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Abstract. We describe a graph-based induction algorithm that extracts typical patterns from colored
digraphs. The method is shown to be capable of solving a variety of learning problems by mapping the
different learning problems into colored digraphs. The generality and scope of this method can be at-
tributed to the expressiveness of the colored digraph representation, which allows a number of different
learning problems to be solved by a single algorithm. We demonstrate the application of our method to
two seemingly different learning tasks: inductive learning of classification rules, and learning macro
rules for speeding up inference. We also show that the uniform treatment of these two learning tasks
enables our method to solve complex learning problems such as the construction of hierarchical knowl-

edge bases.
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1. Introduction

In recent years, much of machine learning re-
search has concentrated on algorithms for two
relatively distinct learning tasks: 1) extracting
new knowledge from sample data [1, 2], and 2)
reorganizing existing knowledge based on vari-
ous considerations such as efficiency, operation-
ality, etc. [3].

While several algorithms are available for
each of the two learning tasks, some applica-
tions require the ability to address both problems
simultaneously. For instance, the task of hier-
archical knowledge-base construction involves
both kinds of learning. The inference process at

*Present address: Basser Department of Computer Sci-
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lower levels must be reorganized into more effi-
cient processes at higher levels in the hierarchy,
and at the same time knowledge bases at higher
levels of abstraction must be induced from sam-
ple data at lower levels. Similar problems abound
in the field of robotics [4]. Addressing such ap-
plications with existing learning methods re-
quires a careful decomposition of the problem
such that each part can be solved by existing al-
gorithms. Hence, such problems have been dif-
ficult to solve, and existing solutions rely on
considerable manual interaction. For example,
current methods for generating hierarchical knowl-
edge bases depend on manual guidance [5, 6].
This article examines methods for solving
complex learning problems that demand several
modes of learning to be performed. We present a
unified method for extracting new knowledge
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from sample data as well as reorganizing given
knowledge for efficient problem-solving. The
method relies on the use of colored digraphs for
representing learning problems. Different learn-
ing problems are mapped into colored digraphs
in a manner such that solving the learning prob-
lem is achieved by extracting common patterns
in the resulting graph. This enables the use of a
single graph-based induction algorithm for solv-
ing a variety of learning problems. Specifically,
our method can be used to 1) learn classification
rules from sample data, 2) learn macro rules for
speeding up inference, and 3) create a hierarchi-
cal knowledge base.

The rest of the article is organized as follows:
section 2 examines related work, section 3 out-
lines the basic idea of graph-based induction,
section 4 describes how different learning tasks
can be mapped into colored digraphs, section 5
examines the algorithm for extracting typical pat-
terns. section 6 presents experimental results,
and section 7 summarizes the key points and dis-
cusses future issues.

2. Related Work

Learning strategies that involve the use of both
inductive and deductive methods have been pro-
posed before [7-11]. Most of these methods,
however, used separate components for induc-
tive learning and deductive learning, and focus
instead on how to combine these two separate
learning functions. When problems cannot be de-
composed easily, such methods are difficult to
use.

Colored digraphs have been used for represen-
tation of deductive learning problems [12]. How-
ever. the use of this representation to solve other
learning tasks, especially problems that require a
combination of learning methods, has not been
attempted before.

Several algorithms are available for extracting
substructures from graph or graphlike data struc-
tures [13—-18]. However, most of them [13-16]
cannot extract substructures from a single con-
nected structure and are not applicable for cer-
tain kinds of learning such as knowledge-base ab-
straction. The pattern extraction procedure in

SUBDUE [17, 18] is quite general, but can be
computationally prohibitive for large problems.

3. Graph-based Induction

We employ the colored digraph for representing
learning problems. In a colored digraph represen-
tation, each node has topological (edge) infor-
mation and one or more colors attached to it. The
colors are used to associate attributes to each
node. Colored digraphs can be viewed as a gen-
eralization of the attribute-value representation
used in conventional classification learning sys-
tems [1, 2].

The central intuition behind our graph-based
induction method is as follows: a pattern that ap-
pears frequently enough in a colored digraph is
worth paying attention to and may represent an
important concept in the environment (which is
implicitly embedded in the input graph). In other
words, the repeated patterns in the input graph
represent typical characteristics of the given en-
vironment. The extraction of patterns is based
solely on finding repetitions of substructures
within the input graph. The algorithm analyzes
the input colored digraphs, and extracts sets of
patterns (each set is called a view), in such a way
that the patterns in the view can be used to con-
tract the input graph. A key operation in this pro-
cedure is graph matching.

Standard graph-matching methods check the
equivalence of two graphs by considering all pos-
sible edge combinations. In our algorithm, how-
ever, we adopt graph identity as our matching
criterion. The incident edges are ordered, and the
equivalence between the corresponding edges is
examined. An important implication of this is
that graph matching can be done in polynomial
time. This restriction does not seem to limit the
class of learning tasks that the algorithm can han-
dle. Figure 1 illustrates pattern matching based
on graph identity. Note that although there are
three isomorphic subgraphs in the input graph,
the algorithm finds only the subgraph in the up-
per box as a typical pattern, gives this a new
identifier color (eight in this case), and contracts
the graph such that only the two subgraphs iden-
tical to the typical pattern are contracted.
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Fig. 1. Graph contraction by finding typical patterns.

Besides the graph contraction procedure, a
method to evaluate the contracted graph is also
required. This is done by selection criteria, based
mainly on notions related to graph size, that
enable selection of the best contracted graph.
These issues are discussed in greater detail in
section 5.

Interpretation of the typical patterns depends
on the learning task encoded in the colored di-
graph. For example, in one interpretation, the
typical patterns can be viewed as new knowledge
induced from data encoded in the input graph.
On the other hand, if the input graph represents
inference patterns, then typical patterns may be
interpreted as new inference macro-rules. Tradi-
tionally, these two learning tasks have been con-
sidered separately. However, by encoding them
in colored digraphs, it is possible to solve both
problems by a single algorithm. We now describe
how different learning problems are encoded into
the colored digraph representation.

4. Transforming Learning Problems into Colored
Digraph Representation

In this section, we describe how to map different
types of learning problems into colored digraphs.
Besides the conventional learning problems such
as inductive classification learning and macro-

rule learning, we also illustrate how more com-
plex learning problems that involve a combina-
tion of different learning strategies might be
encoded in colored digraphs. It is important to
note that the process of mapping learning prob-
lems into colored digraphs is done such that so-
lution of the learning problem can be achieved by
finding typical patterns in the resultant graph.

4.1. Conventional Learning Problems

In encoding conventional learning problems from
inductive classification learning, speed-up learn-
ing, etc, we take advantage of the close connec-
tion between colored digraphs and the conven-
tional representations used for these problems.
For conventional inductive learning, the nodes
represent the attributes of relevant entities, and
node color is used to encode attribute values.
For conventional deductive learning, the nodes
in the graph represent the data referred to or pro-
duced by the inference engine. Two colors are
used: one to encode the rule used to obtain the
data and the other to encode the value or kind of
data.

4.1.1. Learning Classification Rules from Sam-
ple Data. The process of mapping inductive
learning problems into colored digraphs is best
illustrated by an example.
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We use the example of learning rules for clas-
sifying DNA promoter sequences. Figure 2 illus-
trates the complete process of mapping the prob-
lem into a colored digraph and then using the
graph-based induction procedure to extract pat-
terns and interpet them as classification rules. In
this section, we focus on the first step only: map-
ping the DNA sequence data into colored di-
graphs.

In mapping the set of cases into the graph
structure, we construct one subgraph for each
sequence in the set of cases. The subgraph con-
sists of a root node and a set of leaf nodes. The
number of leaf nodes equals the number of attri-
butes (in this case, the number of sequence
elements). The color of the root node of the
subgraph specifies whether the corresponding
sequence represents a promoter sequence or not.
The color of the ith leaf specifies the nucleotide
(one of A, T, C, or G) of the ith position.

We now show that the learning problem is also
transformed such that its resolution is equivalent
to finding typical patterns in the colored digraph.
The algorithm, briefly described in section 3, ex-
tracts patterns from the input graph and tries to
decrease the contracted graph size. These typical
patterns will consist of a root node and one or
more leaf nodes. Note that each extracted pat-
tern is equivalent to a typical DNA sequence

DNA Sequence Data

(promoter or nonpromoter). In order to select
“good” typical patterns, we need to use some se-
lection criterion that reflects this interpretation
of the typical patterns extracted. One such cri-
terion is

(Number of Nodes in the
Contracted Graph)
+ (Number of the different values of Color
in the Contracted Graph)?

(1]

minimize

The first term of the criterion is intended to
encourage a search for typical patterns of the
DNA data. The smaller the number of nodes in
the contracted graph, the better the typical pat-
terns used. The typical patterns extracted can be
interpreted as classification rules. The second
term in the selection criterion is a penalty to
avoid an excessive number of rules and ensures
that compact solutions are preferred.

This process ensures that the means of ex-
tracting typical patterns is equivalent to the goal
of extracting classification rules. In appendix A,
we discuss alternative encoding methods, selec-
tion criteria, and other related issues.

Note that the restriction on graph matching
(see section 3) is necessary to map the learning
problem correctly. Checking for equivalence be-
tween all possible edge combinations would be

Classification Rule of DNA Sequence

Positive Example of Promoter
123456789 123456789 123456789
CGTCGATGGCGTATCCATACCTAACAAC. . .
CATCGCTTCAGTGACCACTGTATCAGCC. . .
TGAAAAACAAGAAGCCCGGATTGCTCTT. . .

Negative Example of Promoter
GGTTGCCTTAACCAGTCTGGCAGATGCT. . .
CACCAGCCCCTTGCATAACACCCCATAT. . .

If Nucleotidel = C
Nucleotide3 =T
Nucleotided = C

Then Sequence is Promoter

G

Extract Typical Attributes

1T

Colored Digraph
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Fig. 2. Extraction of classification rules from DNA sequence data.



incorrect, since doing so would involve compar-
ing different attributes.

The mapping process described above for the
DNA sequence example is applicable for learn-
ing of all attribute-value type classification sys-
tems and is summarized in figure 3.

4.1.2. Learning Macro Rules for Speeding up In-
ference. Learning macro rules to make prob-
lem-solving more efficient is also a well-studied
problem in machine learning. This involves re-
organizing prespecified knowledge into a more
efficient form. The complete procedure for the
specific problem of equation-solving is illustrated
in figure 4.

The colored digraph for this purpose is a type
of proof tree. Each node corresponds to a term
in the proof process. Each node has two colors.
Colorl of a node corresponds to the axiom (or
rule) used to prove the term and Color2 refers to
the term itself. Here, Color2 is ignored in the
matching process, and the only equivalence for
Colorl is examined. The ordering of edges from
a node encodes the ordering of terms in the
proof. For example, in the case of a prolog
clause, the ordering of edges from a node indi-
cates the order in the body part of the clause.

The learning problem (finding macro rules to
make equation-solving more efficient) is consis-
tent with the goal of finding typical patterns.
These patterns can be interpreted as macro rules.
This interpretation process for the macro rules
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is essentially equivalent to the generalization
process of Explanation-Based Learning (EBL)
[19, 20]. In order to select “good” typical pat-
terns, the following selection criterion can be
used:

(Number of Nodes in the
Contracted Graph) [2]
+ (Number of different Color! values
in the Contracted Graph)?

minimize

This criterion is very similar to that used for solv-
ing inductive learning problems. Similar to EBL,
the goal here is to make inference efficient by
chunking out the intermediate inference. The
first term is intended to estimate the effect of
chunking. The second term is a penalty for the
excessive macro rules. The degradation of in-
ference efficiency due to excessive number of
macro rules is widely recognized in EBL re-
search. The second term is intended to avoid
such degradation.

The mapping process described above for
equation-solving is applicable for other macro-
rule learning problems of the type discussed in
[21, 22] and is summarized in figure 5.

4.2. Hierarchical Knowledge-Base
Construction

In this section we illustrate how more complex
learning problems can be mapped into colored di-
graphs. We examine the problem of hierarchical

Data Representation

Positive Example
Root Leaf

Color of Root
Indicates
Class

Color of i-th Leaf
Indicates
Attributes

Pattern as Classification Rule

If Color of the Leaves in the Pattern
( Attribute of Data)

Then Color of Root
(Class of Data)

Fig. 3. Graph representation for classification rule learning.
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Prespecified Rules for Equation Solving

Rule 1 If Ax=B
Then Ax/A=B/A

Rule 2 If A/A
Then 1

Rule 3 If B/A
Then C where C=B/A

Inference Trace

Generalized to Macro Rule

Macro 1

If Ax=B
Then x=C where C=B/A

Extract Typical Rule

Cx=3
(Color1) Usage Q

R.1

R.3

Remove Intermediate Termﬁ

G

Extract Term Information
(Color2) from Pattern

Fx/2=6/2>
Cx6/2 >
D)

Fig. 4. Learning macro rules for equation solving.

knowledge-base construction and show how it
can be solved by means of graph-based induc-
tion. The solution of this problem calls for a mix-
ture of inductive and deductive learning strate-
gies. Before we discuss how to map this problem
into colored digraphs, we briefly describe hier-
archical knowledge bases.

4.2.1. Hierarchical Knowledge Bases. A hier-
archical knowledge base is a method of organiz-
ing knowledge about complex systems. Usually
the different levels in the hierarchy are ab-
straction levels. Each abstraction level contains
knowledge of the system appropriate at that
level. Usually each level has its own interpreta-

Root

Node Corresponds to
Term in Axiom

Color1 of Node Indicates
Axiom (Rule/Clause...)

Leaf

Color2 Indicates
the Term itself

Pattern in the Proof Tree (Inference Trace/PROLOG Trace...)

Edge Position
Indicates
Matching
Information

Pattern as Macro Rule

—>

If Color2 (Term:Condition) of
Leaf.1 in Pattern
& Color2 of Leaf.2 in Pattern

Then Color2 (Term:Conclusion) of Root

Fig. 5. Graph representation for macro rule learning.



tion rules for manipulating the objects at that
level and making inferences about them. The lev-
els are connected together by reformation rules
that specify how to map knowledge at one level
to the level immediately above (or below) it.

Figure 6 illustrates a two-level hierarchical
kowledge base for describing an electrical cir-
cuit. At the lower level, the circuit is described
in terms of node voltages and line currents, while
at the higher level it is described in terms of logic
gates and transistors. At each level, knowledge
about the circuit is organized using an entity-re-
lationship model. An example of a relationship
between entities at the lower level is I, = I, +
I,, which describes the relationship between
three line currents in the circuit. Various inter-
pretation rules are available at each level that en-
able inferences to be made. These inferences can
be used, for instance, to perform a qualitative
simulation of the circuit at that level. The follow-
ing is an example of an interpretation rule that
describes additive relationships at the lower level
of the knowledge base:

If I, =
Then [,

L+ Landl, = [+]and I; = [+]
[+]

Abstract Level Description
Cout

not Ko

Inference with
Abstract Level

Interpretation Rule
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Besides the interpretation rules, the hierarchi-
cal knowledge base also consists of various ref-
ormation rules for describing the entities at the
higher level (gates and transistors) in terms of en-
tities at the lower level (node voltages and line
currents).

Given such a hierarchical knowledge base, it
is normally used in one of two modes:

Reformation Mode. Given a description at one
level, descriptions at other levels are gener-
ated. For example, if the input description
specifies relationships at the lower level of fig-
ure 6, the reformation rules are used to obtain
logical relationships among the circuit ele-
ments at the higher level.

Inference Mode. In using the knowledge
base to make inferences, an appropriate level
is selected based on some criterion. Then the
descriptions and interpretation rules at that
level are used to make inferences.

Construction of such hierarchical knowledge
bases is motivated by the fact that the higher lev-
els enable more efficient inferences. The results
of these inferences can then be mapped down to
the lower levels if needed. This process is consid-

Abstract Level Inference

not P& E

—

Reformation Rule

Detail Level Description

Cout I

1

Specifies Relation

Detail Level Inference

o S

Cin

Inference with

1
o3 Detail Level
tP 53 b
" = R . | Interpretation Rule

—

Fig. 6. A hierarchical knowledge base.
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erably more efficient than performing the com-
plete inference at the lower level itself.

Creation of hierarchical knowledge bases usu-
ally involves creating new abstract-level con-
cepts (along with the accompanying interpreta-
tion rules for that level) from the lowest-level
description and rules. Previous approaches to
this problem [5, 6] have relied on user-supplied
reformation rules.

In the next section, we discuss how to encode
the problem into colored digraphs, thereby en-
abling the use of graph-based induction methods
to learn both the interpretation rules as well as
the reformation rules for each level.

4.2.2. Construction of Hierarchical Knowledge
Bases by Colored Digraphs. In order to create
hierarchical knowledge bases, qualitative simu-
lation of the lowest level of the knowledge base
is used. Figure 7 describes the overall process of
mapping this information into colored digraphs
and then using the graph-based induction proce-
dure to extract patterns that can be interpreted
as reformation and interpretation rules. In this
section we focus on the first step: encoding the
problem as a colored digraph.

The interpretation rules at the lowest level are
used to obtain a qualitative simulation trace. It is
this trace that is represented as a colored di-

Circuit Equation

Reformation Rule

graph. Each node corresponds to some physical
datum, such as voltage and current at a certain
node in the circuit. Two colors are used for each
node: Colorl of the node corresponds to the
interpretation rule used to calculate the value,
and Color2 is the value itself. Each edge of a
node corresponds to a variable in the interpreta-
tion rule associated with the node. Color2 is ig-
nored in the matching process, but is used later
on for extracting interpretation rules from the
typical patterns.

We now show how finding typical patterns in
the colored digraph is equivalent to constructing
the hierarchical kowledge base. The typical pat-
terns are interpreted in two ways: 1) they are
viewed as reformation rules that translate the
lower-level descriptions into higher-level voca-
bularies, and 2) they are also used to specify
interpretation rules for the higher-level vocabu-
laries. The process of extracting reformation
and interpretation rules from typical patterns is
shown in figure 7. Note that color2 values in the
typical patterns are used in extracting the inter-
pretation rules.

Thus, the process of finding typical patterns
in the colored digraph results in automatic gen-
eration of the higher levels of the knowledge
base. The contracted graph itself serves as the
higher-level description. In order to obtain

Interpretation Rule

£q 1 c=a+hb £ C=a+hb [+] = SUM([+],[+],[0])
e=c+d [+] = SUM([+],[0],[0])
Eq 2 e=c+d Then e = SUM(a, b, d)
[0] = suM([0], [0], [O])
4 L /\ Remove Intermediate Term ﬁ
Qualitative Simulation Traci
o 1 PeES) .
Eq 2 c=[+]
am il b= 4] -\
a=(0]
. . Extract Term Information
Extract Typical Equation D ﬁ
(Color1) Usage (Color2) from Pattern
w1 O | @D
me O J — D

S~

—>

T Gaw

Fig. 7. Circuit equation reformation.



“good” higher levels, the following selection cri-
terion was found useful:

(Number of Nodes in the Contracted Graph)
+ (Number of Edges in the Contracted Graph) [3]
+ X(Number of Nodes in the Pattern;)?

minimize

The first term represents the amount of data
to be handled, the second term the matching cost
during inference, and the third term the cost to
generate hierarchical descriptions from the input
descriptions.

The mapping process illustrated above is ap-
plicable for other problems that involve creation
of hierarchical knowledge bases based on QSIM
[23] type qualitative simulators and is summa-
rized in figure 8.

5. An Algorithm for Finding Typical Patterns

After the learning problem is encoded as a col-
ored digraph, the key step is to extract typical
patterns. In this section we describe in detail an
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algorithm, called CLiP, for performing this task.
The algorithm is outlined in figure 9. CLiP is a
beam-search algorithm, amenable to parallel im-
plementation, that searches for typical subpat-
terns in the colored digraph. The objective is to
find typical patterns that help contract the graph.
In order to assist in the choice of desirable typi-
cal patterns, a selection criterion for comparing
alternative contracted graphs is provided to the
CLiP algorithm. The search procedure focuses
on obtaining a reasonably good solution, not nec-
essarily an optimal one. The method involves
three basic operations: Pattern Modification,
Pattern Combination, and View Selection. It
starts with a set of null patterns, one for each
view (a view holds promising typical patterns),
and iteratively extends these pataterns by the
first two operations (the old patterns are also re-
tained). In each iteration, the input graph is con-
tracted using patterns in each view, and only the
good views are retained. The heart of the CLiP
procedure involves iteratively performing the fol-
lowing three steps:

Non-Leaf Node
(NLN : Inside of the Pattern)

Root

/1

Node Corresponds to
Physical Data.

Color1 Indicates
Equation which

Pattern in Qualitative Simulation Trace

Edge Position
Corresponds to
Variable

in Equation

Leaf
(Outside of the Pattern)

Calculates the Value

Color2 Indicates
Value of Data. If

Pattern as Reformation Rule

Color1 of NLN.1 in Pattern
Color1 of NLN.2 in Pattern

Then Contract them to a NEW Equation

Pattern as Interpretation Rule (Table)

NEW

Value
(Color2)

Input for Leaf Output
Leaf.1 |Leaf.2 | Leaf.3 Root
[+] [+] [0]

[+ ]9

[0]

Fig. 8. Graph representation for hierarchical knowledge-base construction.
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Algorithm CLiP(Gi,, C, L, W)

Input in Colored Directed Graph
Selection Criterion
L, W :  integer
Output Sequence of V; where each V; is
a Set of Typical Patterns in Gjp

Variable B, Bpext Set of Views
begin

V o—0; B —{V o} ; i —1

repeat L do

Bnext — 0

for each Vtmp € B do

Call Pattern Modification
Call Pattern Combination

Call View Selection

V; — Best view in Bpext according to C

i —1+ 1
return Sequence of V;
end

Procedure Pattern Modification
begin

Gtmp «— Graph that is contracted from Gjp

according to the patterns in Vtmp

for each Temporary Pattern P in Ggpp do
Vnew — Vtmp U {Original Pattern of P}

Append Vnew to Bpext

end

Procedure Pattern Combination
begin
for each Vippy € B do

for each Vippz € B do
if Vempt ¥ Vimpz then

Vhew — Vempt U Venp2
Append Vnew to Brext

end

Procedure View Selection
begin

B — Top W views in Bpext according to C

end

Fig. 9. Algorithm for extracting typical patterns.

. In pattern modification, each pattern in each
view is extended. Figure 10 shows how pat-
terns are modified in this step. First, a view is
selected and the graph is contracted using pat-
terns in the selected view. The reduced graph
is then analyzed, and every possible pattern
made up of two linked nodes is considered. In
figure 9, these patterns are referred to as tem-
porary patterns. Each such temporary pattern
is then expanded based on patterns in the cur-
rent view and is used to create new views. In
the example in figure 10, three new views,
each with two patterns, are generated from the
current view. Note that patterns in the parent
view are also stored in the new views.

As mentioned earlier, the matching procedure
is restricted to checking for graph identity.
Standard graph matching checks the equiva-

lence of two graphs by checking for graph iso-
morphism (i.e., all possible edge combina-
tions). The matching procedure used in our
study does not check for graph isomorphism
and instead checks for graph identity. In con-
trast to matching based on graph isomorphism
(an NP-complete problem), matching based on
graph identity has a time complexity that is
O(Number of Nodes).

. In pattern combination, existing views are

combined in pairs to obtain new views. All
possible combinations are considered.

. In view selection, estimates are obtained for

each view as to how much reduction in the
size of the graph can be expected after con-
tracting the input graph using patterns in that
view, and only those views that rank high are
chosen within the allowable number of views.
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04

Current View: V tmp

Current Pattern

0—0 H—-C---CH3-0-C *@*J

~

Modified Digraph: G tmp

|

\

J

Temporary Pattern

New Vie

\

Temporar

New Vie!

w

New Pattern

-

b
4%

New Pattern

New Pattern

Fig. 10. Pattern modification.

Figure 11 illustrates how patterns evolve
through generations. In this example, the maxi-
mum number of views is limited to four. In the
first generation, starting from null patterns, the
pattern-modification step generates three views,
each containing one pattern that consists of two
nodes (e.g., 1-2). In succeeding generations, be-
sides pattern modification, pattern combintation
is also performed. In pattern modification, all
patterns in all views are considered in turn as
candidates for modification. In each case, a new
view is created consisting of the modified pattern
appended to the original view. View selection is
done after the pattern modification and combi-
nation steps. The view-selection step selects the
best N (maximun number of views, which is a
search parameter; four in figure 11) views in each
generation. View selection is based on estimates
of the relative effectiveness of views in graph
contraction. These estimates are computed as
follows: For each of the views V..., (that were
selected in the previous generation), the actual
size Crrued Vprovions) Of the contracted graph that
results from applying patterns in that view to the
graph is calculated at the beginning of the current
generation. For each new view V.., that is gen-
erated by pattern modification step, the esti-

mated size Cgimae(Vewen) Of the contracted
graph that would result from applying that view
is calculated as a perturbation to the actual size
of the contracied graph due to the parent view
Virevions (€€ equation (4)). The graph size for
views generated by the pattern-combination step
is estimated as the average of the two views in-
volved in the combination.

The estimated size and the actual size (calcu-
lated at the beginning of the next generation) may
not agree (see the difference between big and
small marks on the top left of each view in figure
11). However, the estimate is reasonable enough
to ensure that good views are usually selected.!
The estimation process is necessary because
computation of the actual size is computationally
expensive.

CE.\‘li/nu!(‘( VCHI’/'('III)

= (1.0 — 0.1 X F) (4]
X CExu('!(VPruviou.c)

No. of occurrences of Temp.
Pattern

F= No. of occurrences of Node
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Iteration

~10
& |8
Si=

3'rd
iteration
P.Modification

N

NULL

1'st 2'nd
Iteration
P.Modification v
Lo
NULL % R 2
-
o) X
, '
L
-
A
v
— VIEW
.
CS‘>Pattern .
C 97

VIEW Selection

l e

il

m

NULL

i

NULL

X

NG

NULL

VIEW :Seylyec_tk!ovﬁ .

The mark on the top left of each view indicates the result of graph
contraction: O for good, x for bad and A for intermediate. The size
of a mark indicates whether the result is based on actual rewriting of
the graph (big) or on estimation.

Fig. 11. Evolution of patterns in a view.

Note that the actual graph rewriting is per-
formed only during the pattern-modification step
(see figure 10) and is limited to the best N views.
All necessary information for estimating graph
size of other views is obtained in the process.

Our procedure for extracting typical patterns
is closely related to SUBDUE [17, 18]. The key
difference is that we use a more efficient graph-
matching procedure.

6. Experimental Results
6.1. DNA Sequence Classification

A set of DNA promoter sequence data [24] was
prepared for analyses by graph-based induction.
The dataset consisted of 106 sequences, half of
which were promoter sequences and the rest of
which were nonpromoter sequences. Each se-
quence had 57 DNA nucleotides (one of A, T, C,
or G). These data were encoded in a colored di-
graph as described earlier, and the CLIiP algo-
rithm was used to extract typical patterns. Since

each generation creates views that give rise to
classification rules, another issue is the selection
of views from one particular generation as the fi-
nal answer. A very good measure of success is
the error rate for unseen data. Hence, those
views that generate classification rules with min-
imum leave-one-out error [25] were selected in
each generation. This technique was also used in
[26] to select the final decision tree. The follow-
ing classification rules were obtained:

Fy = ANF,s = TN F,, = T— positive
Fe=TNF;,=G — positive
Fs=TNF¢,=T — positive
True — negative

Table 1 summarizes the predictive perfor-
mance of these rules and compares it to previous
results. Error rates were estimated by the leave-
one-out method. In table 1, ID3 [2] and SWAPI
[27] represent rule-learning systems, and BP
a standard back-propagation neural network
method with one hidden layer. CLiP outperforms
the standard ID3 tree-induction program.



Table 1. Inductive learning: comparison with other
classification methods

Previously reported methods

Method ID3 SWAPI BP CLiP

Error/106 19 14 8 14

6.2. First-Order Equation Solving

Eighty-five inference traces of first-order equa-
tion solving were obtained by running a prolog
program in which each prolog clause represented
an axiom for equation solving. These traces?
were mapped to colored digraphs as described
earlier. The CLIiP algorithm extracted a set of
macro operators for more efficient equation solv-
ing. The macro operators were encoded as prolog
causes, each representing a new theorem for
equation solving. Figure 12 illustrates an infer-
ence trace before and after learning.

The effectiveness of the learning process can
be assessed by computing the speed-up ratio,
which compares the length of inferences before
and after learning. The speed-up ratio was com-

Before Learning

3x+12=-15
Ax + B = C— -
“3x +12-122-15-12 *B=C=Mx+B-B-C-8
B-B—0
3x+0=-15-12
Ax+0—A
3x=-15-12 e
C-B—~D where D=C-
-3x%-27 where D=C-B
Ax = D — (AA)x=(D/A
(-3/-3)x = -(27/-3) @ (WAx=(DIA)
@ (AA)—~1
X = (-27/-3)
A (D/A) — E  where E=(D/A)

After Learning

-3x+12=-15
(m)Ax+B-=C—~Ax=C-8
.3x = -15-12 Macro Rule : ol + 02 + 03
|
-3x =-27
@ Ax = D— x = E where E=(D/A)
Xx=9 Macro Rule : 05 + 06 + 07

Fig. 12. Use of learned macro operators in equation solv-
ing.
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puted by adding the generated clauses at the top
of the original prolog program and solving the
equations with this new set of rules.

As in the previous task, we need a measure to
select a set of views as the final answer. The best
measure of success here is the utility of acquired
macros. So we select the views that show the
best speed-up ability over the training prob-
lems. The results (table 2) indicate, in contrast to
a nonselective EBL system, that learning by
graph-based induction improved problem-solving
efficiency.

6.3. Circuit Equation Reformation

Qualitative simulation results of an NMOS cir-
cuit that calculates a carry in a CPU [29] were
used for constructing a hierarchical knowledge
base of the circuit. The simulation traces were
mapped to colored digraphs, and the graph-based
induction algorithm successfully extracted the
patterns and truth tables corresponding to NOR
and NOT functions.

We set the maximum number of views at 15
and limited the algorithm to 50 iterations. The
minimum graph size was attained in the 25th gen-
eration.

Unlike the previous two tasks, there is no uni-
form criterion to measure the usefulness of ac-
quired concepts, and we select views that give
the smallest contracted graph. Figure 13 shows
an example of a typical pattern extracted (lower
left) and the corresponding reformation/interpre-
tation rules (right). The variables on the right-
hand side of each equation in the conditional por-
tion of the extracted concept (e.g., V and dV in
equation(D) are arranged so that they correspond
to the numbers indicated on the edges pointing to
each node (e.g., the edges 1 and 2 going into the
node()). The reformation rule says that if there
is a set of six relations (equations) as shown, it is
reasonable to infer that V,,,, can be calculated by

Table 2. Equation solving: comparison with EBL

Method Nonlearning EBL CLiP
CPU sec. 100.0 279.9 87.5
Speed-up Ratio 1.00 2.80 0.88
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Reformation Rule for a New Concept Component

Interpretation Rule for

IF .. Vnext=V +dV
Ldv=11+12
L1 =-le

.. le<=Vb

.. 12<Vce

... Vce = [+]

Then Vnext = NEW(Vb, V)

®OOLEO

the above Concept Component

IF Vnext = NEW(Vb, V)
Vb = [+]/[+] /[+] /]0] /[0]...
V= [0] /[s+]/[+] /[s+]/[+]..

Then Vnext= [0] /[O] /[s+]/[+] /[+]..]

Fig. 13. A pattern that corresponds to NOT operation.

some relation NEW from the current value of V,
and V. The interpretation rule shown describes a
set of relationships between the input V,, V, and
the output V.. These relationships indicate that
the concept generated is the analog NOT opera-
tion.

Further experiments were performed using
different selection criteria. The graph-contrac-
tion process of one such experiment is shown in
figure 14.% In this experiment, the third term of
the selection criterion (the cost to generate hier-
archical descriptions; see equation (5)), is multi-
plied by a factor of 10.

(Number of Nodes in the Contracted Graph)
minimize + (Number of Edges in the Contracted Graph) [5]
+ 10 * (Number of Nodes in the Pattern;)?

The minimum size was attained at the 15th it-
eration, and the result corresponds to interme-
diate physical structures, i.e., pullup transistor
and pulldown transistor. Using this level as in-
put, the algorithm obtained the rightmost graph
of figure 14, which is exactly the same as in the
previous experiment.

These results indicate that the resultant struc-
ture varies depending on the characteristics of
the inference system. While an inference system
with strong reformation capability can recognize
a complex object by one level of abstraction, an-

other inference system with weaker reformation
capability needs to levels of abstraction for the
same object. In contrast to previous studies
on hierarchical knowledge representation, our
method automatically considers a number of fac-
tors (such as cost of inference) during the con-
struction of hierarchical device representations.
It is also able to automatically find new abstract-
level concepts while at the same time recompil-
ing the lower-level information into higher-level
knowledge structures that involve the abstract
concepts.

Table 3 shows the list of concepts generated.*
All of these concepts are understandable to hu-
man experts, and some of them correspond to
known mathematical and logical concepts. The
lowest-level initial description for the circuit in-
volves 112 equations. The generated concept
Carry Chain in table 3 describes the overall be-
havior of the same circuit.

Achieving equivalent results solely by using
conventional deductive learning techniques is
difficult. The appropriate operationality criteria
and goal concepts to cover the whole range of
concepts listed in table 3 are difficult to specify.
Similarly, conventional inductive-learning tech-
niques are also not very useful for this task, since
they lack the ability to reorganize the circuit
equations. Note that all concepts listed in table 3
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Input Digraph

Intermediate Output Output

Qualitative Simulation Results Concept of Pull Up Transistor Concept of Analog NOR

of Carry Chain Circuit
based on 112 Equations
were used as Input

Generated

and Pull Down Transistor were  and Analog NOT were

Generated

Fig. 14. Graph contraction process.

are reorganized from prespecified circuit equa-
tions.

6.4. Computational Considerations

In principle, the CLiP algorithm is amenable to
parallel implementation. However, even on con-
ventional hardware, computational requirements
of the algorithm are modest. The most compute-
intensive parts of the procedure involve graph
matching and graph contraction. By using an ef-
ficient graph-matching procedure, and by using
estimators to avoid having to do graph contrac-
tion too often, both these stages are well opti-
mized.

For the hierarchical knowledge-base creation
task, the input graph had 2176 nodes and 2144
edges. Using this graph, the concepts of Analog
NOT/NOR were obtained in about six minutes of

CPU time on a SPARCstation-1. The largest
graph we have considered to date involved over
50K nodes and over 50K links, representing an
inductive-learning problem involving data from
the protein identification resource (PIR) [30].
Solving this problem required about two days of
CPU time on a SPARCstation-1.

7. Discussion

In this article, we have examined the use of col-
ored digraphs in integrating different modes of
learning. We have shown how different learning
problems can be mapped into colored digraphs.
The mapping is achieved such that resolution of
the corresponding learning task can be achieved
by finding typical patterns in the resultant col-
ored digraph. The use of a common representa-

Table 3. List of generated concepts in the hierarchical knowledge base

No. Generated Concept Comment

1. Pull Up Transistor Circuit made up of pure transistor, capacitor, and power source

2. Pull Down Transistor Circuit made up of pure transistor, capacitor, and ground

3. Analog NOT Circuit made up of pull up transistor and pull down transistor
Inference table contains analog element

4. Analog NOR Circuit made up of pull up transistor and 2 pull down transistors
Inference table contains analog element

S. Digital NOT Similar to Analog NOT
Inference table does not contain analog element

6. Digital NOR Similar to Analog NOR
Inference table does not contain analog element

7. Carry Chain Circuit which calculates carry
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tion allows us to conceive of a single algorithm
to perform a variety of inductive and deductive
learning tasks such as learning classification
rules, generating new macro operators, and cre-
ating hierarchical knowledge bases by identifying
new concepts. The algorithm for extracting typ-
ical patterns relies on an efficient matching pro-
cedure. The interpretation of the typical patterns
depends on the learning task being solved. For
classification learning, they are interpreted as
classification rules; in speed-up learning, they
are viewed as macro operators; and in hierarchi-
cal knowledge-base construction, typical pat-
terns help obtain both reformation rules as well
as interpretation rules by identifying new con-
cepts.

Empirical results indicate the viability of our
graph-based induction method for solving a va-
riety of learning problems. While it is reasonable
to expect that methods for solving a specific
learning problem might do better in certain spe-
cialized representations, our ultimate goal is to
devise a unified learning mechanism, and to-
wards this end the colored digraph representation
is more promising. However, to accomplish our
ultimate goal, further research is necessary. For
example, we have not addressed the issue of de-
fining selection criteria in a principled fashion.
We still need to select such criteria carefully for
each task. Methods to convert other learning
problems into colored digraph representation still
have room for investigation. For example, al-
though the application to the PRODIGY [31] type
control rule learning appears to be straightfor-
ward, experimental results have not yet been
analyzed. We currently use acyclic graph to rep-
resent data and do not use continuous value. Fur-
ther investigation is necessary on these points.
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Appendix A. Representations
for the Inductive Learning

The representation presented in section 4.1.1
seems to work for other inductive tasks. How-
ever, it has two problems:

» Negative conditions as as “If the i-th nucleotide
is NOT A’ cannot be represented.

+ Using this representation, the algorithm may er-
roneously classify two patterns, each of which
consists of the same nucleotides occurring in
the same order—one as positive and the other
as negative. This error occurs because this rep-
resentation does not have a notion of mutual ex-
clusiveness.

The solution of the first problem involves the
use of a binary representation for the attributes,
as shown in figure 15 for the DNA data. The root
nodes have the same information as before (in-
formation about class), but the number of leaf
nodes increases by a factor equal to the number
of categories over all attributes. For the DNA
data, for example, the number of leaf nodes in-
creases by a factor of four. Each of these leaf
nodes corresponds to a boolean attribute, indi-

DNA Sequence Data

CGTCGATGGCGTATCCA. ..

Colored Digraph D

E—( n1=a

B

Fig. 15. Alternative representation for inductive learning.



cating the presence or absence of the relevant
category for that attribute.

The second problem can be resolved by using
the color information of the root node only in the
selection process, along with the following selec-
tion criterion:

(Number of Nodes in the Contracted Graph)
minimize| +(ZPenalty(Pattern;)?

S Penalty(Pattern)) = (Number of different root

The second term in the selection criterion is a
penalty for patterns that violate the mutual ex-
clusiveness constraint. The utility of this term is
illustrated in figure 16. With two classes, the
number of the different colors for the root node
of patterns that violate the mutual exclusivity
constraint is two (positive and negative), and
thus the value of Penalty is four. In contrast, for
patterns that satisfy the constraint, the value of
Penalty is one. Note that the class information is
ignored during the matching process, but is used
in the selection process.

The selection criterion presented here is also
applicable to PRODIGY-type control rule learn-
ing [31], since PRODIGY’s control rules for
SUCCEEDS, FAILS, etc., are mutually exclu-
sive concepts.

Appendix B: Approximation Techniques
to Generate Abstract-Level Concepts

Simpler representations can be obtained by the
use of approximation techniques. Generating
concepts such as digital NOT and NOR requires
the use of these methods. Note that the analog
NOR and NOT still have analog components,
such as [s +], for the input and output values (see
figure 13). However, the input and output rela-
tionships of digital NOT and NOR are exactly the
same as those in the logical concepts.

We distinguish between two types of approxi-
mation in colored digraphs. Type 1 approxima-
tion involves the rule color and is equivalent to
assuming some unknown function of an identi-
fied object in the circuit. In terms of graph op-
erations, this removes the edge portion from the

node colors in the set of patterns) | [6]
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DNA Sequence Data

Positive Example of Promoter
CGTCGATGGCGTATCCATACCTAACAAC. . .
CATCGCTTCAGTGACCACTGTATCAGCC. . .

Negative Example of Promoter
GGTTGCCTTAACCAGTCTGGCAGATGCT. . .

-

Colored Digraph
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Color1 of Pattern1 Color1 of Pattern2
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Penalty of Pattern1 Penalty of Pattern2

c{mi
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-4

Penalty: ) Penalty: 2
1 =1 4 =2

Fig. 16. Representation for mutually exclusive concepts.

rule subgraph for which the inference process is
of a certain type. Type 2 approximation utilizes
the value color and is equivalent to assuming
some default value. In terms of graph operations,
this amounts to removing the edge portion from
the rule subgraph for which the values of some
data are the same for all occurrences.

These approximations are illustrated in figure
17 and figure 18. The second graph in figure 17
shows the state of the graph just before a type 1
approximation is introduced. Since at this stage
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Fig. 18. Graph contraction using type II approximation.



the patterns are still small, no details are ne-
glected, and the result is exactly the same as that
shown in figure 14.

At this stage, a type 1 approximation is intro-
duced to give the third graph. The node with sin-
gle input solid line corresponds to NOT, and the
node with two input solid lines corresponds to
NOR. The resulting interpretation rules involve
only [+] and [0]. If we interpret [ +] as [true] and
[0] as [false], these rules represent truth tables
for NOT and NOR.

The concept of Carry Chain can also be found
by further application of approximation meth-
ods. Consider the third graph in figure 17. The
number of inputs for this Carry Chain is five;
however, the actual number of inputs to a carry
operation should be three. On performing a type
2 approximation by assuming a default value for
the clock signal, the resulting graph clearly indi-
cated a three-input carry chain operation (figure
18). Type 2 approximation also affected the sec-
ond and third graphs in the figure, but the ex-
tracted NOT and NOR were essentially the same
as before.

Notes

1. See section 6. All the results in section 6 utilized these
estimations.

2. They are essentially same trace that is used in [28].

3. Note that the spatial allocations of the nodes are care-
fully selected by hand on the basis of readability alone.
The X axis is sorted using the time step information of
the simulation. The NOT circuit data are located in the
upper portion of the figure. The NOR circuit data are
located in the lower portion. Without this type of careful
coordination, this figure is hard to understand. The al-
gorithm, however, relies solely on topological informa-
tion and does not have the benefit of the visual infor-
mation.

4. To extract Digital NOT/NOR and Carry Chain concepts,
approximation techniques are necessary. See appendix
B for more details.
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