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Abstract

After the pioneering work of the BACON sys-
tem, the study in the field of scientific dis-
covery has been directed to the discovery of
more plausible law equations to represent the
first principles underlying objective systems.
The state of the art has only succeeded in
a weak sense that the soundness, the repro-
ducibility and the mathematical admissibility
of the candidates hold within the experimen-
tal measurements. The plausibility should
be checked for various objects and/or mea-
surements sharing the common first princi-
ples, and only the equations having sufficient
generality should be retained. In this paper,
a novel principle and an algorithm are pro-
posed to predict some mathematically admis-
sible and consistent equation formulae for a
newly given set of quantities from the candi-
date law equations obtained for another set of
quantities in advance. The soundness and the
reproducibility of the predicted equations are
confirmed through the measurements. The
law equations which passed all confirmations
represent the common first principles under
different set of quantities.

1. Introduction

The main goal of the scientific law equation discov-
ery is to discover the first principle based law equa-
tions from measurement data. The most well known
pioneering system to discover scientific law equations
under the condition where some quantities are actively
controlled in a laboratory experiment is BACON (Lan-
gley et al., 1987). FAHRENHEIT (Koehn & Zytkow,
1986) and ABACUS (Falkenhainer, & Michalski, 1986)
are successors that basically use similar algorithms
to BACON to discover law equations. LAGRANGE

(Dzeroski & Todorovski, 1995) is another type of sci-
entific law equation discovery systems based on the
ILP-like generate and test reasoning to discover equa-
tions representing the dynamics of the objects.

To reduce the ambiguity in their results under noisy
measurements and the high computational cost of
their algorithms, some subsequent discovery systems,
e.g., FAHRENHEIT, ABACUS and COPER (Kokar,
1986), introduced the use of the unit dimension of
physical quantities to prune the meaningless solutions.
A difficulty of this approach is its narrow applicability
only to the quantities whose units are clearly known.
The recently proposed system named SDS has over-
come these difficulties (Washio & Motoda, 1997, 1998).
It discovers scientific law equations by limiting its
search space to mathematically admissible equations
in terms of the constraints of scale-type and identity.
Since the knowledge of scale-types is widely obtained
in various domains, SDS is applicable to non-physical
domains including biology, sociology, and economics.

The framework has been further extended to the pas-
sively observed data where any active control on quan-
tities are not admitted. Aforementioned FAHREN-
HEIT has a function to discover law equations from
the observed data. LAGRANGE can handle this task
in its generate and test framework. More recently,
SDS has been also extended to this task (Washio et al.,
1999). Its excellent features of the robustness against
observation noise and the limited computational com-
plexity have been demonstrated.

In spite of these efforts, the state of the art is that
the techniques has only succeeded in discovering the
plausible candidates of law equations in a weak sense
that the soundness, the reproducibility and the math-
ematical admissibility of the candidates hold within a
given experimental environment. However, a law equa-
tion should hold over various objects and/or measure-
ments sharing the common first principles. Accord-



ingly, the generality of the candidate equations should
be assessed under various environments so as to retain
only highly plausible law equations in a strong sense.

More strictly speaking, two types of generality should
be considered. One is the generality of the law equa-
tion over multiple objects sharing some identical first
principles. Another is the generality over multiple
combinations of measurement quantities. The first
generality is explained through the following example
of Kepler’s third law,

T 2

a3
= C, (1)

where T is the period of revolution, a the major ra-
dius of elliptic orbit, and C a constant. It has the gen-
erality over multiple planets. Given an experimental
or observation environment, the current law equation
discovery systems can figure out the generality of this
equation only limited to the given objects such as the
planets in the solar system. The automatic generaliza-
tion of the equation for wider domains such as every
pair of mass points in a free space is beyond the scope
of the current research field.

The second generality is demonstrated through the fol-
lowing irregular expression of Kepler’s laws for any el-
liptic orbits having a certain eccentricity,

T 4ω̇3
a = C′, (2)

where ω̇a is the angular velocity of the planet on the
major axis of the elliptic orbit and C′ a constant. Ke-
pler initially discovered this type of law equations be-
cause the distance information on the planet orbits
was hardly obtained. Later, he generalized Eq.(2) into
Eq.(1) in concert with the following his second law,

Ṡ =
r2ω̇

2
= C′′, (3)

where Ṡ is the areal velocity, r the distance between
the sun and the planet, ω̇ the angular velocity of the
planet and C′′ a constant. Both Eq.(1) and Eq.(2)
are the relations associated with the period of revolu-
tion under the different combinations of measurement
quantities. Because the consistency between the two
equations are ensured by Eq.(3), these two equations
are considered to represent a unique first principle and
show the second generality.

The objectives of this paper are:

1. to propose a principle to reason some mathemat-
ically admissible and consistent law equation for-
mulae for a newly given set of quantities based on

the candidate law equation formulae discovered
from another set of quantities and their measure-
ment data in advance,

2. to propose an algorithm to predict mathemati-
cally admissible and consistent law equation for-
mulae by the above principle and to check the
plausibility of the candidate law equations in
terms of the second generality, i.e., if the predicted
formulae are well supported by the measurement
of the newly given set of quantities, and

3. to evaluate and demonstrate the practicality of
the proposed algorithm through a real world sci-
entific law discovery in socio-psychology.

When two candidate law equations are independently
discovered by a law equation discovery system from
two different sets of measurement quantities Qs and
Qt, their mutual second generality can be assessed by
checking the consistency between the two candidates
based on the proposed principle. However, the algo-
rithm proposed in this study predicts law equation for-
mulae for Qt from the candidate law equation for Qs,
and check if the predicted formula explains the data
of Qt. This approach has the following advantages:

A. Amount of data and reasoning cost required to
check the applicability of the predicted formulae
to the measurement data of Qt are much less com-
pared with those needed to apply the law equation
discovery system to the data of Qt.

B. The applicability checking of the predicted formu-
lae to Qt is more robust against the noise than the
case to derive candidate law equations for Qt by
using the law equation discovery system.

C. Complex but admissible law equations which may
be missed by some conventional law equation dis-
covery systems can be discovered.

These advantages are demonstrated through the per-
formance evaluation and the practical application of
the proposed approach in this paper.

2. Scale-type Constraints

The background theory of the proposing principle is
provided by the scale-types of measurement quanti-
ties and the constraints on the admissible relations of
pair wise quantities associated with the scale-types.
The discussion on the scale-types was given by Stevens
(1946). He mathematically characterized and cate-
gorized quantitative quantities into two major scale-
types of interval scale and ratio scale. Examples of



the interval scale quantities are temperature in Celsius
and sound tone where the origins of their scales are
not absolute, and are changeable by human’s defini-
tions. Its admissible unit conversion follows “Generic
linear group: x′ = kx+c”. Examples of the ratio scale
quantities are physical mass and absolute temperature
where each has an absolute zero point. Its admissible
unit conversion follows “Similarity group: x′ = kx”.

Luce (1959) claimed that the basic formula of the func-
tional relation among quantities of ratio and interval
scales can be determined by their scale-type features,
if the quantities have direct dependency without being
coupled through any dimensionless quantities. Under
this condition, some unit dimensions of the quantities
are related to each other, and consequently the unit
change of a quantity affects the value of other quantity.
Suppose xi and xj are both ratio scale quantities, and
xi is defined by xj through a logarithmic functional
relation xi = u(xj), i.e., xi = log xj . We multiply a
positive constant k to xj , i.e., a change of unit, without
violating the group structure of the ratio scale quantity
xj , then this leads u(kxj) = log k + log xj . This fact
causes the shift of the origin of xi by log k, and vio-
lates the group structure of xi which is the ratio scale
quantity. Hence, the direct functional relation from
xj to xi must not be logarithmic. As the admissible
transformations of xi and xj in their group structures
are x′i = Kxi and x′j = kxj respectively, the generic
formula of xi = u(xj) must satisfy the invariant con-
dition of x′i = u(x′j) ↔ Kxi = u(kxj) under the unit
conversion. The factor K of the changed unit of xi

depends on k, but it shall not depend upon xj , so we
denote it by K(k). Consequently, we obtain the fol-
lowing constraints on the continuous function u(xj),

u(kxj) = K(k)u(xj),

where k > 0 and K(k) > 0 as these are the factors of
the unit change. The constraints for all combinations
of the scale types are summarized in Table 1. Luce
(1959) derived each solution of u(xj) under the con-
dition of xj ≥ 0 and u(xj) ≥ 0. We have extended
his theory to cover the negative values of x and u(xj)
(Washio & Motoda, 1996). The generic solution of
u(xj) in each case is summarized in Table 2. The im-
possibility of the definition of a ratio scale from an
interval scale is because the ratio scale involves the in-
formation of an absolute origin, but the interval scale
does not. In this table, the inverse functions of the
cases 2.1 and 2.2 are listed at 3.1 and 3.2 for use in
the algorithm shown in the next section.

3. Principle and Algorithm

Let Qs be a source set of measurement quantities, and
ψs = 0 a source equation where all of its arguments
belong to Qs. Furthermore, let δij be an operator to
commute a quantity xi to another xj in a set of quanti-
ties, and δijψ = 0 an equation where the argument xi

is changed to xj in ψ = 0 by substituting the relation
xi = u(xj). Our task is to derive a set of the admissible
target equation Et = {ψtk = 0, k = 1, ...,m} from the
source equation ψs = 0 where all arguments of each
ψtk = 0 belong to a target set of measurement quanti-
ties Qt. Qt is derived from Qs by applying a set of the
commutation operators Δst = {δij|xi ∈ Qs, xj ∈ Qt},
and thus the cardinality of Qt is equal to that of Qs.

If ψ = 0 and xi = u(xj) is known in a priori, then the
equation formula δijψ = 0 is easily derived. However,
our interest is to derive δijψ = 0 when xi = u(xj)
is unknown in advance. In this paper, the situation,
where the following two assumptions hold, is consid-
ered.

Assumption 1 The scale types of the quantities for
commutations are known.

Assumption 2 The quantities xi and xj have direct
dependency without being coupled through any dimen-
sionless quantities.

The first assumption does not yield any strong limita-
tions since the scale-types of measurement quantities
are widely known (Washio & Motoda, 1997). The sec-
ond assumption holds, when xi and xj are the quanti-
ties to measure an identical feature through different
processes and/or when they are known to have direct
dependency based on the background knowledge in the
domain as for the case of Kepler’s laws. This type of
quantity pairs are widely seen in various domains as
shown later. When the two assumptions hold, some
unit dimensions are shared by xi and xj , and thus
the scale-type constraints indicated in Table 2 can be
applied. Starting from the source equation ψs = 0,
the application of all operators δij ∈ Δst derives the
target equation ψtk = 0. In each application of δij ,
xi = u(xj) is selected from Table 2 based on the scale-
types of xi and xj . Multiple solutions of ψtk = 0 may
be derived since both two candidates of xi = u(xj)
are applied in case that xi and xj is the pair of in-
terval and ratio scale quantities. Accordingly, these
commutation operations may result in a set of target
equations Et. In case of a pair of interval and ratio
scale quantities, the relations of 2.1 and 2.2 in Table 2
must be used since the interval scale quantity is always
defined by the ratio scale quantity. The relations 3.1
and 3.2 which is the inverse of 2.1 and 2.2, must be



Table 1. Constraints on functional relations under scale-type characteristics.

Scale Types

Cn

No.

Independent

variable

xj

Dependent

(Defined)

variable xi

Constraints* Comments*

1 ratio ratio u(kxj) = K(k)u(xj) k > 0, K(k) > 0
2 ratio interval u(kxj) = K(k)u(xj) + C(k) k > 0, K(k) > 0
3 interval ratio u(kxj + c) = K(k, c)u(xj) k > 0, K(k, c) > 0
4 interval interval u(kxj + c) = K(k, c)u(xj) + C(k, c) k > 0, K(k, c) > 0

*c and C can be any real numbers.

Table 2. The admissible relations under scale-type characteristics.

Scale Types

Eq.
No.

Independent

variable

xj

Dependent

(Defined)

variable xi

Possible Relations Comments*

1 ratio ratio xi = α∗|xj |β β/xj , β/xi

2.1 ratio interval xi = α log |xj | + β∗ α/xj

2.2 xi = α∗|xj |β + δ β/xj ; β/xi; δ/xj

3 interval ratio impossible

3.1 xi = α∗aeβxj β/xj

3.2 xi = α∗b|xj + δ|β β/xj ; β/xi; δ/xj

4 interval interval xi = α∗|xj | + β β/xj

1) The notations α∗, β∗ are α+, β+ for xj ≥ 0 and α−, β− for xj < 0, respectively.

2) The notations α∗a is α+ for xi ≥ 0 and α− for xi < 0, respectively.

3) The notations α∗b is α++ for xi ≥ 0, xj − δ ≥ 0, α+− for xi ≥ 0, xj − δ < 0,
α−+ for xi < 0, xj − δ ≥ 0, and α−− for xi < 0, xj − δ < 0, respectively.

4) The notations α/x means “α is independent of the unit x”.

5) The relations in 3.1 and 3.2 are not derived from their constraints,

but are inverse functions of 2.1 and 2.2.

applied in case to commute a ratio scale quantity to
an interval scale quantity.

By using this principle, the algorithm shown in Ta-
ble. 3 tries to discover the law equation formulae
ψtk = 0 for the target set of measurement quanti-
ties Qt, and confirms the second generality of the
candidate law equations if ψtk = 0 is checked to be
consistent with the measurement data of Qt. For a
comprehensive explanation, this algorithm is demon-
strated through a simple example shown by the afore-
mentioned Kepler’s third law. Let Eq.(2) be a source
equation ψs = 0, and consider the case to commute the
angular velocity ω̇a to the major radius a where both
are ratio scale. Hence, Qs = {T, ω̇a} and Qt = {T, a}.
In the step (S1), the candidate law equations under
Qs are discovered by a law equation discovery system
such as SDS. In this example, Kepler discovered the
candidate law equation Eq.(2).

In the step (S2), the target equation formulae underQt

are reasoned through the procedure REASONING.
In REASONING, when Δ is not empty, a commu-
tation operator δij is popped from Δ, and xi in ψ is
commuted to xj by the operator. If xi = u(xj) is one
of the cases 2.1, 2.2, 3.1 and 3.2 in Table 2, two can-
didate formulae are derived, i.e., h = 1, 2, otherwise

a unique candidate formula is derived. This proce-
dure is recursively applied to each candidate formula
until Δ becomes empty. In the example of Eq.(2),
ω̇a = α∗|a|β is selected from Table 2 for the commu-
tation in REASONING of the step (S2). By substi-
tuting this relation to Eq.(2), the following equation
formula is predicted,

T 4|a|3β = C′α−3
∗ . (4)

Without using the measurement data on a, the shape
of Kepler’s third law is obtained.

Finally, in the step (S3), the least square fitting of the
predicted target equations to the measurement data of
Qt is conducted, and their consistency with the data
is assessed. The following statistical F -test is used to
judge if a target equation shows the consistency with
the data of Qt. This is the standard F -test to judge if
the data fitting of an equation is acceptable in statis-
tical sense.

If F0 > F (d − 1, n − d, α) (5)

then the fitting is acceptable, else unacceptable,

where

VR = SR/(d − 1), Ve = Se/(n − d) and F0 = VR/Ve.

Here, SR is the regressive component, Se the resid-



Table 3. Algorithm to check the generality.

(S1) Given measurement environments for Qs,
apply a law equation discovery system to the
measurements of Qs. Let Es = {ψsh =
0, h = 1, ..., �} be the set of discovered can-
didate law equations.

(S2) Given Qt, and let Δst be a stack of the com-
mutation operators to derive Qt from Qs.
Et = φ. For every ψsh = 0 ∈ Es, {

Eth = φ. Apply the procedure
REASONING(ψsh = 0,Δst, Eth)
and obtain the target equation set
Eth = {ψthk = 0, k = 1, ...,mh}
for ψsh = 0. Et ← Et ∪Eth.}

(S3) Ef = φ. For every ψthk = 0 ∈ Et {
apply the least square fitting of ψthk = 0
to the measurements of Qt.
If the goodness of the fitting is accepted
by F -test, Ef ← Ef ∪ {ψthk = 0}.}

The set of pairs Est = {(ψsh = 0, ψthk =
0)|ψthk = 0 ∈ Ef} contains highly plausible
law equations in terms of the generality.

REASONING(ψ = 0,Δ, Et) {
(P1) If Δ = φ, then Et ← Et ∪ {ψ = 0},

and return Et.

(P2) Pop an operator δij from Δ.
apply δij to ψ = 0, and obtain the equation
set E = {δh

ijψ = 0|h = 1 or 1, 2}.
(P3) For every equation in E,

apply REASONING(δh
ijψ = 0,Δ, Et).

(P4) Push the operator δij to Δ,
and return Δ and Et.}

ual error component, d the number of measurement
quantities in the equation, n the total number of mea-
surement data used for the fitting and F (d−1, n−d, α)
the lower bound of F value under the degree of free-
dom (d − 1, n − d) and α a risk rate. α is set to be
0.05 throughout this paper. When the target equa-
tion ψthk = 0 is accepted, both ψsh = 0 and ψthk = 0
are considered to have the second type of generality.
In the example, the formula Eq.(4) is adopted to the
equation fitting on the measurement data Qt = {T, a}
of the planet orbits, and the value of β becomes known
to be −2. The resultant equation involves an absolute
value operator | • | on a, however, this does not have
any essential effect on the relation since the major ra-
dius a is always positive. Thus, Eq.(1) is obtained, and

the mutual generality of Eq.(1) and Eq.(2) has been
confirmed. This algorithm can be iteratively applied
to achieve higher plausibility of the candidates, if the
measurement data of extra Qt are available.

Assumption 2 is a sufficient condition that xi and xj

have the relations represented in Table 2, i.e., if they
have a direct dependency, then the target law equa-
tion formula ψthk = 0 holds. In other words, if the
measurement data of Qt do not follow any target law
equation formulae, the strong evidence that xi and xj

do not have any direct dependency is provided. Oth-
erwise, ψthk = 0 can be accepted as a law equation
formula for Qt as far as it well fits to the measurement
data of Qt.

4. Performance Evaluation

The basic performance of the proposed method has
been evaluated through some simulation examples.
One of the major issues of the performance is the
noise robustness of the equation fitting and the sta-
tistical F -test to judge if the derived target equation
shows the consistency with the data of Qt. The second
important issue is the performance to identify a cor-
rect target equation from the multiple candidate target
equations in case that the commutations between the
interval and ratio scale quantities are involved. The
third important issue is the performance to judge if
the commuted quantity xi has the direct dependency
with xj .

Table 4 shows the evaluation result for the four arti-
ficial simulation examples. The second column indi-
cates the original candidate law equations which have
been discovered in the step (S1) in Table 3. SDS
has been used to discover these equations since the
scale-types of the quantities are all known in these
examples, and the performance of SDS is known to
be high from the past experience (Washio & Motoda,
1997, 1998). The third column shows the true for-
mulae of the target equations used in the simulations.
The fourth indicates the candidate target equations
deduced in the step (S2). The symbols of the con-
stants appearing in Table 2 are retained in these ex-
pressions. The fifth shows the equations resulted in
the least square fitting in the step (S3). The data
of Qt was generated through the simulation using the
true target equations, and the nonlinear least squares
fitting method of Levenberg-Marquardt has been ap-
plied (More, 1977). Some constants in the candidate
equations have been put together into smaller num-
bers here. They are represented, only when the equa-
tions are accepted by F -test in the majority of trials.
The rest of the columns shows the percentage of the



Table 4. Performance evaluation for simulation examples.

F -test

Cases Source True Target Candidate Identified 0% 5% 20%

Kepler T =
297.2ω̇−0.75

a

T =
5.39 × 10−10a1.5

T =
297.2α∗−0.75|a|−3/4β

T =
5.67×10−10a1.49

100% 100% 100%

Heat

Trans.

Ḣ =
K(Tc1 −Tc2)

Ḣ =
K(Ta1 − Ta2)

Ḣ = K(α1 log |Ta1| −
α2 log |Ta2| +
(β1∗ − β2∗))

0% 0% 0%

Ḣ = K(α1∗|Ta1|β1 −
α2∗|Ta2|β2 + (δ1 − δ2))

Ḣ =
K(0.993Ta1 −
0.998Ta2)

100% 100% 100%

Ḣ = K(α1 log |Ta1| −
α2∗|Ta2|β2 +
(β1∗ − δ2))

0% 0% 0%

Ḣ = K(α1∗|Ta1|β1 −
α2 log |Ta2| +
(δ1 − β2∗))

0% 12% 0%

El.

Amp.

Vo =
R(1+hf e)

R+RBE
Vi

Ao = Ai +

4.34 log
R(1+hf e)

R+RBE

Ao = βi
βo

Ai +

1
βo

log
(

αi∗a
αo∗a

R(1+hf e)

R+RBE

) Ao = Ai +

4.71 log
R(1+hf e)

R+RBE

100% 100% 53%

Ao =

±
(

αi∗b
αo∗b

R(1+hf e)

R+RBE

)1/βo

|Ai + δi|
βi
βo − δo

7% 0% 0%

Ao =

±
(

αi∗a
αo∗b

R(1+hf e)

R+RBE

)1/βo

e
βi
βo

Ai − δo

0% 0% 0%

Ao = βi
βo

log |Ai + δi|+
1

βo
log

(
αi∗b
αo∗a

R(1+hf e)

R+RBE

) 0% 0% 0%

Pendulum ẋ =
Aω cos ωt

ẋ =
Aω cos arcsin(x/A)

ẋ =
Aω cos ωα∗|x|β

0% 0% 0%

accepted cases for each candidate target equation un-
der 50 measurement data of Qt with the noise level
of 0%, 5% and 20%. The aforementioned fifth column
indicates the equations identified under the 5% noise
level. The noise level stands for the standard deviation
of the Gausian random noise relative to the absolute
value of each quantity. Totally, 100 trials were con-
ducted for each candidate, and the percentage of the
acceptance was calculated.

The first example is the case of the aforementioned
Kepler’s third law. The candidate target equation has
been successfully accepted even under the large noise
of 20%. The second is an example of heat transfer
across a surface between materials of temperature Tc1

and Tc2 in Celsius unit which are interval scale. K is
the heat transfer coefficient, and Ḣ is the heat transfer
rate. In this example, the temperature is commuted to
the absolute temperature Ta1 and Ta2 in Kelvin unit
which are ratio scale. Because of the two candidate re-

lations of 2.1 and 2.2 in Table 2 for each commutation,
totally four candidate target equations are obtained.
The second candidate is the correct one, and it is per-
fectly accepted by F -test under any noise levels, while
the others are mostly rejected. The target equation
has been successfully reconstructed in the equation for-
mula shown in the fifth column. The third example is
the relation between the input and the output voltage
differences Vi and Vo of the electric emitter follower
amplifier consisting of a transistor and a resistance.
RBE is the resistance between the base and the emit-
ter of the transistor and hfe the amplification ratio
between the base and the collector electric currents.
Vi and Vo which are ratio scale become to be repre-
sented in form of the logarithmic intensity, Ai and Ao

in dB in the target equation. Since Ai and Ao are
interval scale, again four candidate target equations
are deduced, where the first candidate is correct. As
shown in the columns of F -test, only the first is ac-



Table 5. Computation time and noise robustness.

The upper row for each example shows the results for the
proposed method and the lower row the results for SDS.

Num. of Num. of data

Example quanti- 50 500

ties CPU Error % Error %

time(sec)

Kepler 2 2.4 5.2% 2.1%
10.3 3.4% 2.5%

Heat 4 3.6 0.5% 0.4%
Trans. 27.7 24% 3.2%

El. 5 4.9 8.5% 4.9%
Amp. 74.9 46% 3.7%

cepted in the majority of the trials. The robustness
against noise is slightly degraded since the candidate
target equations are quite complex for the data fitting.
The identified equation in the fifth column shows the
almost perfect reconstruction of the true target.

The fourth example is the relation among the velocity
of a pendulum ẋ, the elapsed time t, the oscillation an-
gle velocity ω and the oscillation amplitude A. t which
is a ratio scale quantity is commuted to the position
of a pendulum x which is another ratio scale quantity.
In this case, the true target equation formula does not
match to the candidate since t and x have an indirect
relation ωt = arcsinx/A where they are coupled with
the dimensionless quantities ωt and x/A. In fact, the
candidate equation formula was rejected in all F -tests.

Table 5 indicates some advantages of the proposed
method in comparison with the case to discover tar-
get equations by a law equation discovery system and
check its mathematical consistency with the source
equation. SDS is used for the discovery of the target
equations. The performances of the proposed method
and SDS have been evaluated for the three aforemen-
tioned examples under the 5% noise level. The task
of the nonlinear least squares fitting occupies the ma-
jor portion of the computation time of the proposed
method because the search space of the reasoning
needed to derive the candidate equations is quite lim-
ited. The complexity of the nonlinear least squares
fitting is O(m2) − O(m2.5), where m is the number
of quantities involved in the target equations. This
is almost comparable with O(m2) − O(m3) of SDS.
However, the actual computation time of the proposed
method indicated for the 50 samples case in the third
column is far smaller than that of SDS, since the task
of the data fitting is the heaviest process, and the re-
quired number of the data fitting in SDS is propor-
tional to O(m2), whereas the proposed method per-
forms only once. The forth and the fifth columns in
the table show the error percentage averaged over the

coefficient errors relative to the absolute values of the
coefficients in each equation. The proposed method
shows very strong noise robustness in case of the larger
number of quantities and the small sample data. This
is because the noise involved in the data does not affect
the reasoning to derive candidate equations. Only the
F -test at the final step can be distorted by the noise.
In contrast, the reasoning of SDS can be statistically
affected by the noise since the least squares fitting is
essentially involved in the reasoning mechanism of the
equation formulae. This is a common feature of the
conventional law equation discovery systems.

5. Application to a Practical Problem

The power of the proposed method is demon-
strated through a real world problem in the socio-
psychological domain. The objective of the applica-
tion is to enhance the plausibility of the candidate law
equations governing the mental preference of people
on their houses subject to the cost to buy the house
and the earthquake risk at the place of the house.

In the step (S1) of Table. 3, we designed a question-
naire sheet to ask the preference of the house in the
trade off between the frequency of huge earthquakes,
x1 (earthquake/year), and the cost to buy, x2 (Yen).
In the questionnaire, 9 cases of the combinations of
the cost and the earthquake frequency are presented,
and each person chooses his/her preference from the 7
levels for each case. We distributed this questionnaire
sheet to the people owning their houses in the suburb
area of Tokyo, and totally 400 answer sheets were col-
lected back. The answer data has been processed by
following the method of successive categories which is
widely used in the experimental psychology to com-
pose an interval scale preference index yI (Torgerson,
1958). The basic principle of this method is to evaluate
the quantitative interval distances among the categori-
cal preference levels based on the answer distributions
on the categorical levels. The answers on the 7 lev-
els have been transformed to the range of [−1.37, 2.04]
on the interval scale. Hence, a set of observed data
OBSI = {X1, X2, ..., X400} where Xi = [x1i, x2i, yIi]
is obtained. Because this is a passively observed data
set, the original SDS is not applicable. Accordingly,
we adopted the extended SDS which can discover law
equations from passively observed data (Washio et al.,
1999). The extended SDS seeks law equations of the
form y = f(x1, x2), where x1 and x2 are ratio scale
quantities. The discovered candidate law equations
are the following two,

yI = 0.63 logx1 + 0.34 logx2 − 2.9, (6)
yI = −7.9x−0.23

1 x−0.11
2 + 3.5. (7)
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Figure 1. Plot of Eq.(7): yI = −7.9x−0.23
1 x−0.11

2 + 3.5.

The plot of Eq.(7) is depicted in Figure 1. Each black
dot in the plots stands for the average point of all cases
subject to the cost and the earthquake frequency. Both
of Eq.(6) and Eq.(7) fit nicely to the data, and show
the monotonic relations among the three quantities.

In the step (S2), we designed another style of the ques-
tionnaire sheet to ask the identical contents to the
same people. In this questionnaire, the preference was
asked in form of the paired comparison among the 9
cases of the combinations of the cost and the earth-
quake frequency. Each person compares two cases at
a time, and chooses its relative preference from the 7
levels in each comparison. The answer data have been
processed by following the constant-sum method which
is also widely used in the experimental psychology to
compose a ratio scale preference index yR (Comrey,
1950). The basic principle of this method is to evaluate
the quantitative ratios among the categorical relative
preference levels based on the statistical expectations.
The answers have been transformed to the range of
[0.04, 12.06] on the ratio scale. Through this process, a
set of observed data OBSR = {X1, X2, ..., X400} where
Xi = [x1i, x2i, yRi] is obtained. Because both yI and
yR measure the identical psychological feature, they
are considered to have the direct dependency. Thus,
the commutation of yI to yR based on the scale-types
is applied to both candidates of Eq.(6) and Eq.(7). By
substituting 2.1 and 2.2 in Table 2 to the equations,
the following four candidate target equations are de-
duced,

yR = e−
β∗+2.9

α x1
0.63/αx2

0.34/α, (8)

yR =
(
log x1

0.63/αx2
0.34/α − δ + 2.9

α

)1/β

, (9)

yR = e
−β∗+3.5

α e−
7.9
α

x1
−0.23x2

−0.11
, (10)

yR =
(
−7.9

α∗
x1

−0.23x2
−0.11 +

−δ + 3.5

α∗

)1/β

. (11)

In the step (S3), these equations are subject to the

least square fitting and F -test under the data OBSR.
Only Eq.(8) and Eq.(11) have been accepted by F -test,
and their resultant equation formulae are as follows,

yR = 0.081x1
0.438x2

0.236 from Eq.(8), (12)

yR = (1.27x1
−0.23x2

−0.11 + 2.46)−1.92 from Eq.(11). (13)

This fact indicates that both Eq.(6) and Eq.(7) are
plausible in terms of the generality over the two ques-
tionnaire investigations.

6. Discussion

The extended SDS has also been applied to the data
OBSR obtained from the second questionnaire inves-
tigation. The following unique candidate law equation
has been discovered by the extended SDS based on the
data.

yR = 0.146x1
0.449x2

0.207. (14)

The structure of the equation is identical with Eq.(12).
Furthermore, their power coefficients are almost the
same to each other. This evidence supports the high
plausibility of the equations of Eq.(8), Eq.(12) and/or
Eq.(14). However, the equation similar to the more
complex Eq.(13) has not been discovered by the ex-
tended SDS. This may be because the basic algo-
rithm of SDS seeks the law equations starting from
the simpler formulae in a bottom up manner. Many of
the conventional law equation discovery systems apply
similar search strategies taking into account the prin-
ciple of parsimony. Though this is one of the most
important criteria of the first principle law equation,
the extra equations meeting with the other important
criteria such as the mathematical admissibility and the
statistical goodness of fitting are considered to be also
plausible, and should be retained in the candidate law
equations. In this sense, Eq.(13) should not be missed.

7. Conclusion

This paper pointed out the importance of the use of
the second generality criterion over multiple combina-
tions of measurement quantities to enhance the plausi-
bility of the scientific discovery. The proposed method
based on the admissible relations yielded by the scale-
type constraints has the performance of the efficient
reasoning, the superior noise robustness and the ap-
plicability to the small sample data. These features
are highly beneficial since the data acquisition and/or
sensing in high quality for the new set of measurement
quantities is very expensive in many practical fields. In
addition, the ability of the proposed method has been
demonstrated to capture the complex but admissible



law equations which may be missed by some conven-
tional law discovery systems as demonstrated in the
aforementioned application. Moreover, the ability to
detect the indirect dependency between the quantities
for commutation has been also demonstrated. Finally,
the practicality of the proposed method has been con-
firmed through the real world scientific law discovery
in socio-psychology.
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