E
Proposed method
My mean(r) std(r) mean(x) std(x)
20 0.682 0.100 0.200 0.044
40 0675 0.070  0.200 0.031
60 0672 0.057 0.200 0.025
eGGLT method
Mo mean(r) std(r) mean(x) std(x)
20 0690 0.100 0209 0.048
40 0.682 0.070 0.209 0.034
60 0.680  0.057 0.209 0.028
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Fig. 1. Performance comparison for predicting the influence degrees of nodes in the case of Mp = 60 for the blog network
dataset. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-2011-0486)

and the eGGLT methods, respectively. We observe from these figures that unlike the eGGLT method,
the proposed method makes good predictions of the true influence degrees of the high-ranked nodes for
all of these three datasets. Here, we evaluated the mean influence-prediction error (k) within the top
rank k, which is defined by

k
1 X,k % x o~ o~
E(k) = EZIa(v,-‘;'r &) —o(v]; 7, R),
i=1

and also evaluated the mean H(k) of the true influence degrees {o(v};7*,k*); i = 1,---, k} for the
top k nodes. Table 5 compares the errors by the two methods for the three datasets in case of k = 20
and k£ = 200. We see that the mean influence-prediction error £(k) of the proposed method is much
smaller than 1% of the mean of the true influence degrees H (k) regardless of the value of k for every
dataset, whereas, in most cases, £ (k) of the eGGLT method is more than 50 times greater than £(k) of
the proposed method and more than 10% of H(k). Even in the best case where the percentage error of
the eGGLT method is minimum, i.e., 6.6% of H(k) for k = 20 for the Enron network dataset, £(k) of
the eGGLT method is about 500 times greater than £(k) of the proposed method. Therefore, we see
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Table 5
Mean influence-prediction errors £(k) of the proposed and eGGLT methods
and the means of the true influence degrees (k) for the three network datasets

(Mo = 60)
E(k) of E(k) of
dataset k __ proposed method eGGLT method  H(k)
blog network 20 1.2 65.0 635.5
200 1.8 71.0 581.9
Enron network 20 0.2 99.4 1500.7
200 3.2 183.1 1485.1
co-authorship network 20 1.5 129.4 573.7
200 2.1 105.1 415.1
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Fig. 2. Performance comparison for predicting the influence degrees of nodes in the case of My = 60 for the Enron network
dataset. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-2011-0486)

that for all of these three datasets the proposed method works well and gives far better results than the
eGGLT method.

Next, we evaluated the performance for ranking the top 200 influential nodes under the true ICTD
model. Figures 4, 5 and 6 show the ranking similarity F (k) (see Eq. (27)) as a function of the top rank
k in the case of My = 60 for the blog, the Enron and the co-authorship network datasets, respectively.
Here, circles, squares, triangles, diamonds, crosses, and asterisks indicate the results for the proposed,
the eGGLT, the degree, the betweenness, the closeness, and the PageRank methods, respectively. For
the blog network dataset, the proposed method performed best, and the eGGLT method followed. The
other methods (the conventional methods in social network analysis) were much worse than these two
methods. For the Enron network dataset, the proposed method performed best, and the eGGLT and
the out-degree methods followed. The performance difference between the eGGLT and the out-degree
methods was small. For example, the eGGLT method was worse than the out-degree method for the
ranking similarity within rank k£ = 200. For the co-authorship network dataset, the proposed method
performed best, and the eGGLT method followed. The other methods (the conventional methods in
social network analysis) were much worse than these two methods. Therefore, we see for these datasets
that the proposed method works effectively.
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Fig. 3. Performance comparison for predicting the influence degrees of nodes in the case of Mp = 60 for the co-authorship
network dataset. (Colours are visible in the online version of the article; http://dx.doi.org/ 10.3233/IDA-2011-0486)
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Fig. 4. Performance comparison for ranking the influential nodes in the case of My = 60 for the blog network dataset.

7. Discussion

We note that the results of the eGGLT method were not good in Table 1, contrary to the results in [7].
We attribute this to the inadequacy of the parameter estimation methods and the different setting of
network parameters. First, as stated earlier, note that the proposed method considers the possibility
that a node v can be activated simultaneously by multiple parents {u} that has become activated at
different times (although v is activated only once), whereas the eGGLT method does not assume this
possibility. Second note that the networks used in [7] are medified Erds-Renyi random graphs with V|
= 1000 and d (the degree of node) = 3. This gives a sparse graph with almost 0 clustering coefficients
(see [15]). Further, the diffusion parameter ., , they used for any link (u,v) is 1/10, which implies
that the above multiple activation possibility is essentially 0. However, the network we used in our
experiment in Section 6.2 is a complete graph with very high clustering coefficients (i.e., clustering
coefficient 1), and there is a large possibility that the above situations happen. In this setting, ignoring
the possibility of a node being activated simultaneously from more than one parent node would most
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Fig. 5. Performance comparison for ranking the influential nodes in the case of My = 60 for the Enron network dataset.
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Fig. 6. Performance comparison for ranking the influential nodes in the case of Mp = 60 for the co-authorship network dataset.

probably give inaccurate estimates of the parameters. The results in Section 6.2 are consistent with this
observation. For the large real social networks used in our experiments, the mean clustering coefficients
of the blog, the Enron and the co-authorship networks were 0.262, 0.370 and 0.218, respectively. This
means that the Enron network has a larger possibility that the above situations happen than the blog and
the co-authorship networks. Tables 2, 3 and 4 show that the parameter estimation results of the eGGLT
method for the Enron network were worst. This is consistent with the discussion above.

Compared with the eGGLT methed, our method derives the learning algorithm in a principled way.
It has the objective function which has a clear meaning of the likelihood of obtaining the observed
data, and the parameter updating algorithm is derived such that it iteratively increases the likelihood
with the convergence guaranteed. Therefore, for large real social networks, the proposed method far
outperformed the eGGLT method for predicting influence degrees of true high-ranked nodes (see Figs 1,
2 and 3), and always gave better results than the eGGLT method for ranking the influential nodes (see
Figs 4, 5 and 6). These results also imply that estimating the parameters as accurately as possible is
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very important. Further note that, in deriving the proposed algorithm, tactics are employed to avoid
computational explosion.

We consider that our ranking method presents a novel concept of centrality based on the information
diffusion model, i.e., the ICTD model. Actually, Figs 4, 5 and 6 show that nodes identified as higher
ranked by our method are substantially different from those by each of the conventional metheds in
social network analysis. This means that our method enables a new type of social network analysis if
past information diffusion data are available. Of course, it is beyond controversy that each conventional
method has its own merit and usage, and our method is an addition to them which has a different merit
in terms of information diffusion.

The formulation we showed in Section 3.2 dealt with the case where each of ry,  and %y can take a
different value for each link (u,v) € E. However, this would cause a serious problem of overfitting as
well as unacceptably high computation cost if we are to analyze large real networks with high clustering
coefficients. Parameter sharing helps improve generalization capability. Further, it is more realistic
that some of the parameters share the same values across different links. In our framework, placing
constraints, e.g., assigning uniform values to parameters across all links or grouping the parameters
(ku,v) and (ry,,) into several categories, etc. is straightforward. For example, we can divide the link
set E into subsets {Ej, Es, -, En} and assign unique parameter values rr, and xy, for all the links
in each category E,,. If the overfitting is the real problem even after grouping links, we can follow the
standard approach of introducing prior distributions over the model parameters. For placing constraints
in a more realistic setting, we may divide the nodes into two groups: those that strongly influence others
and those not, or we may divide the nodes into another two groups: those that are easily influenced by
others and those not. We can further divide the nodes into multiple groups. If there is some background
knowledge about the node grouping, our method can make the best use of it, one of the characteristics of
the artificial intelligence approach. Obtaining such background knowledge is also an important research
topic in the knowledge discovery from social networks.

The final objective of Gruhl et al.’s work [7] was to estimate network structure. We did not focus on
this aspect in this paper, however. This does not mean that our proposed method is unable to estimate
the structure. Just like Gruhl et al. assumed a fully connected complete graph, we could have taken the
same approach, i.e., initially assuming the complete network and deleting links for which no parameter
values are obtained or the values are very small under the assumption that the observed sequence data is
sufficiently large enough to cover all the possible information propagation paths. However, scalability
becomes an issue with this naive approach. It is too computationally expensive to be applied for a real
network, e.g. for a network with 10,000 nodes, the number of links, thus the number of each parameter,
to be considered is 100,000,000. With such a huge number of parameters to search, both methods
become infeasible. In addition, the amount of observation data that is required to estimate the parameter
values is tremendously large and it is almost unrealistic to collect such data. Better approaches including
parameter sharing mentioned above must be yet explored so as to pose strong constraints on network
structure and reasonably and effectively restrict parameters to be considered. This is our future work.

Information diffusion with time-delay we picked in this paper poses an interesting machine learning
problem. Each piece of training data is a sequence of observed data (thus, relational), but it has some
hidden structure and it is not straightforward to map the data to node-to-node information diffusion. In
theory we have to consider all the possible paths to each activated node from unknown source nodes with
different time-delays. We managed this by introducing indicator variables. How to avoid computational
explosion then became crucial and we introduced neat tactics.

Our method utilizes sequential data of information diffusion. In this aspect, it has some commonality
with re-enforcement learning, but the main difference is that a reward for each sequence is not used in our
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learning framework. Our model is meant to be useful for analyzing information diffusion via a human
network, e.g., via words-of-mouth. It is not clear at the moment whether the similar approach can be
used for analyzing a diffusion process in other domains, e.g., biological networks. If a similar model
is confirmed to be usable, our method can also be an important technique to analyze general diffusion
process. We plan to apply the proposed method to some specific tasks in a more practical setting, in
which case the evaluation must be based on a task-specific performance measure for each task.

8. Conclusion

We addressed the problem of estimating the parameters for an information diffusion model (ie., the
ICTD model) in a complex social network, given the network topology and the observed time-sequence
data. The model allows time-delay in information diffusion under the framework of independent cascade
(IC) model, and has two kinds of parameters: the time-delay parameter and the diffusion parameter. We
formulated the likelihood of obtaining the observed sequence data, and proposed an EM-like iterative
method to obtain the parameter values by maximizing this likelihood. We first confirmed by using a
complete graph that the proposed method outperforms a slightly modified existing method eGGLT in
estimating correct parameters. Next, we showed by using three real world networks that the proposed
method can much more accurately predict the influence degrees of the high-ranked nodes for the true
ICTD model than the eGGLT method. Moreover, we demonstrated that it outperforms the eGGLT
method and the conventional methods in social network analysis for ranking the influential nodes.

In conclusion, we blazed the path to learn a probabilistic information diffusion model over a network
in a principled way. The IC model we used is the most basic, and there are other diffusion models [8].
A similar approach can be extended to these models, e.8., linear threshold model with time-delay, which
will also be our future work.
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